PROGETTAZIONE DI ALGORITMI a.a. 2011/12
Programma del Corso
Obiettivi
Il corso ha l'obiettivo di presentare idee e tecniche per la progettazione
e realizzazione di software efficiente ed elegante. In particolare tali
idee e tecniche sono sfruttate in quelle parti di importanti sistemi
software (sistemi operativi, compilatori/interpreti, DBMS, ecc.) che devono
fornire elevate prestazioni. Enfasi è posta nella definizione
e nella dimostrazione rigorosa delle proprietà dei concetti presentati
(algoritmi e
strutture dati). Il programma del corso si sviluppa in base alle
principali tecniche algoritmiche (Greedy, Divide et Impera, Programmazione
Dinamica e Backtracking) che sono esemplificate tramite numerosi
esempi. I problemi considerati hanno maggiore importanza come esempi di applicazione di una certa tecnica che per il loro interesse intrinseco.
Per ogni algoritmo sottomenzionato, durante il corso, sarà
data una dimostrazione di correttezza e valutata la complessità
di possibili implementazioni.
Grafi
Rappresentazione tramite matrici di adiacenza o liste di adiacenza. Visite in ampiezza e visite in profondità. Alberi di copertura, alberi dei cammini minimi, componenti fortemente connesse e ordinamento topologico. Cammini minimi in grafi orientati aciclici.
[Testo 2: Cap.
23,25. Testo 4: Cap. 11.]
Greedy
Descrizione generale. Algoritmi per la pianificazione di intervalli.
Algoritmo per la pianificazione che minimizza il ritardo.
Il problema dei cammini minimi : algoritmo di
Dijkstra. Il problema del minimo albero di copertura: algoritmo di
Prim ed algoritmo di Kruskal, strutture dati per insiemi disgiunti.
Codici di Huffman. Algoritmi di approssimazione e quantificazione dell'errore. Il problema della copertura tramite vertici.
[Testo 3: Cap.
4, 11. Testo 2: Cap. 17,
22, 24, 25. Appunti del corso]
Divide et Impera
Descrizione generale. Il problema della somma di sottovettori. Algoritmo per la ricerca della coppia di punti più vicini.
Il problema della selezione.
[Testo 4: Cap.
5, 10. Testo 3: Cap.
5, Appunti del corso]
Programmazione Dinamica
Descrizione generale e confronto con la tecnica Divide et Impera. Algoritmo
per il problema della più lunga sottosequenza comune. Distanza tra
stringhe.
Associatività del prodotto di matrici. Come passare dal valore
ottimo alla soluzione ottima. Il problema dei cammini minimi con pesi anche
negativi: algoritmo di Bellman-Ford, algoritmo di Floyd e Warshall.
Applicazioni: sistemi di vincoli di differenza. Algoritmi pseudopolinomiali:
il problema dello zaino a variabili intere.
[Testo 2: Cap. 16, 25.
Testo 4: Cap.10.
Testo
3: Cap. 6. Testo 1:
Cap. 5 Appunti del corso]
Backtracking
Descrizione generale. Enumerazione di strutture semplici: sottoinsiemi,
sequenze, permutazioni. Generazione delle possibili soluzioni
di un problema: cammini, cammini hamiltoniani, colorazioni. Euristiche
di taglio: il problema dello zaino.
[Testo 1: Cap.
7. Appunti del corso]
Calcolabilità e Complessità
Automi a stati finiti.
Macchine di Turing. Linguaggi ricorsivamente enumerabili.
Linguaggi ricorsivi e linguaggi indecidibili. Indecidibilità
del problema della fermata. Riduzione tra linguaggi.
La classe NP. La congettura su P ed NP. Problemi NP-completi.
Riduzione polinomiale tra linguaggi.
[Testo 2 Appunti del corso]
Testi Consigliati
-
E. Horowitz, S. Sahni,Fundamentals
of Computer Algorithms, Computer Science Press.
-
T.H. Cormen, C.E. Leiserson,
R.L. Rivest, Introduzione agli Algoritmi, Jackson Libri (tre volumi).
-
J. Kleinberg,
E. Tardos, Algorithm Design, Addison Wesley.
-
C. Demetrescu, I. Finocchi,
G. F. Italiano, Algoritmi e Strutture di Dati, Mc Graw-Hill.
-- AngeloMonti - 04 Mar 2008