Tags:
tag this topic
create new tag
view all tags
%DASHBOARD{ section="dashboard_start" }%<br />%DASHBOARD{ section="banner" image="%ATTACHURL%/business-intelligencenew.jpg" width="736" height="278" style="center"}% ---+ <span style="color: orangered;"><b>This course page is no longer maintained. For the 2024-2025 academic year, the course will be held by Prof. P.G. Bottoni and by Prof. S. Faralli.<br /></b></span> ---+ <b><span style="color: orangered;">The new link to the course page (Google Classroom) follows:</span><br /></b> *<a data-saferedirecturl="https://www.google.com/url?q=https://classroom.google.com/c/NjQxNjMzNzE2Njk3?cjc%3Dg2a6gcn&source=gmail&ust=1724930259367000&usg=AOvVaw3o_O8RpDKokqzQx1HGc0dq" href="https://classroom.google.com/c/NjQxNjMzNzE2Njk3?cjc=g2a6gcn" target="_blank">https://classroom.google.com/c/NjQxNjMzNzE2Njk3?cjc=g2a6gcn</a>* <br />%DASHBOARD{ section="box_start" title="Overview"}% ---+ Presentation of the course [[%ATTACHURL%/CourseIntroductionandObjectives.pdf][CourseIntroductionandObjectives.pdf]] [[%ATTACHURL%/CourseIntroductionandObjectives-1.pdf][<br />]] Enterprises today are driven by data. "<i>Business Intelligence allows people of all levels in organizations to access, interact with, and analyze data to manage the business, improve the performance, discover opportunities, and operate efficiently</i>" (Cindi Howson, Successful BI, McGrawHill). However, the degree to which BI solutions can be successfully adopted within organizations depend to a great extent on the degree to which business and IT experts can partner together. *The objective of this course is to form Advanced Business Users of BI applications*, with a deep understanding of the business needs and a good understanding of technology. The Advanced Business User understands the business and how to leverage technology to improve it, leads the interpretation of business requirements and strategic objectives, and helps designing reports to answer business questions. The course is in two parts: * PART A: Business Intelligence and Social Analytics 6CFU *Instructor*: Prof. Paola Velardi velardi AT di.uniroma1.it * PART B: Process modeling 3CFU *Instructor*: Prof. Paolo Bottoni bottoni AT di.uniroma1.it %DASHBOARD{ section="box_end" }%%DASHBOARD{ section="box_start" title="Schedule and Exams (read carefully!)"}% *Class days (2023-24)* Classes have started on<b>%RED% Monday September 18th%ENDCOLOR%</b>, 2023 (see schedules on the MANIMP 23-24 web site) %RED% *Monday 12:00-14:00 8b; Tuesday 16:00-18:00 Lab Info; Wednesday 14:00-16:00 9A* %ENDCOLOR% ---+ NOTE: MONDAY , September 25th THERE WILL BE NO LESSON *It is highly recommended to attend the classes in presence unless you are residing in another region or country. Interactivity is not allowed by the Faculty for security reasons to remote students.* Monday 11-13 (8a), Wednesday 14-16 (8a), Thursday 16-18 (Didalab) * PART A: September-mid November (Prof. Paola Velardi) * PART B: mid November-December (Prof. Paolo Gaspare Bottoni) * LAB: During PART A, about 7 lessons will be held in the laboratory (LabInfo) for practical applications using [[https://www.ibm.com/cloud/watson-studio/details][IBM Watson Studio]] in cooperation with IBM tutors. *Exam PART A rules:** * Written test: 60% * Project on selected business problems using Watson Studio: 40%. Please follow carefully [[%ATTACHURL%/Instruction_for_the_Business_Intelligence_project_2022-23.pdf][Instruction_for_the_Business_Intelligence_project_2022-23.pdf]] for creating your project. Projects should be submitted by teams of two. You can submit your project alone if you can't find a classmate, but no extra grades will be assigned for projects authored by a single student. * Interactive students, who read and present selected topics assigned by the instructor (either in class, or remotely, sending a registered presentation) *may increase 1-2 points the final grade ---++++ Project delivery deadlines: Winter %RED%2024%ENDCOLOR%: January 7th (january session), January 30th (February session); %RED%Summer 2023%ENDCOLOR%: June 5th (June session); July 5th (July session); September 1st (September session) *%RED%Projects delivered after the deadline will NOT be corrected. %ENDCOLOR%* ---++++ *Exam PART B rules:* * Project on a selected business process using process modelling and simulation tools. Projects can be submitted by teams of up to five members (after approval by Professor Bottoni for groups of 4 or 5). *The final grade* is the weighted sum of BI (2/3) and BPM (1/3) grades. <b>IMPORTANT: </b>INFOSTUD *sessions* have a start date and an end date. This is because I can't register a grade until you pass the test, and deliver the BI and BPM projects. So, there is *not one single date I can establish*. Usually, you can only see the start date of an exam session on Infostud.<b> THIS IS NOT the date of the test!</b> Usually, there are two test dates within any session, but you need to register on INFOSTUD much earlier (e.g., may-early june for the june-july session). You can register for a test through the Google form I circulate before any test date. Please remember to register on Infostud *IF* you believe that during the session (winter or summer) you will be able to obtain a final grade - based on the result of a test, and the 2 projects. *ERASMUS STUDENTS:* depending on the signed learning agreement, some Erasmus students may attend *only the BI part* (6 credits) and obtain a grade for this part of the course. However, these students must show their learning agreement to prove that they only need 6 CFU. <br />%DASHBOARD{ section="box_end" }%%DASHBOARD{ section="box_start" title="Suggested Text Books"}% ---+++++ PART A * Cindi Howson "Successful Business Intelligence" Second Edition, Mc Graw Hill * Ramesh Sharda, Dursun Deelen and Efraim Turban "Business Intelligence: A Managerial Perspective on Analytics" Third Edition, Pearson * Rick Sherman "Business Intelligence Guidebook" Morgan Kauffmann * Course slides and use cases ---+++++ PART B * M. Dumas, M. La Rosa, J. Mendling, H. A. Reijers, Fundamentals of Business Process Management, Springer, 2018 (the first edition from 2013 would work too) * W. van der Aalst, Process Mining - Data Science in Action, Second Edition. Springer, 2016 (the first edition from 2011 would work too) * Course slides %DASHBOARD{ section="box_end" }%%DASHBOARD{ section="box_start" title="Part A: Course Material"}% ---++ *IMPORTANT NOTES:* * *Subscribe* to Google Group (Prof. Velardi) [[https://groups.google.com/a/di.uniroma1.it/g/businessintelligence23-24][Business Intelligence Google Group 2023-2024]] SUBSCRIBE WITH YOUR INSTITUTIONAL SAPIENZA EMAIL (otherwise you will not be accepted) * *LABS*: 7 labs on Watson Studio will be held starting on October. Details in class. ---+++ List of topics and slides (do not download until updated 23): * Topic 1 (updated 23) - What is Business Intelligence [[%ATTACHURL%/1.WhatIsBI.pptx][1.WhatIsBI.pptx]] [[%ATTACHURL%/1b.WhatIsBI.pptx][1b.WhatIsBI.pptx]] [[%ATTACHURL%/1c._BI_project_workflow.pptx][1c._BI_project_workflow.pptx]] [[%ATTACHURL%/1.WhatIsBI.pptx][<br />]] * Topic 2 (updated 23) - Basic notions of databases and data schemas. What types of data and what for? Storing and integrating data in Data Warehouses: Extraction, Transformation and Load [[%ATTACHURL%/2.DataWarehousesETL.pptx][2.DataWarehousesETL.pptx]] [[%ATTACHURL%/2.DataWarehousesETL.pdf][2.DataWarehousesETL.pdf]] [[%ATTACHURL%/2.DataWarehousesETL.pptx][<br />]] * Topic 3 (updated 23)- Data Warehouses: Data Structures and Operations [[%ATTACHURL%/3.DW-datastructuresandprocessing.pptx][3.DW-datastructuresandprocessing.pptx]] [[%ATTACHURL%/3.DW-datastructuresandprocessing.pdf][<br />]] * Topic 4 - (updated 23) Data Analytics [[%ATTACHURL%/4.DataAnalytics.pptx][4.DataAnalytics.pptx]], [[%ATTACHURL%/4.DataAnalytics.pdf][4.DataAnalytics.pdf]] * Topic 5 (updated 23)- Social Analytics : [[%ATTACHURL%/5.SocialMediaAnalytics2023.pptx][5.SocialMediaAnalytics2023.pptx]] [[%ATTACHURL%/5.SocialMediaAnalytics2023.pdf][5.SocialMediaAnalytics2023.pdf]] [[%ATTACHURL%/5.SocialMediaAnalyticsshort.pptx][<br />]] * Topic 6 - (updated 2023) Data Visualization, Query and Reporting [[%ATTACHURL%/6.DataVisualization2023.pdf][6.DataVisualization2023.pdf]] Here you can find a master thesis by one of the course students: [[%ATTACHURL%/How_data_visualization_can_help_business_growth.pdf][How_data_visualization_can_help_business_growth.pdf]] * (2023) Labs on *IBM Watson Studio* (cloud application): Labs slides and data are on Google Drive shared with google group. [[%ATTACHURL%/Lab6_2018.pptx][<br />]] *%DASHBOARD{ section="box_end" }%%DASHBOARD{ section="box_start" title="Part B: Process Modeling"}%* ---++ *IMPORTANT NOTES:* Subscribe to the Google Group of BI / Process Modeling (Prof Bottoni) using your institutional address (domain: <u>@studenti.uniroma1.it</u>): <a href="https://groups.google.com/g/bpmbottoni" target="_blank">https://groups.google.com/g/bpmbottoni</a>. Teaching material will be posted on a [[https://drive.google.com/drive/u/0/folders/0B971bP7lYTQ1NzFORzJ0S1FFUkE][dedicated remote Google Drive folder]]. The subscription to the Google Group automatically grants you access to those resources. <a href="https://www.visual-paradigm.com/" target="_blank">Visual Paradigm</a> provides Sapienza University of Rome with <a href="https://www.visual-paradigm.com/features/uml-and-sysml-tools/" target="_blank">UML</a> and <a href="https://www.visual-paradigm.com/features/bpmn-diagram-and-tools/" target="_blank">BPMN</a> tools under the <a href="https://www.visual-paradigm.com/partner/academic/" target="_blank">Academic Partner Program</a>. ---+++ List of topics and resources Topics: * Introduction to Business Process Modeling * Formal models and standards for Business Process Models * Process simulation and analytics (and dedicated software tools) * Process mining: automated discovery and conformance checking (and dedicated software tools) Exams on the BPM part are by appointment. Deadlines for submitting your material are the same as those set by Professor Velardi. %DASHBOARD{ section="box_end" }%%DASHBOARD{ section="box_start" title="Use cases, datasets and readings" }% ---+++++ Open Data sources for Business Intelligence and Business Process Intelligence * [[https://communities.sas.com/t5/SAS-Communities-Library/Need-data-for-teaching-or-learning-Get-it-here/ta-p/221088][Data resources for BI: a very large catalogue of freely available datasets]] * [[https://www.sisense.com/blog/free-data-sources-upgrade-business-decision-making/][Another pointer to open data sources]] for business intelligence * The Business Process Intelligence Challenge event logs and other real-world process data: <a href="https://www.tf-pm.org/resources/logs" target="_blank">https://www.tf-pm.org/resources/logs</a> * Google has released a search engine to search for datasets: <a href="https://toolbox.google.com/datasetsearch" target="_blank">https://toolbox.google.com/datasetsearch</a> ---++++ Case studies * [[http://www.teradata.com/Resources?AssetType=Case+Studies][Teradata case studies ]] * [[https://www.sas.com/en_us/insights/business-intelligence.html][SAS case studies]] * [[http://ideal-analytics.com/resources/case-studies/][Ideal Analytics case studies]] * Process mining case studies: <a href="https://www.tf-pm.org/resources/casestudy" target="_blank">https://www.tf-pm.org/resources/casestudy</a> * Some specific use cases: * [[%ATTACHURL%/ColdChainAnalyticsMagpieSensing.pdf][ColdChainAnalyticsMagpieSensing.pdf]] * [[%ATTACHURL%/Isle-of-Capri-Casinos.pdf][Isle-of-Capri-Casinos.pdf]] * [[%ATTACHURL%/RedCrossDutchcasestudy.pdf][RedCrossDutchcasestudy.pdf]] * [[%ATTACHURL%/InternetofTrainsSiemens.pdf][InternetofTrainsSiemens.pdf]] * [[%ATTACHURL%/BouyguestelecomdataWharehouse.pdf][BouyguestelecomdataWharehouse.pdf]] * [[%ATTACHURL%/Thomposn-news-analytics.pdf][Thomposn-news-analytics.pdf]] ---++++ Readings * Three readings on Data Analytics methods for Business Applications: * Finance [[%ATTACHURL%/DataMiningforFinancialApplications.pdf][DataMiningforFinancialApplications.pdf]] * Customer Segmentation: [[%ATTACHURL%/ClusteringforMarketSegmentation.pdf][ClusteringforMarketSegmentation.pdf]] * Fraud Detection: [[%ATTACHURL%/FraudDetectionAnalytics.pdf][FraudDetectionAnalytics.pdf]] * [[http://searchbusinessanalytics.techtarget.com/ehandbook/Machine-learning-technology-techniques-add-new-analytics-smarts][Get a grasp of Machine Learning methods and applications]] * From data to decisions: BI management frameworks and examples [[%ATTACHURL%/FromDatatoDecisions-LESSONSFROMREALUSECASES.pdf][FromDatatoDecisions-LESSONSFROMREALUSECASES.pdf]] * The process mining manifesto: <a href="https://www.tf-pm.org/resources/manifesto" target="_blank">https://www.tf-pm.org/resources/manifesto</a> %DASHBOARD{ section="box_end" }%%DASHBOARD{ section="dashboard_end" }%
E
dit
|
A
ttach
|
Watch
|
P
rint version
|
H
istory
: r175
<
r174
<
r173
<
r172
<
r171
|
B
acklinks
|
V
iew topic
|
Ra
w
edit
|
M
ore topic actions
Topic revision: r175 - 2024-09-11
-
PaoloBottoni
Log In
or
Register
BI Web
Create New Topic
Index
Search
Changes
Notifications
RSS Feed
Statistics
Preferences
Prenotazioni esami
Laurea Triennale ...
Laurea Triennale
Algebra
Algoritmi
Introduzione agli algoritmi
Algoritmi 1
Algoritmi 2
Algoritmi per la
visualizzazione
Architetture
Prog. sist. digitali
Architetture 2
Basi di Dati
Basi di Dati 1 Inf.
Basi di Dati 1 T.I.
Basi di Dati (I modulo, A-L)
Basi di Dati (I modulo, M-Z)
Basi di Dati 2
Calcolo
Calcolo differenziale
Calcolo integrale
Calcolo delle Probabilitą
Metodi mat. per l'inf. (ex. Logica)
canale AD
canale PZ
Programmazione
Fond. di Programmazione
Metodologie di Programmazione
Prog. di sistemi multicore
Programmazione 2
AD
EO
PZ
Esercitazioni Prog. 2
Lab. Prog. AD
Lab. Prog. EO
Lab. Prog. 2
Prog. a Oggetti
Reti
Arch. di internet
Lab. di prog. di rete
Programmazione Web
Reti di elaboratori
Sistemi operativi
Sistemi Operativi (12 CFU)
Anni precedenti
Sistemi operativi 1
Sistemi operativi 2
Lab. SO 1
Lab. SO 2
Altri corsi
Automi, Calcolabilitą
e Complessitą
Apprendimento Automatico
Economia Aziendale
Elaborazione Immagini
Fisica 2
Grafica 3D
Informatica Giuridica
Laboratorio di Sistemi Interattivi
Linguaggi di Programmazione 3° anno Matematica
Linguaggi e Compilatori
Sistemi Informativi
Tecniche di Sicurezza dei Sistemi
ACSAI ...
ACSAI
Computer Architectures 1
Programming
Laurea Magistrale ...
Laurea Magistrale
Percorsi di studio
Corsi
Algoritmi Avanzati
Algoritmica
Algoritmi e Strutture Dati
Algoritmi per le reti
Architetture degli elaboratori 3
Architetture avanzate e parallele
Autonomous Networking
Big Data Computing
Business Intelligence
Calcolo Intensivo
Complessitą
Computer Systems and Programming
Concurrent Systems
Crittografia
Elaborazione del Linguaggio Naturale
Estrazione inf. dal web
Fisica 3
Gamification Lab
Information Systems
Ingegneria degli Algoritmi
Interazione Multi Modale
Metodi Formali per il Software
Methods in Computer Science Education: Analysis
Methods in Computer Science Education: Design
Prestazioni dei Sistemi di Rete
Prog. avanzata
Internet of Things
Sistemi Centrali
Reti Wireless
Sistemi Biometrici
Sistemi Distribuiti
Sistemi Informativi Geografici
Sistemi operativi 3
Tecniche di Sicurezza basate sui Linguaggi
Teoria della
Dimostrazione
Verifica del software
Visione artificiale
Attivitą complementari
Biologia Computazionale
Design and development of embedded systems for the Internet of Things
Lego Lab
Logic Programming
Pietre miliari della scienza
Prog. di processori multicore
Sistemi per l'interazione locale e remota
Laboratorio di Cyber-Security
Verifica e Validazione di Software Embedded
Altri Webs ...
Altri Webs
Dottorandi
Commissioni
Comm. Didattica
Comm. Didattica_r
Comm. Dottorato
Comm. Erasmus
Comm. Finanziamenti
Comm. Scientifica
Comm Scientifica_r
Corsi esterni
Sistemi Operativi (Matematica)
Perl e Bioperl
ECDL
Fondamenti 1
(NETTUNO)
Tecniche della Programmazione 1° modulo
(NETTUNO)
Seminars in Artificial Intelligence and Robotics: Natural Language Processing
Informatica generale
Primo canale
Secondo canale
II canale A.A. 10-11
Informatica
Informatica per Statistica
Laboratorio di Strumentazione Elettronica e Informatica
Progetti
Nemo
Quis
Remus
TWiki ...
TWiki
Tutto su TWiki
Users
Main
Sandbox
Home
Site map
AA web
AAP web
ACSAI web
AA2021 web
Programming web
AA2021 web
AN web
ASD web
Algebra web
AL web
AA1112 web
AA1213 web
AA1920 web
AA2021 web
MZ web
AA1112 web
AA1213 web
AA1112 web
AA1314 web
AA1415 web
AA1516 web
AA1617 web
AA1819 web
Old web
Algo_par_dis web
Algoreti web
More...
BI Web
Create New Topic
Index
Search
Changes
Notifications
RSS Feed
Statistics
Preferences
View
Raw View
Print version
Find backlinks
History
More topic actions
Edit
Raw edit
Attach file or image
Edit topic preference settings
Set new parent
More topic actions
Account
Log In
Register User
Questo sito usa cookies, usandolo ne accettate la presenza. (
CookiePolicy
)
Torna al
Dipartimento di Informatica
E
dit
A
ttach
Copyright © 2008-2025 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki?
Send feedback