Tags:
tag this topic
create new tag
view all tags
---++ <b><font color="blue" size="+3">Lesson Diary of the Previous Years</font></b> ---+++ <font color="red" size="+1">Lesson Diary A.y. 2023-2024</font> ---+++ *Introduction* *The Routing Problem i.e. the Least Cost Path Problem (1)* * The routing Problem * The shortest path Problem * shortest paths: BFS * The least cost path Problem (1) * the negative cycle issue * least cost paths: introduction * Bellman-Ford algorithm * Dijkstra algorithm (part) %GREEN% *Thursday, September 28, 2023 (Lessons 4-5):* %ENDCOLOR% *The Routing Problem i.e. the Least Cost Path Problem (2)* * The least cost path Problem (2) * Dijkstra algorithm (part) * Floyd-Warshall algorithm * The Routing Problem on Interconnection Topologies * the packet-switching model * the Butterfly network * routing on the Butterfly network: the greedy algorithm * The concept of blocking network, non-blocking network, and rearrangeable network %GREEN% *Monday, October 2, 2023 (Lessons 6-7-8):* %ENDCOLOR% *The Routing Problem i.e. the Least Cost Path Problem (3)* * The Routing Problem on Interconnection Topologies * The Benes network * routing on the Benes network: the looping algorithm *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (1)* * The Thompson model * The orthogonal grid drawing of graphs * Layout of the complete binary tree (H-tree) * Collinear Layout of the Complete network * Layout of the Complete network * Relation between bisection width and layout area * Layout of the Butterfly network * The Wise layout %GREEN% *Thursday, October 5, 2023 (Lessons 9-10):* %ENDCOLOR% *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (2)* * Layout of the Butterfly network * The Even & Even layout * comparison between the two methods * Optimal area layout %GREEN% *Monday, October 9, 2023 (Lessons 11-12-13):* %ENDCOLOR% *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (3)* * Layout of the Hypercube network * Collinear layout * general layout * The 3D layout problem *The problem of worm propagation/prevention i.e. the Minimum Vertex Covering Problem (1)* * The problem * worms * damages caused by worms * Model of the problem on graphs: minimum vertex cover * Definition * ILP model * a 2-approximation algorithm * independent set and maximum matching in relation to vertex cover * another approximation algorithm %GREEN% *Thursday October 12, 2023 (Lessons 14-15):* %ENDCOLOR% *The problem of worm propagation/prevention i.e. the Minimum Vertex Covering Problem (2)* * Model of the problem on graphs: minimum vertex cover * Konig-Egevary theorem (without proof) * A related problem: eternal vertex problem *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (1)* * Introduction to the frequency assignment problems %GREEN% *Monday October 16, 2023 (Lessons 16-17-18):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (2)* * Direct and hidden collisions, interference graph * Introduction to the frequency assignment problems * Direct and hidden collisions, interference graph * L(h,k)-labeling and minimum span (1) * The special case h=k in relation to the square of a graph * Properties of the L(h,k)-labeling and their proofs * Proof of NP-completeness for diameter 2 graphs * Lower bound of Delta+1 on lambda * Example: a graph requiring lambda=Delta squared - Delta * Upper bound of Delta squared + 2 Delta * Griggs and Yeh's conjecture * Exact results: cliques * Exact results: stars * Exact results: trees * Exact results: paths * Exact results: cycles * Exact results: grids * Approximate results: outerplanar graphs %GREEN% *Thursday, October 19, 2023 (Lessons 22-23):* %ENDCOLOR% *Special guest:* Jan Arne Telle - University of Bergen - https://www.uib.no/en/persons/Jan.Arne.Telle *Seminar entitled:* Recognition of Linear and Star Variants of Leaf Powers is in P %GREEN% *Monday, October 23, 2023 (Lessons 24-25-26):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (3)* * Variations of the problem * oriented L(2,1)-labeling * L(h1, ..., hk)-labeling * backbone coloring * multiple L(h,k)-labeling * a parenthesis on the 4-color theorem *The minimum energy broadcast i.e. the minimum spanning tree (1)* * The Min Broadcast problem * NP-completeness and inapproximability results (reduction from Min Set Cover) * Relation between Min Broadcast and Min Spanning Tree (MST) %GREEN% *Thursday, October 26, 2023 (Lessons 27-28):* %ENDCOLOR% *The minimum energy broadcast i.e. the minimum spanning tree (2)* * The MST problem * Kruskal algorithm * Prim algorithm * Boruvka algorithm * The Min Broadcast problem * MST heuristics * SPT heuristics * BAIP heuristics * approximation ratio for MST %RED% *Mid-term exam: first part* %ENDCOLOR% %GREEN% *Monday, October 30, 2023 (Lessons 29-30-31):* %ENDCOLOR% *The data mule problem i.e. the TSP* * (Fixed) sensor networks * The Data Mule problem * The TSP * NP-completeness * inapproximability * special cases: metric TSP and Euclidean TSP * generalizations *The Data Collection in ad-hoc networks i.e. the connected Dominating Set Problem* * the connected dominating set problem * the dominating set problem * the connected dominating set problems in unit disk graphs %GREEN% *Thursday, November 2, 2023 (Lessons 32-33):* %ENDCOLOR% *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs (1)* * (mobile) sensor networks %RED% *Mid-term exam: second part* %ENDCOLOR% %GREEN% *Monday November 6, 2023 (Lessons 34-35-36):* %ENDCOLOR% *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs(2)* * The problem of centralized deployment * The problem on graphs: min weight matching in bipartite graphs * maximum matching in a bipartite graph * P. Hall theorem (with proof) * corollary to the P. Hall theorem * searching for an augmenting path * Berge theorem on the augmenting paths * algorithm based on Berge theorem * Hopcroft & Karp algorithm * augmenting paths * an algorithm based on searching augmenting paths * ILP formulation %GREEN% *Thursday, November 9, 2023 (Lessons 37-38):* %ENDCOLOR% %RED% *Mid-term exam: third part* %ENDCOLOR% %GREEN% *Monday November 13, 2023 (Lessons 39-40-41):* %ENDCOLOR% *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs (3)* * Maximum matching in general graphs * blossoms * lemma on the cycle contraction * Edmonds algorithm (idea) * Another application *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (1)* * The problem * A Possible Approach: Virtual Forces * A Protocol Based on Voronoi Diagrams * Voronoi Diagrams * hypothesis of general position * properties * complexity * the dual problem: Delaunay triangulation * half-plane intersection (divide et impera) %GREEN% *Thursday November 16, 2023 (Lessons 42-43):* %ENDCOLOR% *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (2)* * Algorithms to compute the Voronoi diagram * Fortune algorithm %RED%students'opinions questionnaire - OPIS code: 73X3JB6A (1st year students) and SIJ1BMJY (2nd year students) %ENDCOLOR% [[%ATTACHURL%/guided_path_to_access_student_s_opinions_questionnaire_2022_2023.pdf][HERE]]: instructions for student's opinions questionnaire 2022/2023 %GREEN% *Monday, November 20, 2023 (Lessons 44-45-46):* %ENDCOLOR% *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (3)* * Heterogeneous sensors * A new notion of distance: Laguerre distance * Voronoi-Laguerre diagrams * A protocol based on Voronoi-Laguerre distance *Monitoring by UAVs i.e. what? (+some open problems)* %RED% *Thursday, November 23, 2023* %ENDCOLOR% *Canceled* %GREEN% *Monday, November 27, 2023 (Lessons 47-48-49):* %ENDCOLOR% *Other kinds of networks: the phylogeny and medicine cases (+some open problems)* %RED% *Thursday, November 30, 2023* %ENDCOLOR% *Canceled* %GREEN% *Monday, December 4, 2023 (Lessons 50-51-52):* %ENDCOLOR% *Student lessons*: Cukaj, Factor, Fiusco, Korpal, Pinna, Pro %GREEN% *Thursday, December 7, 2023 (Lessons 53-54):* %ENDCOLOR% *Student lessons*: Lundholm, Moldovan, Zhou %GREEN% *Monday, December 11, 2023 (Lessons 55-56-57):* %ENDCOLOR% *Student lessons*: Bertagnoli, D'Ambrosio, Finelli, Florescu, Gaetani, Guarini, Loffredi %RED% *Thursday, December 14, 2023* %ENDCOLOR% *Canceled* %GREEN% *Monday, December 18, 2023 (Lessons 58-59-60):* %ENDCOLOR% %RED% *Mid-term exam* %ENDCOLOR% ---+++ <font color="red" size="+1">Lesson Diary A.y. 2022-2023</font> ---+++ %GREEN% *Tuesday September 27, 2022 (Lessons 1-2-3):* %ENDCOLOR% *Introduction* *The Routing Problem i.e. the Least Cost Path Problem (1)* * The routing Problem * The shortest path Problem * shortest paths: BFS * The least cost path Problem (1) * the negative cycle issue * least cost paths: introduction * Bellman-Ford algorithm * Dijkstra algorithm %GREEN% *Friday September 30, 2022 (Lessons 4-5):* %ENDCOLOR% *The Routing Problem i.e. the Least Cost Path Problem (2)* * The least cost path Problem (2) * Floyd-Warshall algorithm * The Routing Problem on Interconnection Topologies * the packet switching model * the Butterfly network * routing on the Butterfly network: the greedy algorithm * the concept of blocking network, non-blocking network and rearrangeable network * the Benes network * routing on the Benes network: the looping algorithm %GREEN% *Tuesday October 4, 2022 (Lessons 6-7-8):* %ENDCOLOR% *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (1)* * The Thompson model * The orthogonal grid drawing of graphs * Layout of the complete binary tree (H-tree) * Collinear Layout of the Complete network * Layout of the Complete network * Relation between bisection width and layout area * Layout of the Butterfly network * the Wise layout * the Even & Even layout * comparison between the two methods %GREEN% *Friday October 7, 2022 (Lessons 9-10):* %ENDCOLOR% *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (3)* * Layout of the Butterfly network * Optimal area layout * Layout of the Hypercube network * Collinear layout * general layout * The 3D layout problem %GREEN% *Tuesday October 11, 2022 (Lessons 11-12-13):* %ENDCOLOR% *The problem of worm propagation/prevention i.e. the Minimum Vertex Covering Problem (1)* * The problem * worms * damages caused by worms * Model of the problem on graphs: minimum vertex cover * definition * ILP model * a 2-approximation algorithm * independent set and maximum matching in relation with vertex cover * another approximation algorithm * Konig-Egevary theorem (without proof) * A related problem: eternal vertex problem %GREEN% *Friday October 14, 2022 (Lessons 14-15):* %ENDCOLOR% *The Problem of Minimizing Boolean Circuits i.e. the Minimum Set Covering Problem* * The problem of minimizing boolean functions * Model of the problem on graphs: the Minimum Set Cover Problem * definition * ILP formulation * relation with the Minimum Vertex Covering Problem * an O(log n)-approximation algorithm * another approximation algorithm * some related problems: * Hitting set problem * Edge Cover problem * Set Packing problem * Exact Cover problem *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (1)* * Introduction to the frequency assignment problems %GREEN% *Tuesday October 18, 2022 (Lessons 16-17-18):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (2)* * Direct and hidden collisions, interference graph * Introduction to the frequency assignment problems * Direct and hidden collisions, interference graph * L(h,k)-labeling and minimum span (1) * The special case h=k in relation to the suqre of a graph * Properties of the L(h,k)-labeling and their proofs * Proof of NP-completeness for diameter 2 graphs %GREEN% *Friday October 21, 2022 (Lessons 19-20):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (2)* * L(h,k)-labeling and minimum span (2) * Lower bound of Delta+1 on lambda * Example: a graph requiring lambda=Delta squared - Delta * Upper bound of Delta squared + 2 Delta * Griggs and Yeh's conjecture * Exact results: cliques * Exact results: stars * Exact results: trees * Exact results: paths * Exact results: cycles * Exact results: grids * Approximate results: outerplanar graphs %GREEN% *Tuesday October 25, 2022 (Lessons 21-22-23):* %ENDCOLOR% %BLUE% students' lesson 1: The Routing problem i.e. the minimum cost shortest path %ENDCOLOR% %BLUE% students' lesson 2: The layout of interconnection networks i.e. the orthogonal grid graph drawing %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (3)* * Variations of the problem * oriented L(2,1)-labeling * L(h1, ..., hk)-labeling * backbone coloring * multiple L(h,k)-labeling * frequency assignment in GSM networks * a parenthesis on the 4 color theorem %GREEN% *Friday October 28, 2022 (Lessons 24-25):* %ENDCOLOR% *The minimum energy broadcast i.e. the minimum spanning tree (1)* * the Min Broadcast problem * NP-completeness and inapproximability results (reduction from Min Set Cover) * Relation between Min Broadcast and Min Spanning Tree (MST) * The MST problem * Kruskal algorithm * Prim algorithm * Boruvka algorithm %RED% *Tuesday November 1, 2022: HOLIDAY* %ENDCOLOR% %GREEN% *Friday November 4, 2022 (Lessons 26-27):* %ENDCOLOR% %BLUE% students' lesson 3: The problem of infecting a network with a worm i.e. the minimum vertex cover problem %ENDCOLOR% *The minimum energy broadcast i.e. the minimum spanning tree (2)* * the Min Broadcast problem * MST heuristics * SPT heuristics * BAIP heuristics * approximation ratio for MST *The data mule problem i.e. the TSP (1)* * (Fixed) sensor networks * The Data Mule problem %GREEN% *Tuesday November 8, 2022 (Lessons 28-29-30):* %ENDCOLOR% %BLUE% students' lesson 4: The problem of minimizing a boolean circuit i.e. the minimum set covering problem %ENDCOLOR% *The data mule problem i.e. the TSP (2)* * The TSP * NP-completeness * inapproximability * special cases: metric TSP and Euclidean TSP * generalizations *the Data Collection in ad-hoc networks i.e. the connected Dominating Set Problem (1)* * the data collection problem %RED% *Friday November 11, 2022 (Lessons 31-32-33): FIRS MID-TERM EXAM* %ENDCOLOR% %GREEN% *Tuesday November 15, 2022 (Lessons 34-35-36):* %ENDCOLOR% %BLUE% students' lesson 5: The frequency assignment problem i.e. a graph coloring problem %ENDCOLOR% %BLUE% students' lesson 6: The minimum energy broadcast problem i.e. the minimum spanning tree problem %ENDCOLOR% *the Data Collection in ad-hoc networks i.e. the connected Dominating Set Problem (2)* * the connected dominating set problem * the dominating set problem * the connected dominating set problems in unit disk graphs *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs (1)* * (mobile) sensor networks %GREEN% *Friday November 18, 2022 (Lessons 37-38):* %ENDCOLOR% *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs (2)* * the problem of centralized deployment * the problem on graphs: min weight matching in a bipartite graphs * maximum matching in a bipartite graph * P. Hall theorem (with proof) * corollary to the P. Hall theorem * searching an augmenting path * Berge theorem on the augmenting paths * algorithm based on Berge theorem * Hopcroft & Karp algorithm %GREEN% *Tuesday November 22, 2022 (Lessons 39-40-41):* %ENDCOLOR% %BLUE% students' lesson 7: The data mule scheduling problem i.e. the travelling salesman problem %ENDCOLOR% *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs (3)* * Minimum weight perfect matching in bipartite graphs (cntd) * augmenting paths * an algorithm based on searching augmenting paths * ILP formulation * Maximum matching in general graphs * blossoms * lemma on the cycle contraction * Edmonds algorithm (idea) * Another application %GREEN% *Friday November 25, 2022 (Lessons 42-43):* %ENDCOLOR% *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (1)* * The problem * A Possible Approach: Virtual Forces * A Protocol Based on Voronoi Diagrams * Voronoi Diagrams * hypthesis of general position * properties * complexity * the dual problem: Delaunay triangulation %GREEN% *Tuesday November 29, 2022 (Lessons 44-45-46):* %ENDCOLOR% %BLUE% students' lesson 8: The centralized deployment of a mobile sensor network i.e. the minimum cost perfect matching in bipartite graphs %ENDCOLOR% %RED%students'opinions questionnaire - OPIS code: R053WYBC %ENDCOLOR% *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (2)* * Algorithms to compute the Voronoi diagram * half-plane intersection (divide et impera) * Fortune algorithm %GREEN% *Friday December 2, 2022 (Lessons 47-48):* %ENDCOLOR% *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (3)* * Heterogeneous sensors * A new notion of distance: Laguerre distance * Voronoi-Laguerre diagrams * A protocol based on Voronoi-Laguerre distance %GREEN% *Tuesday December 6, 2022 (Lessons 49-50-51):* %ENDCOLOR% %BLUE% students' lesson 9: Self-deployment of a mobile sensor network i.e. the Voronoi Diagram %ENDCOLOR% *Monitoring by UAVs i.e. the multiple TSP with constraints* %RED% *Friday December 9, 2022: LONG WEEKEND: the University is closed* %ENDCOLOR% %GREEN% *Tuesday December 13, 2022 (Lessons 52-53-54)* %ENDCOLOR% %BLUE% students' lesson 10: Monitoring by UAVs i.e. the multiple TSP with constraints %ENDCOLOR% *Other kinds of networks: the phylogeny and medicine cases (+some open problems)* %RED% *Friday December 16, 2022 (Lessons 55-56): no lesson* %ENDCOLOR% %RED% *Tuesday December 20, 2022 (Lessons 57-58-59): SECOND MID-TERM EXAM* %ENDCOLOR% ---++ <font color="red" size="+3">Lesson Diary A.y. 2021-2022</font> %GREEN% *Wednesday September 22, 2021 (Lessons 1-2-3):* %ENDCOLOR% *Introduction* *The Routing Problem i.e. the Least Cost Path Problem (1)* * The routing Problem * The shortest path Problem * shortest paths: BFS * The least cost path Problem * the negative cycle issue * least cost paths: introduction %GREEN% *Friday September 24, 2021:* %ENDCOLOR% *No lesson* %GREEN% *Wednesday September 29, 2021 (Lessons 4-5-6):* %ENDCOLOR% *The Routing Problem i.e. the Least Cost Path Problem (2)* * The least cost path Problem * Bellman-Ford algorithm * Dijkstra algorithm * Floyd-Warshall algorithm * The Routing Problem on Interconnection Topologies * the packet switching model * the Butterfly network * routing on the Butterfly network: the greedy algorithm %GREEN% *Friday October 1, 2021 (Lessons 7-8):* %ENDCOLOR% *The Routing Problem i.e. the Least Cost Path Problem (3)* * The Routing Problem on Interconnection Topologies * the concept of blocking network, non-blocking network and rearrangeable network * the Benes network * routing on the Benes network: the looping algorithm *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (1)* * The Thompson model * The orthogonal grid drawing of graphs %GREEN% *Wednesday October 6, 2021 (Lessons 9-10-11):* %ENDCOLOR% *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (2)* * Collinear Layout of the Complete network * Layout of the Complete network * Relation between bisection width and layout area * Layout of the Butterfly network * the Wise layout * the Even & Even layout %GREEN% *Friday October 8, 2021 (Lessons 12-13):* %ENDCOLOR% *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (3)* * Layout of the Butterfly network * summary of the last lesson hour (the video went lost) * comparison between the two methods * Layout of the Hypercube network * Collinear layout * general layout * The 3D layout problem %GREEN% *Wednesday October 13, 2021 (Lessons 14-15-16):* %ENDCOLOR% *A parenthesis: Some problems in (co-)phylogeny (some theses' proposals)* *The problem of worm propagation/prevention i.e. the Minimum Vertex Covering Problem (2)* * The problem * worms * damages caused by worms %GREEN% *Friday October 15, 2021 (Lessons 17-18):* %ENDCOLOR% *The problem of worm propagation/prevention i.e. the Minimum Vertex Covering Problem (2)* * Model of the problem on graphs: minimum vertex cover * definition * ILP model * a 2-approximation algorithm * independent set and maximum matching in relation with vertex cover * another approximation algorithm * Konig-Egevary theorem (without proof) * A related problem: eternal vertex problem %GREEN% *Wednesday October 20, 2021 (Lessons 19-20-21):* %ENDCOLOR% *The Problem of Minimizing Boolean Circuits i.e. the Minimum Set Covering Problem* * The problem of minimizing boolean functions * Model of the problem on graphs: the Minimum Set Cover Problem * definition * ILP formulation * relation with the Minimum Vertex Covering Problem * an O(log n)-approximation algorithm * another approximation algorithm * some related problems: * Hitting set problem * Edge Cover problem * Set Packing problem * Exact Cover problem *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (1)* * Introduction to the frequency assignment problems * Direct and hidden collisions, interference graph %GREEN% *Friday October 22, 2021 (Lessons 22-23):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (1)* * Introduction to the frequency assignment problems * Direct and hidden collisions, interference graph * L(h,k)-labeling and minimum span (1) * The special case h=k in relation to the suqre of a graph * Properties of the L(h,k)-labeling and their proofs * Proof of NP-completeness for diameter 2 graphs (first part) %GREEN% *Wednesday October 27, 2021 (Lessons 24-25-26):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (2)* * L(h,k)-labeling and minimum span (2) * Proof of NP-completeness for diameter 2 graphs * Lower bound of Delta+1 on lambbda * Example: a graph requiring lambda=Delta squared - Delta * Upper bound of Delta squared + 2 Delta * Griggs and Yeh's conjecture * Exact results: cliques * Exact results: stars * Exact results: trees * Exact results: paths * Exact results: cycles * Exact results: grids %GREEN% *Friday October 29, 2021 (Lessons 27-28-29):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (3)* * L(h,k)-labeling and minimum span (3) * Approximate results: outerplanar graphs * Variations of the problem (1) * oriented L(2,1)-labeling * L(h1, ..., hk)-labeling * backbone coloring * multiple L(h,k)-labeling * frequency assignment in GSM networks %GREEN% *Week November 2-5, 2021: Mid-term exams* %ENDCOLOR% %GREEN% *Wednesday November 10, 2021 (Lessons 30-31-32):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (4)* * L(h,k)-labeling and minimum span (4) * Variations of the problem (2) * a parenthesis on the 4 color theorem *The minimum energy broadcast i.e. the minimum spanning tree (1)* * the Min Broadcast problem * NP-completeness and inapproximability results (reduction from Min Set Cover) * Relation between Min Broadcast and Min Spanning Tree (MST) %GREEN% *Friday November 12, 2021 (Lessons 33-34):* %ENDCOLOR% *The minimum energy broadcast i.e. the minimum spanning tree (2)* * The MST problem * Kruskal algorithm * Prim algorithm * Boruvka algorithm %GREEN% *Wednesday November 17, 2021 (Lessons 35-36-37):* %ENDCOLOR% *The minimum energy broadcast i.e. the minimum spanning tree (3)* * the Min Broadcast problem * MST heuristics * SPT heuristics * BAIP heuristics * approximation ratio for MST *The data mule problem i.e. the TSP (1)* * (Fixed) sensor networks * The Data Mule problem * The TSP * NP-completeness * inapproximability %GREEN% *Friday November 19, 2021 (Lessons 38-39):* %ENDCOLOR% *The data mule problem i.e. the TSP (2)* * * special cases: metric TSP and Euclidean TSP * generalizations *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs (1)* * (mobile) sensor networks %GREEN% *Wednesday November 24, 2021 (Lessons 40-41-42):* %ENDCOLOR% *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs (2)* * the problem of centralized deployment * the problem on graphs: min weight matching in a bipartite graphs * maximum matching in a bipartite graph * P. Hall theorem (with proof) * corollary to the P. Hall theorem * searching an augmenting path * Berge theorem on the augmenting paths * algorithm based on Berge theorem * Hopcroft & Karp algorithm %GREEN% *Friday November 26, 2021 (Lessons 43-44):* %ENDCOLOR% *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs (3)* * Minimum weight perfect matching in bipartite graphs (cntd) * augmenting paths * an algorithm based on searching augmenting paths * ILP formulation * Maximum matching in general graphs * blossoms * lemma on the cycle contraction * Edmonds algorithm (idea) * Another application %GREEN% *Wednesday December 1, 2021 (Lessons 45-46-47):* %ENDCOLOR% %RED% *Students' lessons* %ENDCOLOR% *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (1)* * The problem * A Possible Approach: Virtual Forces * A Protocol Based on Voronoi Diagrams * Voronoi Diagrams * hypthesis of general position * properties * complexity * the dual problem: Delaunay triangulation %GREEN% *Friday December 3, 2021 (Lessons 48-49):* %ENDCOLOR% %RED% *Students' lessons* [BKTL04], [BPT00], [Bal07], [AGK08], [Xal14] %ENDCOLOR% %RED% *Wednesday December 8, 2021: HOLIDAY* %ENDCOLOR% %GREEN% *Friday December 10, 2021 (Lessons 50-51):* %ENDCOLOR% %RED% *Students' lessons* [M95], [Cal15] %ENDCOLOR% *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (2)* * Algorithms to compute the Voronoi diagram * half-plane intersection (divide et impera) * Fortune algorithm %GREEN% *Wednesday December 15, 2021 (Lessons 52-53-54):* %ENDCOLOR% %RED% *Students' lessons* [HZ14], [YWD06], [NSM16], [ML18] %ENDCOLOR% *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (3)* * Heterogeneous sensors * A new notion of distance: Laguerre distance * Voronoi-Laguerre diagrams * A protocol based on Voronoi-Laguerre distance *Monitoring by UAVs i.e. what? (some theses' proposals)* %GREEN% *Friday December 17, 2021 (Lessons 55-56): mid-term exam* %ENDCOLOR% %GREEN% *Wednesday December 22, 2021: no lesson* %ENDCOLOR% -- ---+ %RED%Lesson Diary A.y. 2020-2021%ENDCOLOR% %GREEN% *Wednesday October 7, 2020 (Lessons 1-2-3):* %ENDCOLOR% *Introduction* *The Routing Problem i.e. the Least Cost Path Problem (1)* * The routing Problem * The shortest path Problem * shortest paths: BFS * The least cost path Problem * the negative cycle issue * least cost paths: introduction %GREEN% *Friday October 9, 2020 (Lessons 4-5):* %ENDCOLOR% *The Routing Problem i.e. the Least Cost Path Problem (2)* * The least cost path Problem * Bellman-Ford algorithm * Dijkstra algorithm * Floyd-Warshall algorithm * The Routing Problem on Interconnection Topologies * the packet switching model * the Butterfly network * routing on the Butterfly network: the greedy algorithm %GREEN% *Wednesday October 14, 2020 (Lessons 6-7-8):* %ENDCOLOR% *The Routing Problem i.e. the Shortest Path Problem (3)* * The Routing Problem on Interconnection Topologies (2) * the concept of blocking network, non-blocking network and rearrangeable network * the Benes network * routing on the Benes network: the looping algorithm *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (1)* * The Thompson model * The orthogonal grid drawing of graphs * Collinear Layout of the Complete network * Layout of the Complete network * Relation between bisection width and layout area * Layout of the Butterfly network * the Wise layout %GREEN% *Friday October 16, 2020 (Lessons 9-10):* %ENDCOLOR% *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (2)* * Layout of the Butterfly network * the Even & Even layout * comparison between the two methods * Layout of the Hypercube network * Collinear layout * general layout * The 3D layout problem %GREEN% *Wednesday October 21, 2020 (lessons 11-12-13):* %ENDCOLOR% *The problem of worm propagation/prevention i.e. the Minimum Vertex Covering Problem* * The problem * worms * damages caused by worms * Model of the problem on graphs: minimum vertex cover * definition * ILP model * a 2-approximation algorithm * independent set and maximum matching in relation with vertex cover * another approximation algorithm * Konig-Egevary theorem (without proof) * A related problem: eternal vertex problem %GREEN% *Friday October 23, 2020 (lessons 14-15):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (1)* * Introduction to the frequency assignment problems * Direct and hidden collisions, interference graph * L(h,k)-labeling and minimum span (1) * The special case h=k in relation to the suqre of a graph * Properties of the L(h,k)-labeling and their proofs %GREEN% <b>Wednesday October 28, 2020 (lessons 16-17-18):* </b>%ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (2) * L(h,k)-labeling and minimum span (2) * Proof of NP-completeness for diameter 2 graphs * Lower bound of Delta+1 on lambbda * Example: a graph requiring lambda=Delta squared - Delta * Upper bound of Delta squared + 2 Delta * Griggs and Yeh's conjecture * Exact results: cliques * Exact results: stars * Exact results: trees * Exact results: paths * Exact results: cycles * Approximate results: outerplanar graphs * Variations of the problem * oriented L(2,1)-labeling * L(h1, ..., hk)-labeling * backbone coloring * multiple L(h,k)-labeling * frequency assignment in GSM networks * a parenthesis on the 4 color theorem %GREEN% *Friday October 30, 2020 (lessons 19-20):* %ENDCOLOR% *The minimum energy broadcast i.e. the minimum spanning tree (1)* * the Min Broadcast problem * NP-completeness and inapproximability results (reduction from Min Set Cover) * Relation between Min Broadcast and Min Spanning Tree (MST) %GREEN% *Wednesday November 4, 2020 (lessons 21-22-23):* %ENDCOLOR% *The minimum energy broadcast i.e. the minimum spanning tree (2)* * The MST problem * Kruskal algorithm * Prim algorithm * Boruvka algorithm * the Min Broadcast problem * MST heuristics * SPT heuristics * BAIP heuristics * approximation ratio for SPT %GREEN% *Friday November 6, 2020 (lessons 24-25):* %ENDCOLOR% *The data mule problem i.e. the TSP (1)* * (Fixed) sensor networks * The Data Mule problem * The TSP * NP-completeness * inapproximability %GREEN% *Wednesday November 11, 2020 (lessons 26-27-28):* %ENDCOLOR% *The data mule problem i.e. the TSP (2)* * * special cases: metric TSP and Euclidean TSP * generalizations *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs (1)* * (mobile) sensor networks * the problem of centralized deployment * the problem on graphs: min weight matching in a bipartite graphs * maximum matching in a bipartite graph * P. Hall theorem (with proof) * corollary to the P. Hall theorem * searching an augmenting path %GREEN% *Friday November 13, 2020 (lessons 29-30):* %ENDCOLOR% *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs (2)* * maximum matching in a bipartite graph (cntd) * Berge theorem on the augmenting paths * algorithm based on Berge theorem * Hopcroft & Karp algorithm * Minimum weight perfect matching in bipartite graphs * augmenting paths * an algorithm based on searching augmenting paths * ILP formulation * Maximum matching in general graphs * blossoms * lemma on the cycle contraction %GREEN% *Wednesday November 18, 2020 (lessons 31-32-33):* %ENDCOLOR% *Students' lessons (1)* *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs (3)* * Maximum matching in general graphs (cntd) * blossoms * lemma on the cycle contraction * Edmonds algorithm (idea) *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (1)* * The problem * A Possible Approach: Virtual Forces * A Protocol Based on Voronoi Diagrams * Voronoi Diagrams * hypthesis of general position %GREEN% *Friday November 20, 2020 (lessons 34-35):* %ENDCOLOR% *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (2)* * Voronoi Diagrams (cntd) * properties * complexity * the dual problem: Delaunay triangulation * Algorithms to compute the Voronoi diagram (1) * half-plane intersection (divide et impera) %GREEN% *Wednesday November 25, 2020 (lessons 36-37-38):* %ENDCOLOR% *Students' lessons (2)* *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (3)* * Voronoi Diagrams (cntd) * Fortune algorithm * Heterogeneous sensors * A new notion of distance: Laguerre distance * Voronoi-Laguerre diagrams * A protocol based on Voronoi-Laguerre distance %GREEN% *Friday November 27, 2020 (lessons 39-40):* %ENDCOLOR% *Mid Term Exam 1/2* %GREEN% *Wednesday December 2, 2020 (lessons 41-42-43):* %ENDCOLOR% *Students' lessons (3)* *The Problem of Minimizing Boolean Circuits i.e. the Minimum Set Covering Problem* * The problem of minimizing boolean functions * Model of the problem on graphs: the Minimum Set Cover Problem * definition * ILP formulation * relation with the Minimum Vertex Covering Problem * an O(log n)-approximation algorithm * another approximation algorithm * some related problems: * Hitting set problem * Edge Cover problem * Set Packing problem * Exact Cover problem %GREEN% *Friday December 4, 2020 (lessons 44-45):* %ENDCOLOR% *Monitoring by UAVs i.e. what? (some theses' proposals)* %GREEN% *Wednesday December 9, 2020 (lessons 46-47-48):* %ENDCOLOR% *Students' lessons (4)* * Dr. Federico Corò: "A Realistic Model to Support Rescue Operationsby UAVs after an Earthquake" %GREEN% *Friday December 11, 2020 (lessons 49-50):* %ENDCOLOR% *Some problems in (co-)phylogeny (some further theses' proposals)* %GREEN% *Wednesday December 16, 2020 (lessons 51-52-53):* %ENDCOLOR% *Students' lessons (5)* %GREEN% *Friday December 18, 2020 (lessons 54-55):* %ENDCOLOR% *Mid Term Exam 2/2* ---- ---++ <font color="red" size="+3">Lesson Diary A.y. 2019-2020</font> %GREEN% *Wednesday September 25, 2019 (Lessons 1-2-3):* %ENDCOLOR% *Introduction* *The Routing Problem i.e. the Least Cost Path Problem (1)* * The routing Problem * The shortest path Problem * shortest paths: BFS * The least cost path Problem * the negative cycle issue * least cost paths: introduction * Bellman-Ford algorithm * Dijkstra algorithm * Floyd-Warshall algorithm %GREEN% *Friday September 27, 2019 (Lessons 4-5):* %ENDCOLOR% *The Routing Problem i.e. the Least Cost Path Problem (2)* * The Routing Problem on Interconnection Topologies * the packet switching model * the Butterfly network * routing on the Butterfly network: the greedy algorithm * the concept of blocking network, non-blocking network and rearrangeable network * the Benes network * routing on the Benes network: the looping algorithm %GREEN% *Wednesday October 2, 2019 (Lessons 6-7-8):* %ENDCOLOR% *The Routing Problem i.e. the Shortest Path Problem (3)* * The Routing Problem on Interconnection Topologies (2) * the Benes network * routing on the Benes network: the looping algorithm *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (1)* * The Thompson model * The orthogonal grid drawing of graphs * Collinear Layout of the Complete network * Layout of the Complete network * Relation between bisection width and layout area %GREEN% *Friday October 4, 2019 (lessons 9-10):* %ENDCOLOR% *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (2)* * Layout of the Butterfly network * the Wise layout * the Even & Even layout * comparison between the two methods * Layout of the Hypercube network * Collinear layout * general layout * The 3D layout problem %GREEN% *Wednesday October 9, 2019 (lessons 11-13):* %ENDCOLOR% *The problem of worm propagation/prevention i.e. the Minimum Vertex Covering Problem* * The problem * worms * damages caused by worms * Model of the problem on graphs: minimum vertex cover * definition * ILP model * a 2-approximation algorithm * independent set and maximum matching in relation with vertex cover * another approximation algorithm * Konig-Egevary theorem %GREEN% *Friday October 11, 2019 (lessons 14-15):* %ENDCOLOR% *The Problem of Minimizing Boolean Circuits i.e. the Minimum Set Covering Problem* * The problem of minimizing boolean functions * Model of the problem on graphs: the Minimum Set Cover Problem * definition * ILP formulation * relation with the Minimum Vertex Covering Problem * an O(log n)-approximation algorithm * another approximation algorithm * some related problems: * Hitting set problem * Edge Cover problem * Set Packing problem * Exact Cover problem *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (1)* * Introduction to the frequency assignment problems %GREEN% *Wednesday October 16, 2019 (lessons 16-18):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (2)* * Direct and hidden collisions, interference graph * L(h,k)-labeling and minimum span (1) * The special case h=k in relation to the suqre of a graph * Properties of the L(h,k)-labeling and their proofs * Proof of NP-completeness for diameter 2 graphs %GREEN% *Friday October 18, 2019 (lessons 19-20):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (3)* * L(h,k)-labeling and minimum span (2) * Lower bound of Delta+1 on lambbda * Example: a graph requiring lambda=Delta squared - Delta * Upper bound of Delta squared + 2 Delta * Griggs and Yeh's conjecture * Exact results: cliques * Exact results: stars * Exact results: trees * Exact results: paths * Exact results: cycles * Approximate results: outerplanar graphs %GREEN% *Wednesday October 23, 2019 (lessons 21-23):* %ENDCOLOR% Lesson cancelled (due to illness of the teacher) %GREEN% *Friday October 25, 2019 (lessons 24-25):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (4)* * Variations of the problem * oriented L(2,1)-labeling * L(h1, ..., hk)-labeling * backbone coloring * multiple L(h,k)-labeling * frequency assignment in GSM networks * a parenthesis on the 4 color theorem *The minimum energy broadcast i.e. the minimum spanning tree (1)* * the Min Broadcast problem * NP-completeness and inapproximability results (reduction from Min Set Cover) * Relation between Min Broadcast and Min Spanning Tree (MST) %GREEN% *Wednesday October 29, 2019 (lessons 26-28):* %ENDCOLOR% *The minimum energy broadcast i.e. the minimum spanning tree (2)* * The MST problem * Kruskal algorithm * Prim algorithm * Boruvka algorithm * the Min Broadcast broblem * MST euristic * SPT euristic * BAIP euristic * approximation ratio for SPT %GREEN% *Friday November 1, 2019 (lessons 26-27):* %ENDCOLOR% Holiday %GREEN% *Wednesday November 6, 2019 (lessons 28-30):* %ENDCOLOR% Midterm Exam %GREEN% *Friday November 8, 2019 (lessons 31-32):* %ENDCOLOR% *The data mule problem i.e. the TSP* * (Fixed) sensor networks * The Data Mule problem * The TSP * NP-completeness * inapproximability * special cases: metric TSP and Euclidean TSP * generalizations %GREEN% *Wednesday November 13, 2019 (lessons 33-35):* %ENDCOLOR% *Student Lessons with the presence of the teacher (1)* see http://twiki.di.uniroma1.it/twiki/view/Algoreti/ProgrammaLezioniDegliStudenti *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs (1)* * (mobile) sensor networks * the problem of centralized deployment * the problem on graphs: min weight matching in a bipartite graphs %GREEN% *Friday November 15, 2019 (lessons 36-37):* %ENDCOLOR% *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs (2)* * maximum matching in a bipartite graph * P. Hall theorem (with proof) * corollary to the P. Hall theorem * searching an augmenting path * Berge theorem on the augmenting paths * algorithm based on Berge theorem * Hopcroft & Karp algorithm * Minimum weight perfect matching in bipartite graphs * augmenting paths * an algorithm based on searching augmenting paths * ILP formulation %GREEN% *Wednesday November 20, 2019 (lessons 38-40):* %ENDCOLOR% *Student Lessons with the presence of the teacher (2)* see http://twiki.di.uniroma1.it/twiki/view/Algoreti/ProgrammaLezioniDegliStudenti *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs (3)* * Maximum matching in general graphs * blossoms * lemma on the cycle contraction * Edmonds algorithm (idea) *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (1)* * The problem * A Possible Approach: Virtual Forces * A Protocol Based on Voronoi Diagrams %GREEN% <b>Friday November 22, 2019 (lessons 41-42):* </b>%ENDCOLOR% *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (2) * Voronoi Diagrams * hypthesis of general position * properties * complexity * the dual problem: Delaunay triangulation * Algorithms to compute the Voronoi diagram (1) * half-plane intersection (divide et impera) %GREEN% *Wednesday November 27, 2019 (lessons 43-45):* %ENDCOLOR% *Student Lessons with the presence of the teacher (3)* see http://twiki.di.uniroma1.it/twiki/view/Algoreti/ProgrammaLezioniDegliStudenti *EVALUATION OF THE COURSE* %GREEN% *Friday November 29, 2019 (lessons 46-47):* %ENDCOLOR% *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (3)* * Algorithms to compute the Voronoi diagram (2) * Fortune algorithm * Heterogeneous sensors * A new notion of distance: Laguerre distance * Voronoi-Laguerre diagrams * A protocol based on Voronoi-Laguerre distance %GREEN% *Wednesday December 4, 2019 (lessons 48-50):* %ENDCOLOR% *Student Lessons with the presence of the teacher (4)* see http://twiki.di.uniroma1.it/twiki/view/Algoreti/ProgrammaLezioniDegliStudenti *Monitoring by UAVs i.e. what? (some theses' proposals)* %GREEN% *Friday December 6, 2019 (lessons 51-52):* %ENDCOLOR% *Some problems in (co-)phylogeny (some further theses' proposals)* %GREEN% *Wednesday December 11, 2019 (lessons 51-53):* %ENDCOLOR% *Student Lessons with the presence of the teacher (5)* see http://twiki.di.uniroma1.it/twiki/view/Algoreti/ProgrammaLezioniDegliStudenti %RED% Winner Announcement: Award for the best students' lesson%ENDCOLOR% %GREEN% *Friday December 13, 2019 (lessons 53-54):* %ENDCOLOR% *Phylogenetic Networks* by Prof. B. Sinaimeri (INRIA Grenoble) %GREEN% *Wednesday December 18, 2019 (lessons 55-57):* %ENDCOLOR% Midterm Exam ---++ <font color="red" size="+3">Lesson Diary A.y. 2018-2019</font> %RED% *Tuesday September 25, 2018 (Lessons 1-2,5):* %ENDCOLOR% *Introduction* *The Routing Problem i.e. the Shortest Path Problem (1)* * The routing Problem * The shortest path Problem (1) * shortest paths: BFS * the negative cycle issue * least cost paths: introduction %RED% *Thursday September 27, 2018 (Lessons 2,5-5):* %ENDCOLOR% *The Routing Problem i.e. the Shortest Path Problem (2)* * The shortest path Problem (2) * least cost paths (cnt.d): * Bellman-Ford algorithm * Dijkstra algorithm * Floyd-Warshall algorithm * The Routing Problem on Interconnection Topologies (1) * the packet switching model * the Butterfly network * routing on the Butterfly network: the greedy algorithm * the concept of blocking network, non-blocking network and rearrangeable network %RED% *Tuesday October 2, 2018 (Lessons 5-7,5):* %ENDCOLOR% *The Routing Problem i.e. the Shortest Path Problem (3)* * The Routing Problem on Interconnection Topologies (2) * the Benes network * routing on the Benes network: the looping algorithm *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (1)* * The Thompson model * The orthogonal grid drawing of graphs * Collinear Layout of the Complete network * Layout of the Complete network %RED% *Thursday October 4, 2018 (lessons 7,5-10):* %ENDCOLOR% *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (2)* * Relation between bisection width and layout area * Layout of the Butterfly network (1) * the Wise layout * the Even & Even layout * comparison between the two methods %RED% *Tuesday October 9, 2018 (lessons 10-12,5):* %ENDCOLOR% *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (3)* * Layout of the Hypercube network * Collinear layout * general layout * The 3D layout problem *The problem of worm propagation/prevention i.e. the Minimum Vertex Covering Problem (1)* * The problem * worms * damages caused by worms * Model of the problem on graphs: minimum vertex cover (1) * definition * ILP model %RED% *Thursday October 11, 2018 (lessons 12,5-15):* %ENDCOLOR% *The problem of worm propagation/prevention i.e. the Minimum Vertex Covering Problem (2)* * Model of the problem on graphs: minimum vertex cover (2) * a 2-approximation algorithm * independent set and maximum matching in relation with vertex cover * another approximation algorithm * Konig-Egevary theorem %RED% *Tuesday October 16, 2018 (lessons 15-17,5):* %ENDCOLOR% *The Problem of Minimizing Boolean Circuits i.e. the Minimum Set Covering Problem* * The problem of minimizing boolean functions * Model of the problem on graphs: the Minimum Set Cover Problem * definition * ILP formulation * relation with the Minimum Vertex Covering Problem * an O(log n)-approximation algorithm * another approximation algorithm * some related problems: * Hitting set problem * Edge Cover problem * Set Packing problem * Exact Cover problem *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (1)* * Introduction to the frequency assignment problems %RED% *Thursday October 18, 2018 (lessons 17,5-20):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (2)* * Direct and hidden collisions, interference graph * L(h,k)-labeling and minimum span (1) * The special case h=k in relation to the square of a graph * Properties of the L(h,k)-labeling and their proofs * Proof of NP-completeness for diameter 2 graphs %BLUE% *Tuesday October 23, 2018 (lessons 20-22,5):* %ENDCOLOR% *Student Lessons with the presence of the teacher (1)* see http://twiki.di.uniroma1.it/twiki/view/Algoreti/ProgrammaLezioniDegliStudenti %RED% *Thursday October 25, 2018 (lessons 22,5-25):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (3)* * L(h,k)-labeling and minimum span (2) * Lower bound of Delta+1 on lambbda * Example: a graph requiring lambda=Delta squared - Delta * Upper bound of Delta squared + 2 Delta * Griggs and Yeh's conjecture * Exact results: cliques * Exact results: stars * Exact results: trees * Exact results: paths * Exact results: cycles %RED% *Tuesday October 30, 2018:* %ENDCOLOR% Lesson canceled by the Dean. %RED% *Thursday November 1, 2018:* %ENDCOLOR% Holiday. %RED% *Tuesday November 6, 2018 (lessons 25-27,5):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (4)* * L(h,k)-labeling and minimum span (3) * Approximate results: outerplanar graphs * variations of the problem * oriented L(2,1)-labeling * L(h1, ..., hk)-labeling * backbone coloring * multiple L(h,k)-labeling * frequency assignment in GSM networks * a parenthesis on the 4 color theorem *The minimum energy broadcast i.e. the minimum spanning tree (1)* * the Min Broadcast problem * NP-completeness and inapproximability results (reduction from Min Set Cover) * Relation between Min Broadcast and Min Spanning Tree (MST) %BLUE% *Thursday November 8, 2018 (lessons 27,5-30):* %ENDCOLOR% *Mid term exam* %BLUE% *Tuesday November 13, 2018 (lessons 30-32,5):* %ENDCOLOR% *Student Lessons with the presence of the teacher (2)* see http://twiki.di.uniroma1.it/twiki/view/Algoreti/ProgrammaLezioniDegliStudenti %RED% *Thursday November 15, 2018 (lessons 32,5-35):* %ENDCOLOR% *The minimum energy broadcast i.e. the minimum spanning tree (2)* * The MST problem * Kruskal algorithm * Prim algorithm * Boruvka algorithm * the Min Broadcast broblem * MST euristic * SPT euristic * BAIP euristic * approximation ratio for SPT %RED% *Tuesday November 20, 2018 (lessons 35-37,5):* %ENDCOLOR% *The data mule problem i.e. the TSP* * (Fixed) sensor networks * The Data Mule problem * The TSP * NP-completeness * inapproximability * special cases: metric TSP and Euclidean TSP * generalizations %RED% *Thursday November 22, 2018 (lessons 37,5-40):* %ENDCOLOR% *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs (1)* * (mobile) sensor networks * the problem of centralized deployment * the problem on graphs: min weight matching in a bipartite graphs * maximum matching in a bipartite graph * P. Hall theorem (with proof) * corollary to the P. Hall theorem * searching an augmenting path * Berge theorem on the augmenting paths * algorithm based on Berge theorem * Hopcroft & Karp algorithm %RED% *Tuesday November 27, 2018:* %ENDCOLOR% *NO LESSON* %RED% *Thursday November 29, 2018 (lessons 40-42,5):* %ENDCOLOR% *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs (2)* * Minimum weight perfect matching in bipartite graphs * augmenting paths * an algorithm based on searching augmenting paths * ILP formulation * Maximum matching in general graphs * blossoms * lemma on the cycle contraction * Edmonds algorithm (idea) *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (1)* * The problem * A Possible Approach: Virtual Forces * A Protocol Based on Voronoi Diagrams *EVALUATION OF THE COURSE* %RED% *Tuesday December 4, 2018 (lessons 42,5-45):* %ENDCOLOR% *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (2)* * Voronoi Diagrams * hypthesis of general position * properties * complexity * the dual problem: Delaunay triangulation * Algorithms to compute the Voronoi diagram * half-plane intersection (divide et impera) * Fortune's algorithm %GREEN% *Thursday December 6, 2018 (lessons 45-47,5):* %ENDCOLOR% *Distributed Deployment 2* %BLUE% *Tuesday December 11, 2018 (lessons 47,5-50):* %ENDCOLOR% *Student Lessons with the presence of the teacher (3)* see http://twiki.di.uniroma1.it/twiki/view/Algoreti/ProgrammaLezioniDegliStudenti %GREEN% *Thursday December 13, 2018 (lessons 50-52,5):* %ENDCOLOR% *UAVs 1* %BLUE% *Tuesday December 18, 2018 (lessons 52,5-55):* %ENDCOLOR% *UAVs 2 (Prof. S. Silvestri - University of Kentucky Computer Science)* %BLUE% *Tuesday December 20, 2018 (lessons 55-57,5):* %ENDCOLOR% *Student Lessons with the presence of the teacher (4)* see http://twiki.di.uniroma1.it/twiki/view/Algoreti/ProgrammaLezioniDegliStudenti ---+++ <font color="blue" size="+3">Lesson Diary A.y. 2017-2018</font> %BLUE% *Friday September 29, 2017 (Lessons 1-2,5):* %ENDCOLOR% *Introduction* *The Routing Problem i.e. the Shortest Path Problem (1)* * The routing Problem * The shortest path Problem (1) * shortest paths: BFS * the negative cycle issue * least cost paths: introduction %BLUE% *Monday October 2, 2017 (Lessons 2,5-5):* %ENDCOLOR% *The Routing Problem i.e. the Shortest Path Problem (2)* * The shortest path Problem (2) * least cost paths (cnt.d): * Bellman-Ford algorithm * Dijkstra algorithm * Floyd-Warshall algorithm * The Routing Problem on Interconnection Topologies (1) * the packet switching model * the Butterfly network * routing on the Butterfly network: the greedy algorithm * the concept of blocking network, non-blocking network and rearrangeable network * the Benes network %BLUE% *Friday October 6, 2017 (Lessons 5-7,5):* %ENDCOLOR% *The Routing Problem i.e. the Shortest Path Problem (3)* * The Routing Problem on Interconnection Topologies (2) * routing on the Benes network: the looping algorithm *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (1)* * The Thompson model * The orthogonal grid drawing of graphs * Collinear Layout of the Complete network * Layout of the Complete network %BLUE% *Monday October 9, 2017 (lessons 7,5-10):* %ENDCOLOR% *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (2)* * Layout of the Butterfly network (1) * the Wise layout * the Even & Even layout * comparison between the two methods %BLUE% *Friday October 13, 2017 (lessons 10-12,5):* %ENDCOLOR% *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (3)* * Layout of the Hypercube network * Collinear layout * general layout * The 3D layout problem %BLUE% *Monday October 16, 2017 (lessons 12,5-15):* %ENDCOLOR% *The problem of worm propagation/prevention i.e. the Minimum Vertex Covering Problem* * The problem * worms * damages caused by worms * Model of the problem on graphs: minimum vertex cover * definition * ILP model * a 2-approximation algorithm * independent set and maximum matching in relation with vertex cover * another approximation algorithm * Konig-Egevary theorem *The Problem of Minimizing Boolean Circuits i.e. the Minimum Set Covering Problem (1)* * The problem of minimizing boolean functions * Model of the problem on graphs: the Minimum Set Covering Problem * definition * ILP formulation * relation with the Minimum Vertex Covering Problem * an O(log n)-approximation algorithm %BLUE% *Friday October 20, 2017 (lessons 15-17,5):* %ENDCOLOR% *The Problem of Minimizing Boolean Circuits i.e. the Minimum Set Covering Problem (2)* * * another approximation algorithm * some related problems * Hitting set problem * Edge Cover problem * Set Packing problem * Exact Cover problem *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (1)* * Introduction to the frequency assignment problems * Direct and hidden collisions, interference graph * L(h,k)-labeling and minimum span * The special case h=k in relation to the suqre of a graph * Properties of the L(h,k)-labeling and their proofs %BLUE% *Monday October 23, 2017 (lessons 17.5-20):* %ENDCOLOR% *Student Lessons with the presence of the teacher (1)* see http://twiki.di.uniroma1.it/twiki/view/Algoreti/ProgrammaLezioniDegliStudenti %BLUE% *Friday October 27, 2017 (lessons 20-22.5):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (2)* * * Proof of NP-completeness for diameter 2 graphs * Lower bound of Delta+1 on lambbda * Example: a graph requiring lambda=Delta squared - Delta * Upper bound of Delta squared + 2 Delta * Griggs and Yeh's conjecture * Exact results: cliques * Exact results: stars * Exact results: trees * Exact results: paths * Exact results: cycles * Approximate results: outerplanar graphs %BLUE% *Monday October 30, 2017 (lessons 22.5-25):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (3)* * variations of the problem: * oriented L(2,1)-labeling * L(h1, ..., hk)-labeling * backbone coloring * multiple L(h,k)-labeling * frequency assignment in GSM networks * a parenthesis on the 4 color theorem *The minimum energy broadcast i.e. the minimum spanning tree (1)* * the Min Broadcast problem * NP-completeness and inapproximability results (reduction from Min Set Cover) * Relation between Min Broadcast and Min Spanning Tree (MST) %BLUE% *Friday November 3, 2017 (lessons 25-27.5):* %ENDCOLOR% *The minimum energy broadcast i.e. the minimum spanning tree (2)* * The MST problem * Kruskal algorithm * Prim algorithm * Boruvka algorithm * the Min Broadcast broblem * MST euristic * SPT euristic * BAIP euristic * approximation ratio for SPT %BLUE% *Monday November 6, 2017 (lessons 27.5-30):* %ENDCOLOR% *The data mule problem i.e. the TSP* * (Fixed) sensor networks * The Data Mule problem * The TSP * NP-completeness * inapproximability * special cases: metric TSP and Euclidean TSP * generalizations %BLUE% *Friday November 10, 2017 (lessons 30-32.5):* %ENDCOLOR% Attendance at the Workshop in honour of Janos Korner (both students and teacher) %BLUE% *Monday November 13, 2017 (lessons 32.5-35):* %ENDCOLOR% *Student Lessons with the presence of the teacher (2)* see http://twiki.di.uniroma1.it/twiki/view/Algoreti/ProgrammaLezioniDegliStudenti %BLUE% *Friday November 17, 2017 (lessons 35-37.5):* %ENDCOLOR% *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs (1)* * (mobile) sensor networks * the problem of centralized deployment * the problem on graphs: min weight matching in a bipartite graphs * maximum matching in a bipartite graph * P. Hall theorem (with proof) * corollary to the P. Hall theorem * searching an augmenting path * Berge theorem on the augmenting paths * algorithm based on Berge theorem * Hopcroft & Karp algorithm %BLUE% *Monday November 20, 2017 (lessons 37.5-40):* %ENDCOLOR% *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs (2)* * Minimum weight perfect matching in bipartite graphs * augmenting paths * an algorithm based on searching augmenting paths * ILP formulation * Maximum matching in general graphs * blossoms * lemma on the cycle contraction * Edmonds algorithm (idea) *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (1)* * The problem * A Possible Approach: Virtual Forces *EVALUATION OF THE COURSE* %BLUE% *Friday November 24, 2017 (lessons 40-42.5):* %ENDCOLOR% *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (2)* * A Protocol Based on Voronoi Diagrams * Voronoi Diagrams * hypthesis of general position * properties * complexity * the dual problem: Delaunay triangulation * Algorithms to compute the Voronoi diagram * half-plane intersection (divide et impera) * Fortune's algorithm %BLUE% *Monday November 27, 2017 (lessons 42.5-45):* %ENDCOLOR% *Student Lessons with the presence of the teacher (3)* see http://twiki.di.uniroma1.it/twiki/view/Algoreti/ProgrammaLezioniDegliStudenti %BLUE% *Friday December 1, 2017 (lessons 45-47.5):* %ENDCOLOR% *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (3)* * Heterogeneous sensors * A new notion of distance: Laguerre distance * Voronoi-Laguerre diagrams * A protocol based on Voronoi-Laguerre distance *Monitoring by UAVs i.e. What? (1)* Some theses proposals %BLUE% *Monday December 4, 2017 (lessons 47.5-50):* %ENDCOLOR% IT Meeting - http://www.studiareinformatica.uniroma1.it/38-it-meeting-lunedi-4-dicembre-2017 %BLUE% *Friday December 8, 2017:* %ENDCOLOR% *Holiday* %BLUE% *Monday December 11, 2017 (lessons 50-52.5):* %ENDCOLOR% *Monitoring by UAVs i.e. What? (2)* Some theses proposals *Some problems in (co-)Phylogeny* Some other theses proposals %BLUE% *Friday December 15, 2017 (lessons 52.5-55):* %ENDCOLOR% *Student Lessons with the presence of the teacher (4)* see http://twiki.di.uniroma1.it/twiki/view/Algoreti/ProgrammaLezioniDegliStudenti %BLUE% *Monday December 18, 2017 (lessons 55-57.5):* %ENDCOLOR% *Student Lessons with the presence of the teacher (5)* see http://twiki.di.uniroma1.it/twiki/view/Algoreti/ProgrammaLezioniDegliStudenti %BLUE% *Friday December 22, 2017 (lessons 57.5-60):* %ENDCOLOR% *Mid term exam* ---+++ <font color="blue" size="+3">Previous years' Diaries</font> ---+++ <font color="blue" size="+2">Lesson Diary A.y. 2016-2017</font> %BLUE% *Monday September 26, 2016 (Lessons 1-2):* %ENDCOLOR% *Introduction* *The Routing Problem i.e. the Shortest Path Problem (1)* * The routing Problem * The shortest path Problem (1) * shortest paths: BFS * the negative cycle issue * least cost paths: introduction * Bellman-Ford algorithm %BLUE% *Friday September 30, 2016 (Lessons 3-4):* %ENDCOLOR% *The Routing Problem i.e. the Shortest Path Problem (2)* * The shortest path Problem (2) * least cost paths (cnt.d): * Dijkstra algorithm * Floyd-Warshall algorithm * The Routing Problem on Interconnection Topologies (1) * the packet switching model * the Butterfly network %BLUE% *Monday October 3, 2016 (Lessons 5-6):* %ENDCOLOR% *The Routing Problem i.e. the Shortest Path Problem (3)* * The Routing Problem on Interconnection Topologies (2) * routing on the Butterfly network: the greedy algorithm * the concept of blocking network, non-blocking network and rearrangeable network * the Benes network * routing on the Benes network: the looping algorithm *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (1)* * The Thompson model * The orthogonal grid drawing of graphs * Collinear Layout of the Complete network * Layout of the Complete network %BLUE% *Friday October 7, 2016 (lessons 7-8):* %ENDCOLOR% *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (2)* * Layout of the Butterfly network (1) * the Wise layout * the Even & Even layout * comparison between the two methods %BLUE% *Monday October 10, 2016 (lessons 9-10):* %ENDCOLOR% *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (3)* * Layout of the Butterfly network (2) * Optimal area Layout of the Butterfly * Layout of the Hypercube network * Collinear layout * general layout * The 3D layout problem %BLUE% *Friday October 14, 2016 (lessons 11-12):* %ENDCOLOR% *The problem of worm propagation/prevention i.e. the Minimum Vertex Covering Problem (1)* * The problem * worms * damages caused by worms * Model of the problem on graphs: minimum vertex cover * definition * ILP model * a 2-approximation algorithm * independent set and maximum matching in relation with vertex cover * another approximation algorithm %BLUE% *Monday October 17, 2016 (lessons 13-14):* %ENDCOLOR% *The problem of worm propagation/prevention i.e. the Minimum Vertex Covering Problem (2)* * minimum vertex cover (cntd) * Konig-Egevary theorem *The Problem of Minimizing Boolean Circuits i.e. the Minimum Set Covering Problem (1)* * The problem of minimizing boolean functions * Model of the problem on graphs: the Minimum Set Covering Problem * definition * ILP formulation * relation with the Minimum Vertex Covering Problem * an O(log n)-approximation algorithm * another approximation algorithm %BLUE% *Friday October 21, 2016 (lessons 15-16):* %ENDCOLOR% *The Problem of Minimizing Boolean Circuits i.e. the Minimum Set Covering Problem (2)* * * some related problems * Hitting set problem * Edge Cover problem * Set Packing problem * Exact Cover problem *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (1)* * Introduction to the frequency assignment problems * Direct and hidden collisions, interference graph %BLUE% *Monday October 24, 2016 (lessons 17-18):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (2)* * L(h,k)-labeling and minimum span * The special case h=k in relation to the suqre of a graph * Properties of the L(h,k)-labeling and their proofs * Proof of NP-completeness for diameter 2 graphs * Lower bound of Delta+1 on lambbda * Exemple: a graph requiring lambda=Delta squared - Delta %BLUE% *Friday October 28, 2016 (lessons 19-20):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (3)* * L(h,k)-labeling and minimum span (cntd) * Upper bound of Delta squared + 2 Delta * Griggs and Yeh's conjecture * Exact results: cliques * Exact results: stars * Exact results: trees * Exact results: paths * Exact results: cycles * Approximate results: outerplanar graphs (part) %BLUE% *Monday October 31, 2016 (lessons 21-22):* %ENDCOLOR% No lessons, due to security check after the earthquacke of October 30. %BLUE% *Friday November 4, 2016 (lessons 23-24):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (4)* * L(h,k)-labeling and minimum span (cntd) * Approximate results: outerplanar graphs (part) * variations of the problem: * oriented L(2,1)-labeling * L(h1, ..., hk)-labeling * backbone coloring * multiple L(h,k)-labeling * frequency assignment in GSM networks * a parenthesis on the 4 color theorem %BLUE% *Monday November 7, 2016 (lessons 25-26):* %ENDCOLOR% Mid term evaluation (part 1). %BLUE% *Friday November 11, 2016 (lessons 27-28):* %ENDCOLOR% Mid term evaluation (part 2). %BLUE% *Monday November 14, 2016 (lessons 29-30):* %ENDCOLOR% *The minimum energy broadcast i.e. the minimum spanning tree (1)* * the Min Broadcast problem * NP-completeness and inapproximability results (reduction from Min Set Cover) * Relation between Min Broadcast and Min Spanning Tree (MST) %BLUE% *Friday November 18, 2016 (lessons 31-32):* %ENDCOLOR% *The minimum energy broadcast i.e. the minimum spanning tree (2)* * The MST problem * Kruskal algorithm * Prim algorithm * Boruvka algorithm * the Min Broadcast broblem * MST euristic * SPT euristic * BAIP euristic * approximation ratio for SPT %BLUE% *Monday November 21, 2016 (lessons 33-34):* %ENDCOLOR% *The data mule problem i.e. the TSP* * (Fixed) sensor networks * The Data Mule problem * The TSP * NP-completeness * inapproximability * special cases: metric TSP and Euclidean TSP * generalizations %BLUE% *Friday November 25, 2016 (lessons 35-36):* %ENDCOLOR% *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs (1)* * (mobile) sensor networks * the problem of centralized deployment * the problem on graphs: min weight matching in a bipartite graphs * maximum matching in a bipartite graph * P. Hall theorem (with proof) * corollary to the P. Hall theorem * searching an augmenting path * Berge theorem on the augmenting paths %BLUE% *Monday November 28, 2016 (lessons 37-38):* %ENDCOLOR% *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs (2)* * * algorithm based on Berge theorem * Hopcroft & Karp algorithm * Minimum weight perfect matching in bipartite graphs * augmenting paths * an algorithm based on searching augmenting paths * ILP formulation * Maximum matching in general graphs * blossoms * lemma on the cycle contraction * Edmonds algorithm (idea) %BLUE% *Friday December 2, 2016 (lessons 39-40):* %ENDCOLOR% *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (1)* * The problem * A Possible Approach: Virtual Forces * A Protocol Based on Voronoi Diagrams * Voronoi Diagrams * hypthesis of general position * properties * complexity * the dual problem: Delaunay triangulation * Algorithms to compute the Voronoi diagram * half-plane intersection (divide et impera) %BLUE% *Monday December 5, 2016 (lessons 41-42):* %ENDCOLOR% *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (2)* * Algorithms to compute the Voronoi diagram (cntd) * Fortune's algorithm * Heterogeneous sensors * A new notion of distance: Laguerre distance * Voronoi-Laguerre diagrams * A protocol based on Voronoi-Laguerre distance %BLUE% *Friday December 9, 2016 (lessons 43-44):* %ENDCOLOR% *No lesson: the building is closed* %BLUE% *Monday December 12, 2016 (lessons 45-46):* %ENDCOLOR% *Student lessons* %BLUE% *Friday December 16, 2016 (lessons 47-48):* %ENDCOLOR% *IT meeting* %BLUE% *Monday December 19, 2016 (lessons 49-50):* %ENDCOLOR% *Student lessons* %BLUE% *Tuesday December 20, 2016 (lessons 51-52):* %ENDCOLOR% *Student lessons* ---+++ <font color="blue" size="+2">Lesson Diary A.y. 2015-2016</font> %BLUE% *Tuesday September 22, 2015 (Lessons 1-2):* %ENDCOLOR% *Introduction* *The Routing Problem i.e. the Shortest Path Problem (1)* * The routing Problem * The shortest path Problem (1) * shortest paths: BFS * the negative cycle issue * least cost paths: introduction %BLUE% *Friday September 25, 2015 (Lessons 3-4):* %ENDCOLOR% *The Routing Problem i.e. the Shortest Path Problem (2)* * The shortest path Problem (2) * least cost paths (cnt.d): * Bellman-Ford algorithm * Dijkstra algorithm * Floyd-Warshall algorithm * The Routing Problem on Interconnection Topologies (1) * the packet switching model * the Butterfly network * routing on the Butterfly network: the greedy algorithm %BLUE% *Tuesday September 29, 2015 (Lessons 5-6):* %ENDCOLOR% *The Routing Problem i.e. the Shortest Path Problem (3)* * The Routing Problem on Interconnection Topologies (2) * the concept of blocking network, non-blocking network and rearrangeable network * the Benes network * routing on the Benes network: the looping algorithm *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (1)* * The Thompson model * The orthogonal grid drawing of graphs * Collinear Layout of the Complete network %BLUE% *Friday October 2, 2015 (lessons 7-8):* %ENDCOLOR% *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (2)* * Layout of the Complete network * Layout of the Butterfly network * the Wise layout %BLUE% *Friday October 2, 2015 (lessons 9-10):* %ENDCOLOR% *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (3)* * Layout of the Butterfly network (3) * the Even & Even layout * comparison between the two methods %BLUE% *Tuesday October 6, 2015 (lessons 11-12):* %ENDCOLOR% *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (4)* * Layout of the Butterfly network (4) * Optimal area Layout of the Butterfly * Layout of the Hypercube network * The 3D layout problem %BLUE% *Tuesday October 9, 2015 (lessons 13-14):* %ENDCOLOR% *The problem of worm propagation/prevention i.e. the Minimum Vertex Covering Problem (1)* * The problem * worms * damages caused by worms * Model of the problem on graphs: minimum vertex cover * definition * ILP model * a 2-approximation algorithm * independent set and maximum matching in relation with vertex cover %BLUE% *Tuesday October 13, 2015 (lessons 15-16):* %ENDCOLOR% *The problem of worm propagation/prevention i.e. the Minimum Vertex Covering Problem (2)* * minimum vertex cover (cntd) * another approximation algorithm * Konig-Egevary theorem *The Problem of Minimizing Boolean Circuits i.e. the Minimum Set Covering Problem* * The problem of minimizing boolean functions * Model of the problem on graphs: the Minimum Set Covering Problem * definition * ILP formulation * relation with the Minimum Vertex Covering Problem * an O(log n)-approximation algorithm * another approximation algorithm * some related problems * Hitting set problem * Edge Cover problem * Set Packing problem * Exact Cover problem %BLUE% *Tuesday October 20, 2015 (lessons 17-18):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (1)* * Introduction to the frequency assignment problems * Direct and hidden collisions, interference graph * L(h,k)-labeling and minimum span * The special case h=k in relation to the suqre of a graph * Properties of the L(h,k)-labeling and their proofs * Proof of NP-completeness for diameter 2 graphs %BLUE% *Friday October 23, 2015 (lessons 19-20):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (2)* * L(h,k)-labeling and minimum span (cntd.) * Lower bound of Delta+1 on lambbda * Exemple: a graph requiring lambda=Delta squared - Delta * Upper bound of Delta squared + 2 Delta * Griggs and Yeh's conjecture * Exact results: cliques * Exact results: stars * Exact results: trees * Exact results: paths * Exact results: cycles %BLUE% *Tuesday October 27, 2015 (lessons 21-22):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (3)* * L(h,k)-labeling and minimum span (cntd.) * Approximate results: outerplanar graphs * variations of the problem: * oriented L(2,1)-labeling * L(h1, ..., hk)-labeling * backbone coloring * multiple L(h,k)-labeling * frequency assignment in GSM networks * a parenthesis on the 4 color theorem %BLUE% *Friday October 30, 2015 (lessons 23-24):* %ENDCOLOR% *The minimum energy broadcast i.e. the minimum spanning tree (1)* * the MinBroadcast problem * NP-completeness and inapproximability results (reduction from MinSetCover) * Relation between MinBroadcast and MinSpanningTree %BLUE% *Friday November 6, 2015:* %ENDCOLOR% Mid term exam %BLUE% *Tuesday November 10, 2015 (lessons 25-26):* %ENDCOLOR% *The minimum energy broadcast i.e. the minimum spanning tree (2)* * the Min Broadcast broblem * MST euristic * SPT euristic * BAIP euristic * approximation ratio for SPT %BLUE% *Friday November 13, 2015 (lessons 27-28):* %ENDCOLOR% *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs (1)* * the problem of centralized deployment * the problem on graphs: min weight matching in a bipartite graphs * maximum matching in a bipartite graph * P. Hall theorem (with proof) * corollary to the P. Hall theorem * searching an augmenting path * Berge theorem on the augmenting paths %BLUE% *Tuesday November 17, 2015 (lessons 29-30):* %ENDCOLOR% *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs (2)* * * algorithm based on Berge theorem * Hopcroft & Karp algorithm * Minimum weight perfect matching in bipartite graphs * augmenting paths * an algorithm based on searching augmenting paths * ILP formulation * Maximum matching in general graphs * blossoms * lemma on the cycle contraction * Edmonds algorithm (idea) %BLUE% *Friday November 20, 2015 (lessons 31-32):* %ENDCOLOR% *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (1)* * The problem * A Possible Approach: Virtual Forces * A Protocol Based on Voronoi Diagrams * Voronoi Diagrams * hypthesis of general position * properties * complexity * the dual problem: Delaunay triangulation * Algorithms to compute the Voronoi diagram * half-plane intersection (divide et impera) %BLUE% *Tuesday November 24, 2015 (lessons 33-34):* %ENDCOLOR% *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (2)* * Algorithms to compute the Voronoi diagram (cntd) * Fortune's algorithm * Heterogeneous sensors * A new notion of distance: Laguerre distance * Voronoi-Laguerre diagrams * A protocol based on Voronoi-Laguerre distance ---+++ <font color="blue" size="+2">Lesson Diary A.y. 2014-2015</font> %RED% *Tuesday September 29, 2014 (Lessons 1-2):* %ENDCOLOR% *Introduction* *The Routing Problem i.e. the Shortest Path Problem (1)* * The routing Problem * The shortest path Problem (1) * shortest paths: BFS * least cost paths: introduction %RED% *Friday October 3, 2014 (Lessons 3-4):* %ENDCOLOR% *The Routing Problem i.e. the Shortest Path Problem (2)* * The shortest path Problem (2) * least cost paths (cnt.d): * Bellman-Ford algorithm * Dijkstra algorithm * Floyd-Warshall algorithm * The Routing Problem on Interconnection Topologies (1) * the packet switching model * the Butterfly network * routing on the Butterfly network: the greedy algorithm %RED% *Tuesday October 7, 2014 (Lessons 5-6):* %ENDCOLOR% *The Routing Problem i.e. the Shortest Path Problem (3)* * The Routing Problem on Interconnection Topologies (2) * the concept of blocking network, non-blocking network and rearrangeable network * the Benes network * routing on the Benes network: the looping algorithm *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (1)* * The Thompson model * The orthogonal grid drawing of graphs * Layout of the Butterfly network (1) %RED% *Friday October 10, 2014 (lessons 7-8):* %ENDCOLOR% *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (2)* * Layout of the Butterfly network (2) * the Wise layout * the Even & Even layout * comparison between the two methods %RED% *Tuesday October 14, 2014 (lessons 9-10):* %ENDCOLOR% *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (3)* * Layout of the Butterfly network (3) * Optimal area Layout of the Butterfly * Layout of the Hypercube network * The 3D layout problem %RED% *Tuesday October 17, 2014 (lessons 11-12):* %ENDCOLOR% *The problem of worm propagation/prevention i.e. the Minimum Vertex Covering Problem (1)* * The problem * worms * damages caused by worms * Model of the problem on graphs: minimum vertex cover * definition * ILP model * a 2-approximation algorithm * independent set in relation with vertex cover %RED% *Tuesday October 21, 2014 (lessons 13-14):* %ENDCOLOR% *The problem of worm propagation/prevention i.e. the Minimum Vertex Covering Problem (2)* * minimum vertex cover (cnt.d) * matching in relation with vertex cover * another approximation algorithm * Konig-Egevary theorem *The Problem of Minimizing Boolean Circuits i.e. the Minimum Set Covering Problem* * The problem of minimizing boolean functions * Model of the problem on graphs: the Minimum Set Covering Problem * definition * ILP formulation * relation with the Minimum Vertex Covering Problem * an O(log n)-approximation algorithm * another approximation algorithm * some related problems * Hitting set problem * Edge Cover problem * Set Packing problem * Exact Cover problem %RED% *Friday October 24, 2014:* %ENDCOLOR% *No lesson because of bus and train strike* %RED% *Tuesday October 28, 2014 (lessons 15-16):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (1)* * Introduction to the frequency assignment problems * Direct and hidden collisions, interference graph * L(h,k)-labeling and minimum bandwidth * The special case h=k in relation to the suqre of a graph * Properties of the L(h,k)-labeling and their proofs %RED% *Friday October 31, 2014 (lessons 17-18):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (2)* * L(h,k)-labeling and minimum bandwidth (cntd.) * Proof of NP-completeness for diameter 2 graphs * Lower bound of Delta+1 on lambbda * Exemple: a graph requiring lambda=Delta squared - Delta * Upper bound of Delta squared + 2 Delta * Griggs and Yeh's conjecture * Exact results: cliques * Exact results: stars * Exact results: trees %RED% *Tuesday November 4, 2014 (lessons 19-20):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (3)* * L(h,k)-labeling and minimum bandwidth (cntd.) * Exact results: paths * Exact results: cycles * Approximate results: outerplanar graphs * variations of the problem: * oriented L(2,1)-labeling * L(h1, ..., hk)-labeling * backbone coloring * multiple L(h,k)-labeling %RED% *Friday November 7, 2014 (lessons 21-22):* %ENDCOLOR% Mid term exam %RED% *Tuesday November 11, 2014 (lessons 23-24):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (4)** variations of the problem (cnt.d): * * frequency assignment in GSM networks * a parenthesis on the 4 color theorem *The minimum energy broadcast i.e. the minimum spanning tree (1)* * the MinBroadcast problem * NP-completeness and inapproximability results (reduction from MinSetCover) * Relation between MinBroadcast and MinSpanningTree %RED% *Friday November 14, 2014 (lessons 25-26):* %ENDCOLOR% *The minimum energy broadcast i.e. the minimum spanning tree (2)* * the Min Broadcast broblem * MST euristic * SPT euristic * BAIP euristic %RED% *Tuesday November 18, 2014 (lessons 27-28):* %ENDCOLOR% *The minimum energy broadcast i.e. the minimum spanning tree (3)* * the Min Broadcast broblem (cnt.d) * approximation ratio for SPT *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs (1)* * the problem of centralized deployment * Ithe problem on graphs: min weight matching in a bipartite graphs * maximum matching in a bipartite graph * P. Hall theorem (with proof) * corollary to the P. Hall theorem %RED% *Friday November 21, 2014 (lessons 29-30):* %ENDCOLOR% *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs (2)* * Maximum matching in bipartite graphs * searching an augmenting path * Berge theorem on the augmenting paths * algorithm based on Berge theorem * Hopcroft & Karp algorithm * Minimum weight perfect matching in bipartite graphs * augmenting paths * an algorithm based on searching augmenting paths * ILP formulation * Maximum matching in general graphs * blossoms * lemma on the cycle contraction * Edmonds algorithm (idea) %RED% *Tuesday November 25, 2014 (lessons 31-32):* %ENDCOLOR% *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (1)* * The problem * A Possible Approach: Virtual Forces * A Protocol Based on Voronoi Diagrams * Voronoi Diagrams * hypthesis of general position * properties * complexity * the dual problem: Delaunay triangulation * Algorithms to compute the Voronoi diagram * half-plane intersection (divide et impera) *Friday November 28, 2014 (lessons 33-34):* *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (2)* * Algorithms to compute the Voronoi diagram (cnt.d) * Fortune's algorithm * Heterogeneous sensors * A new notion of distance: Laguerre distance %RED% *Tuesday December 2, 2014 (lessons 35-36):* %ENDCOLOR% *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (3)* * Voronoi-Laguerre diagrams * A protocol based on Voronoi-Laguerre distance %RED% *Friday December 5, 2014 (lessons 37-38):* %ENDCOLOR% *Student lessons (1)* %RED% *Tuesday December 9, 2014 (lessons 39-40):* %ENDCOLOR% *Student lessons (2)* %RED% *Tuesday December 16, 2014 (lessons 41-42):* %ENDCOLOR% *Student lessons (3)* ---++ <font color="blue" size="+2">Lesson Diary A.y. 2013-2014</font> %RED% *Monday September 30, 2013 (Lessons 1-2):* %ENDCOLOR% *Introduction* *The Routing Problem i.e. the Shortest Path Problem (1)* * The routing Problem * The shortest path Problem (1) * shortest paths: BFS * least cost paths: * Bellman-Ford algorithm * Dijkstra algorithm %RED% *Friday October 4, 2013 (lessons 3-4):* %ENDCOLOR% *The Routing Problem i.e. the Shortest Path Problem (2)* * The shortest path Problem (2) * least cost paths (cntd.): * Floyd-Warshall algorithm * The Routing Problem on Interconnection Topologies * the packet switching model * the Butterfly network * routing on the Butterfly network: the greedy algorithm * the concept of blocking network, non-blocking network and rearrangeable network * the Benes network * routing om the Benes network: the looping algorithm %RED% *Monday October 7, 2013 (lessons 5-6):* %ENDCOLOR% *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (1)* * The Thompson model * The orthogonal grid drawing of graphs * Layout of the Butterfly network (1) * the Wise layout * the Even & Even layout %RED% *Friday October 11, 2013 (lessons 7-8):* %ENDCOLOR% *The Problem of Laying out Interconnection Topologies i.e. the Grid Orthogonal Drawing Problem (2)* * Layout of the Butterfly network (2) * Overview of other results * Optimal area Layout of the Butterfly * Layout of the Hypercube network * The 3D layut problem %RED% *Monday October 14, 2013 (lessons 9-10):* %ENDCOLOR% *The problem of worm propagation/prevention i.e. the Minimum Vertex Covering Problem (1)* * The problem * worms * damages caused by worms * worm expansion * Model of the problem on graphs * minimum vertex cover * definition * ILP model * a 2-approximation algorithm * independent set in relation with vertex cover * matching in relation with vertex cover * another approximation algorithm %RED% *Friday October 18, 2013 (lessons 11-12):* %ENDCOLOR% *The problem of worm propagation/prevention i.e. the Minimum Vertex Covering Problem (2)* * minimum vertex cover (cntd.) * Konig-Egevary theorem *The Problem of Minimizing Boolean Circuits<span style="{encoded: 's1'};"> </span>i.e.<span style="{encoded: 's1'};"> </span>the Minimum<span style="{encoded: 's1'};"> </span>Set Covering Problem* * The problem of minimizing boolean functions * Its equivalence with the Minimum Set Covering Problem * the Minimum Set Covering Problem * definition * ILP formulation * relation with the Minimum Vertex Covering Problem * an O(log n)-approximation algorithm * another approximation algorithm * some related problems * Hitting set problem * Edge Cover problem * Set Packing problem * Exact Cover problem %RED% *Monday October 21, 2013 (lessons 13-14):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (1)* * Introduction to the frequency assignment problems * Direct and hidden collisions, interference graph * L(h,k)-labeling and minimum bandwidth * The special case h=k in relation to the suqre of a graph * Properties of the L(h,k)-labeling and their proofs * Proof of NP-completeness for diameter 2 graphs %RED% *Friday October 25, 2013 (lessons 15-16):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (2)* * L(h,k)-labeling and minimum bandwidth (cntd.) * Lower bound of Delta+1 on lambbda * Exemple: a graph requiring lambda=Delta squared - Delta * Upper bound of Delta squared + 2 Delta * Griggs and Yeh's conjecture * Exact results: cliques * Exact results: stars * Exact results: trees * Exact results: paths * Exact results: cycles %RED% *Monday October 28, 2013 (lessons 17-18):* %ENDCOLOR% *A Frequency assignment problem i.e. the L(h,k)-Labeling Problem (3)* * L(h,k)-labeling and minimum bandwidth (cntd.) * Approximate results: outerplanar graphs * variations of the problem: * oriented L(2,1)-labeling * L(h1, ..., hk)-labeling * backbone coloring * multiple L(h,k)-labeling * frequency assignment in GSM networks * a parenthesis on the 4 color theorem %RED% *Monday November 4, 2013 (lessons 19-20):* %ENDCOLOR% *The minimum energy broadcast i.e. the minimum spanning tree (1)* * the MinBroadcast problem * NP-completeness and inapproximability results (reduction from MinSetCover) * Relation between MinBroadcast and MinSpanningTree * the Minimum spanning tree problem * Kruskal algorithm * Prim algorithm * Boruvka algorithm %RED% *Friday November 8, 2013 (lessons 21-22):* %ENDCOLOR% *The minimum energy broadcast i.e. the minimum spanning tree (2)* * the Min Broadcast broblem * MST euristic * SPT euristic * BAIP euristic * approximation ratio for SPT *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs (1)* * the problem of centralized deployment * Ithe problem on graphs: min weight matching in a bipartite graphs * maximum matching in a bipartite graph * P. Hall theorem (with proof) * corollary to the P. Hall theorem %BLUE% *week November 11-15: No classes - midterm exams* %ENDCOLOR% %RED% *Monday November 18, 2013 (lessons 23-24):* %ENDCOLOR% *The centralized deployment of Mobile sensors i.e. the perfect matching in Bipartite graphs (2)* * Maximum matching in bipartite graphs * searching an augmenting path * Berge theorem on the augmenting paths * algorithm based on Berge theorem * Hopcroft & Karp algorithm * Minimum weight perfect matching in bipartite graphs * augmenting paths * an algorithm based on searching augmenting paths * ILP formulation * Maximum matching in general graphs * blossoms * lemma on the cycle contraction * Edmonds algorithm %RED% *Friday November 22, 2013 (lessons 25-26):* %ENDCOLOR% *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (1)* * The problem * A Possible Approach: Virtual Forces * A Protocol Based on Voronoi Diagrams * Voronoi Diagrams * hypthesis of general position * properties * complexity * the dual problem: Delaunay triangulation * Algorithms to compute the Voronoi diagram * half-plane intersection (divide et impera) %RED% *Monday December 2, 2013 (lessons 27-28):* %ENDCOLOR% *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (2)* * Algorithms to compute the Voronoi diagram (cnt.d) * Fortune's algorithm %RED% *Friday December 6, 2013 (lessons 29-30):* %ENDCOLOR% *The Distributed Deployment of Sensors i.e. the Construction of a Voronoi Diagram (3)* * Heterogeneous sensors * A new notion of distance: Laguerre distance * Voronoi-Laguerre diagrams * A protocol based on Voroi-Laguerre distance %RED% *Monday December 9, 2013 (lessons 31-32):* %ENDCOLOR% Student Lessons %RED% *Friday December 13, 2013 (lessons 33-34):* %ENDCOLOR% Student Lessons %RED% *Monday December 16, 2013 (lessons 35-36):* %ENDCOLOR% Student Lessons ---++ <font color="blue" size="+2">Diario delle Lezioni A.A. 2012-2013</font> %RED% *Mercoledi' 3 Ottobre 2011 (Ore 1-2):* %ENDCOLOR% *Introduzione al Corso* *Il Problema dell'Instradamento<span style="{encoded: 's1'};"> </span>ovvero<span style="{encoded: 's1'};"> </span>il Cammino più Corto o di Costo minimo (1)* * Il problema dell'instradamento * Il problema del cammino di costo minimo * cammini piu' corti: visita in ampiezza * cammini minimi: * algoritmo di Bellman-Ford %RED% *Lunedi' 8 Ottobre 2012 (Ore 3-4):* %ENDCOLOR% *Il Problema dell'Instradamento ovvero il Cammino più Corto o di Costo minimo (2)* * * cammini minimi (segue): * algoritmo di Dijkstra * algoritmo di Floyd-Warshall * Instradamento sulle Topologie di Interconnessione * il modello di packet switching * la Butterfly * instradamento sulla Butterfly %RED% *Mercoledi' 10 Ottobre 2012 (Ore 5-6):* %ENDCOLOR% *Il Problema dell'Instradamento<span style="{encoded: 's1'};"> </span>ovvero<span style="{encoded: 's1'};"> </span>il Cammino più Corto o di Costo minimo (3)* * * concetto di rete bloccante, di rete non bloccante e di rete riarrangabile * la Benes * looping algorithm e instradamento sulla Benes *Il Problema del Layout di Topologie di Interconnessione ovvero il Disegno Ortogonale su Griglia (1)* * Il modello di Thompson * Il disegno ortogonale di grafi su griglia * Il layout della Butterfly * il layout di Wise %RED% *Lunedi' 15 Ottobre 2012 (Ore 7-8):* %ENDCOLOR% *Il Problema del Layout di Topologie di Interconnessione ovvero il Disegno Ortogonale su Griglia (2)* * Il layout della Butterfly (segue) * il layout di Even ed Even * panoramica di altri risultati * Layout della butterfly di area ottima %RED% *Mercoledi' 17 Ottobre 2012 (Ore 9-10):* %ENDCOLOR% *Il Problema del Layout di Topologie di Interconnessione ovvero il Disegno Ortogonale su Griglia (3)* * Il layout dell'ipercubo * il problema del layut 3D *Il Problema di infettare (e difendere) una rete con un Worm ovvero la Minima Copertura di Nodi (1)* * Il problema * i worm * danni causati dai worm * diffusione dei worm %RED% *Lunedi' 22 Ottobre 2012 (Ore 11-12):* %ENDCOLOR% *Il Problema di infettare (e difendere) una rete con un Worm ovvero la Minima Copertura di Nodi (2)* * Modello del problema su grafi * la minima copertura di nodi * definizione * un algoritmo 2-approssimante * insieme indipendente e sua relazione con la copertura di nodi * accoppiamento e sua relazione con la copertura di nodi * un ulteriore algoritmo approssimante * teorema di Konig-Egevary %RED% *Mercoledi' 24 Ottobre 2012 (Ore 13-14):* %ENDCOLOR% *Un Problema di assegnazione di frequenze ovvero la L(h,k)-Etichettatura (1)* * Introduzione ai problemi di assegnazione di frequenze * Collisioni dirette, collisioni nascoste e grafo delle interferenze * L(h,k)-etichettatura e minima banda * Il caso speciale h=k in relazione al quadrato di un grafo %RED% *Lunedi' 29 Ottobre 2012 (Ore 15-16):* %ENDCOLOR% *Un Problema di assegnazione di frequenze ovvero la L(h,k)-Etichettatura (2)* * L(h,k)-etichettatura (segue) * Dimostrazione delle proprietà della L(h,k)-etichettatura (h e k primi tra loro ed interi) * Dimostrazione della NP-completezza per grafi di diametro 2 * Limitazione inferiore di Delta+1 su lambbda * Esempio di grafo che richiede lambda=Delta quadro - Delta * Limitazione superiore di Delta quadro + 2 Delta * Congettura di Griggs e Yeh * Risultati esatti: clicche %RED% *Lunedi' 5 Novembre 2012 (Ore 17-18):* %ENDCOLOR% *Un Problema di assegnazione di frequenze ovvero la L(h,k)-Etichettatura (3)* * L(h,k)-etichettatura (segue) * Risultati esatti: clicche * Risultati esatti: stelle * Risultati esatti: alberi * Risultati esatti: cammini * Risultati esatti: cicli %RED% *Mercoledi' 7 Novembre 2012 (Ore 19-20):* %ENDCOLOR% *Un Problema di assegnazione di frequenze ovvero la L(h,k)-Etichettatura (4)* * L(h,k)-etichettatura (segue) * * Risultati approssimati: grafi outerplanar * varianti del problema: * L(2,1)-etichettatura orientata * L(h1, ..., hk)-etichettatura * backbone coloring * L(h,k)-etichettatura multipla * assegnazione di frequenze in reti GSM * una divagazione sul teorema dei 4 colori *Il Problema del Broadcast con minimo dispendio di energia ovvero il Minimo Albero Ricoprente (1)* * Il problema del MinBroadcast * NP-completezza e risultati di non approssimabilita' di MinBroadcast (riduzione da MinSetCover) %RED% *12-15 Novembre 2012: settimana di interruzione della didattica* %ENDCOLOR% %RED% *Lunedi' 19 Novembre 2012 (Ore 21-22):* %ENDCOLOR% *Il Problema del Broadcast con minimo dispendio di energia ovvero il Minimo Albero Ricoprente (2)* * Relazione tra MinBroadcast e MinSpanningTree * Il problema del Minimo Albero Ricoprente * Algoritmo di Kruskal * Algoritmo di Prim * Algoritmo di Boruvka * Il problema del Min Broadcast * Euristica MST * Euristica SPT * Euristica BAIP * fattore di approssimazione per SPT %RED% *Mercoledi' 21 Novembre 2012 (Ore 23-24):* %ENDCOLOR% *Il Problema del Dispiegamento centralizzato di Sensori Mobili ovvero il Minimo Accoppiamento Bipartito (1)* * Il problema del Dispiegamento centralizzato * Il problema modellato sui grafi: accoppiamento bipartito di peso minimo * Accoppiamento massimo in grafi bipartiti * teorema di P. Hall (dimostrazione) * corollario del th. di P. Hall (dim.) * equivalenza con il problema del minimo flusso * cammini aumentanti %RED% *Lunedi' 26 Novembre 2012 (Ore 25-26):* %ENDCOLOR% *Il Problema del Dispiegamento Centralizzato di Sensori Mobili ovvero il Minimo Accoppiamento Bipartito (2)* * Accoppiamento massimo in grafi bipartiti * teorema del cammino aumentante di Berge (dim.) * il problema della ricerca di un camino aumentante * algoritmo basato sul th. di Berge * l'algoritmo di Hopcroft e Karp * Accoppiamento perfetto di peso minimo in grafi bipartiti * cammini aumentanti * un algoritmo basato sui cammini aumentanti * formulazione del problema come programmazione lineare * Accoppiamento massimo in grafi qualunque * boccioli (blossoms) * lemma della contrazione dei cicli %RED% *Mercoledi' 28 Novembre 2012 (Ore 27-28):* %ENDCOLOR% *Il Problema del Dispiegamento Centralizzato di Sensori Mobili ovvero il Minimo Accoppiamento Bipartito (3)* * * algoritmo di Edmonds *Il Problema del Dispiegamento distribuito di Sensori Mobili ovvero la costruzione del Diagramma di Voronoi (2)* * Il problema * L'approccio basato sulle forze virtuali %RED% *Lunedi' 3 Dicembre 2012 (Ore 29-30):* %ENDCOLOR% *Il Problema del Dispiegamento distribuito di Sensori Mobili ovvero la costruzione del Diagramma di Voronoi (2)* * L'approccio basato sui diagrammi di Voronoi * Diagramma di Voronoi * posizione generale * proprieta' * Diagramma di Voronoi * complessita' * Il problema duale: la triangolazione di Delaunay * algoritmi per calcolare il diagramma di Voronoi: divide et impera * algoritmi per calcolare il diagramma di Voronoi: sweep line (algoritmo di Fortune) - prima parte %RED% *Mercoledi' 5 Dicembre 2012 (Ore 31-32):* %ENDCOLOR% *Il Problema del Dispiegamento distribuito di Sensori Mobili ovvero la costruzione del Diagramma di Voronoi (3)* * Diagramma di Voronoi * algoritmi per calcolare il diagramma di Voronoi: sweep line (algoritmo di Fortune) - seconda parte * Dispiegamento con sensori eterogenei * Distanza di Laguerre * Diagramma di Voronoi-Laguerre * L'approccio basato sui diagrammi di Voronoi-Laguerre * proprieta' dell'algoritmo ---+++ <font color="blue" size="+2">Diario delle Lezioni A.A. 2011-2012</font> %RED% *Lunedi' 3 Ottobre 2011 (Ore 1-2):* %ENDCOLOR% *Introduzione al Corso* *Il Problema dell'Instradamento<span style="{encoded: 's1'};"> </span>ovvero<span style="{encoded: 's1'};"> </span>il Cammino più Corto o di Costo minimo (1)* * Il problema dell'instradamento * Il problema del cammino di costo minimo * cammini piu' corti: visita in ampiezza %RED% *Giovedi' 6 Ottobre 2011 (Ore 3-4):* %ENDCOLOR% *Il Problema dell'Instradamento ovvero il Cammino più Corto o di Costo minimo (2)* * * cammini minimi: * algoritmo di Bellman-Ford * algoritmo di Dijkstra * algoritmo di Floyd-Warshall * Instradamento sulle Topologie di Interconnessione * il modello di packet switching * la Butterfly * instradamento sulla Butterfly %RED% *Lunedi' 10 Ottobre 2011 (Ore 5-6):* %ENDCOLOR% *Il Problema dell'Instradamento<span style="{encoded: 's1'};"> </span>ovvero<span style="{encoded: 's1'};"> </span>il Cammino più Corto o di Costo minimo (3)* * * concetto di rete bloccante, di rete non bloccante e di rete riarrangabile * la Benes * looping algorithm e instradamento sulla Benes *Il Problema del Layout di Topologie di Interconnessione ovvero il Disegno Ortogonale su Griglia (1)* * Il modello di Thompson * Il disegno ortogonale di grafi su griglia %RED% *Mercoledi' 12 Ottobre 2011 (Ore 7-8):* %ENDCOLOR% *Il Problema del Layout di Topologie di Interconnessione ovvero il Disegno Ortogonale su Griglia (2)* * Il layout della Butterfly * il layout di Wise * il layout di Even ed Even * panoramica di altri risultati %RED% *Lunedi' 17 Ottobre 2011 (Ore 9-10):* %ENDCOLOR% *Il Problema del Layout di Topologie di Interconnessione ovvero il Disegno Ortogonale su Griglia (3)* * Layout della butterfly di area ottima * Layout tridimensionale dell'ipercubo * il problema del layut 3D * l'ipercubo * cenni sul layout dell'ipercubo e sulla limitazione inferiore %RED% *Mercoledi' 19 Ottobre 2011 (Ore 11-12):* %ENDCOLOR% *Il Problema di infettare (e difendere) una rete con un Worm ovvero la Minima Copertura di Nodi* * Il problema * i worm * danni causati dai worm * diffusione dei worm * Modello del problema su grafi * la minima copertura di nodi * definizione * un algoritmo 2-approssimante * insieme indipendente e sua relazione con la copertura di nodi * accoppiamento e sua relazione con la copertura di nodi * un ulteriore algoritmo approssimante * teorema di Konig-Egevary %RED% *Lunedi' 24 Ottobre 2011 (Ore 13-14):* %ENDCOLOR% *Un Problema di assegnazione di frequenze ovvero la L(h,k)-Etichettatura (1)* * Introduzione ai problemi di assegnazione di frequenze * Collisioni dirette, collisioni nascoste e grafo delle interferenze * L(h,k)-etichettatura e minima banda * Il caso speciale h=k in relazione al quadrato di un grafo * Dimostrazione delle proprietà della L(h,k)-etichettatura (h e k primi tra loro ed interi) %RED% *Mercoledi' 26 Ottobre 2011 (Ore 15-16):* %ENDCOLOR% *Un Problema di assegnazione di frequenze ovvero la L(h,k)-Etichettatura (2)* * L(h,k)-etichettatura (segue) * Dimostrazione della NP-completezza per grafi di diametro 2 * Limitazione inferiore di Delta+1 su lambbda * Esempio di grafo che richiede lambda=Delta quadro - Delta * Limitazione superiore di Delta quadro + 2 Delta * Congettura di Griggs e Yeh * Risultati esatti: clicche * Risultati esatti: stelle * Risultati esatti: alberi %RED% *Mercoledi' 9 Novembre 2011 (Ore 17-18):* %ENDCOLOR% *Un Problema di assegnazione di frequenze ovvero la L(h,k)-Etichettatura (3)* * L(h,k)-etichettatura (segue) * Risultati esatti: cammini * Risultati esatti: cicli * Risultati approssimati: grafi outerplanar %RED% *Lunedi' 21 Novembre 2011 (Ore 19-20):* %ENDCOLOR% *Un Problema di assegnazione di frequenze ovvero la L(h,k)-Etichettatura (4)** varianti del problema: * * L(2,1)-etichettatura orientata * L(h1, ..., hk)-etichettatura * backbone coloring * L(h,k)-etichettatura multipla * assegnazione di frequenze in reti GSM * una divagazione sul teorema dei 4 colori *Il Problema del Broadcast con minimo dispendio di energia ovvero il Minimo Albero Ricoprente (1)* * Il problema del MinBroadcast * NP-completezza e risultati di non approssimabilita' di MinBroadcast (riduzione da MinSetCover) * Relazione tra MinBroadcast e MinSpanningTree %RED% *Mercoledi' 23 Novembre 2011 (Ore 21-22):* %ENDCOLOR% *Il Problema del Broadcast con minimo dispendio di energia ovvero il Minimo Albero Ricoprente (2)* * Il problema del Minimo Albero Ricoprente * Algoritmo di Kruskal * Algoritmo di Prim * Algoritmo di Boruvka * Il problema del Min Broadcast * Euristica MST * Euristica SPT * Euristica BAIP * fattore di approssimazione per SPT %RED% *Lunedi' 28 Novembre 2010 (Ore 23-24):* %ENDCOLOR% *Il Problema del Dispiegamento centralizzato di Sensori Mobili ovvero il Minimo Accoppiamento Bipartito (1)* * Il problema del Dispiegamento centralizzato * Il problema modellato sui grafi: accoppiamento bipartito di peso minimo * Accoppiamento massimo in grafi bipartiti * teorema di P. Hall (dimostrazione) * corollario del th. di P. Hall (dim.) * equivalenza con il problema del minimo flusso * cammini aumentanti * teorema del cammino aumentante di Berge (dim.) %RED% *Mercoledi' 30 Novembre 2010 (Ore 25-26):* %ENDCOLOR% *Il Problema del Dispiegamento centralizzato di Sensori Mobili ovvero il Minimo Accoppiamento Bipartito (2)* * Accoppiamento massimo in grafi bipartiti * il problema della ricerca di un camino aumentante * algoritmo basato sul th. di Berge * l'algoritmo di Hopcroft e Karp * Accoppiamento perfetto di peso minimo in grafi bipartiti * cammini aumentanti * un algoritmo basato sui cammini aumentanti * formulazione del problema come programmazione Lineare * Accoppiamento massimo in grafi qualunque * boccioli (blossoms) * lemma della contrazione dei cicli * algoritmo di Edmonds %RED% *Lunedi' 5 Dicembre 2011 (Ore 27-28):* %ENDCOLOR% *Il Problema del Dispiegamento distribuito di Sensori Mobili ovvero la costruzione del Diagramma di Voronoi (1)* * Il problema * L'approccio basato sulle forze virtuali * L'approccio basato sui diagrammi di Voronoi * Diagramma di Voronoi * posizione generale * proprieta' %RED% *Mercoledi' 7 Dicembre 2011 (Ore 29-30):* %ENDCOLOR% *Il Problema del Dispiegamento distribuito di Sensori Mobili ovvero la costruzione del Diagramma di Voronoi (2)* * Diagramma di Voronoi * complessita' * Il problema duale: la triangolazione di Delaunay * algoritmi per calcolare il diagramma di Voronoi: divide et impera * algoritmi per calcolare il diagramma di Voronoi: sweep line (algoritmo di Fortune) * Dispiegamento con sensori eterogenei * Distanza di Laguerre * Diagramma di Voronoi-Laguerre %RED% *Lunedi' 12 Dicembre 2011 (Ore 31-32):* %ENDCOLOR% *Il Problema del Dispiegamento distribuito di Sensori Mobili ovvero la costruzione del Diagramma di Voronoi (3)* * L'approccio basato sui diagrammi di Voronoi-Laguerre * proprieta' dell'algoritmo %BLUE% *Mercoledi' 14 Dicembre 2011 (Lauree)* %ENDCOLOR% %BLUE% *Vacanze natalizie* %ENDCOLOR% %RED% *Mercoledi' 11 Gennaio 2012 (Ore 33-34):* %ENDCOLOR% *Tesine* %RED% *Lunedi' 16 Gennaio 2012 (Ore 35-36):* %ENDCOLOR% *Tesine* %RED% *Mercoledi' 18 Gennaio 2012 (Ore 37-38):* %ENDCOLOR% *Tesine* --- ---+++ <font color="blue" size="+2">Diario delle Lezioni A.A. 2010-2011</font> %RED% *Lunedi' 18 Ottobre 2010 (Ore 1-2):* %ENDCOLOR% Lectio Magistralis: Dott. Prabhakar Raghavan %RED% *Giovedi' 21 Ottobre 2010 (Ore 3-4):* %ENDCOLOR% *Introduzione al Corso* *Il Problema dell'Instradamento ovvero il Cammino più Corto o di Costo minimo (1)* * Il problema dell'instradamento * Il problema del cammino di costo minimo * cammini piu' corti: visita in ampiezza * cammini minimi: * algoritmo di Bellman-Ford * algoritmo di Dijkstra * algoritmo di Floyd-Warshall %RED% *Lunedi' 25 Ottobre 2010 (Ore 5-6):* %ENDCOLOR% *Il Problema dell'Instradamento ovvero il Cammino più Corto o di Costo minimo (2)* * Instradamento sulle Topologie di Interconnessione * il modello di packet switching * la Butterfly * instradamento sulla Butterfly * concetto di rete bloccante, di rete non bloccante e di rete riarrangabile * la Benes * looping algorithm e instradamento sulla Benes %RED% *Giovedi' 28 Ottobre 2010 (Ore 7-8):* %ENDCOLOR% *Il Problema del Layout di Topologie di Interconnessione ovvero il Disegno Ortogonale su Griglia (1)* * Il modello di Thompson * Il disegno ortogonale di grafi su griglia * Il layout della Butterfly * il layout di Wise * il layout di Even ed Even * panoramica di altri risultati %BLUE% *Lunedi' 1 Novembre 2010:* festa %ENDCOLOR% %RED% *Giovedi' 4 Novembre 2010 (Ore 9-10):* %ENDCOLOR% *Il Problema del Layout di Topologie di Interconnessione ovvero il Disegno Ortogonale su Griglia (2)* * Layout della butterfly di area ottima * Layout tridimensionale dell'ipercubo * il problema del layut 3D * l'ipercubo * cenni sul layout e sulla limitazione inferiore *Il Problema di infettare (e difendere) una rete con un Worm ovvero la Minima Copertura di Vertici (1)* * Il problema * i worm * danni causati dai worm * diffusione dei worm %RED% *Lunedi' 8 Novembre 2010 (Ore 11-12):* %ENDCOLOR% *Il Problema di infettare (e difendere) una rete con un Worm ovvero la Minima Copertura di Nodi (2)* * Modello del problema su grafi * la minima copertura di nodi * definizione * un algoritmo 2-approssimante * insieme indipendente e sua relazione con la copertura di nodi * accoppiamento e sua relazione con la copertura di nodi * un ulteriore algoritmo approssimante * teorema di Konig-Egevary *Un Problema di assegnazione di frequenze ovvero la L(h,k)-Etichettatura (1)* * Introduzione ai problemi di assegnazione di frequenze %RED% *Giovedi' 11 Novembre 2010 (Ore 13-14):* %ENDCOLOR% *Un Problema di assegnazione di frequenze ovvero la L(h,k)-Etichettatura (2)* * Collisioni dirette, colisioni nascoste e grafo delle interferenze * L(h,k)-etichettatura e minima banda * Dimostrazione delle proprietà della L(h,k)-etichettatura (h e k primi tra loro ed interi) * Il caso speciale h=k * Dimostrazione della NP-completezza per grafi di diametro 2 * Limitazione inferiore di Delta+1 su lambbda * Esempio di grafo che richiede lambda=Delta quadro - Delta * Limitazione superiore di Delta quadro + 2 Delta %RED% *Lunedi' 15 Novembre 2010 (Ore 15-16):* %ENDCOLOR% *Un Problema di assegnazione di frequenze ovvero la L(h,k)-Etichettatura (3)* * L(h,k)-etichettatura (segue) * Congettura di Griggs e Yeh * Risultati esatti: clicche * Risultati esatti: stelle * Risultati esatti: alberi * Risultati esatti: cammini * Risultati esatti: cicli * Risultati approssimati: grafi outerplanar %RED% *Giovedi' 18 Novembre 2010 (Ore 17-18):* %ENDCOLOR% *Un Problema di assegnazione di frequenze ovvero la L(h,k)-Etichettatura (4)** L(h,k)-etichettatura (segue) * * Risultati approssimati: grafi outerplanar * varianti del problema: * L(2,1)-etichettatura orientata * L(h1, ..., hk)-etichettatura * backbone coloring * assegnazione di frequenze in reti GSM * una divagazione sul teorema dei 4 colori %RED% *Lunedi' 22 Novembre 2010 (Ore 19-20):* %ENDCOLOR% *Il Problema del Broadcast con minimo dispendio di energia ovvero il Minimo Albero Ricoprente (1)* * Il problema del MinBroadcast * NP-completezza e risultati di non approssimabilita' di MinBroadcast (riduzione da MinSetCover) * Relazione tra MinBroadcast e MinSpanningTree * Il problema del Minimo Albero Ricoprente * Algoritmo di Kruskal * Algoritmo di Prim * Algoritmo di Boruvka * Il problema del Min Broadcast * Euristica MST * Euristica SPT * Euristica BAIP * fattore di approssimazione per SPT %RED% *Giovedi' 25 Novembre 2010 (Ore 21-22):* %ENDCOLOR% *Il Problema del Broadcast con minimo dispendio di energia ovvero il Minimo Albero Ricoprente (2)* * Il problema del Min Broadcast * fattore di approssimazione per BAIP * fattore di approssimazione per MST * idea della dimostrazione della lim. sup. di 6 per MST *Il Problema del Dispiegamento centralizzato di Sensori Mobili ovvero il Minimo Accoppiamento Bipartito (1)* * Il problema del Dispiegamento centralizzato * Il problema modellato sui grafi: accoppiamento bipartito di peso minimo * Accoppiamento massimo in grafi bipartiti * teorema di P. Hall (dimostrazione) * corollario del th. di P. Hall (dim.) * equivalenza con il problema del minimo flusso * cammini aumentanti * teorema del cammino aumentante di Berge (dim.) * il problema della ricerca di un camino aumentante * algoritmo basato sul th. di Berge * l'algoritmo di Hopcroft e Karp %BLUE% *Settimana di interruzione della didattica* %ENDCOLOR% %RED% *Lunedi' 6 Dicembre 2010 (Ore 23-24):* %ENDCOLOR% *Il Problema del Dispiegamento centralizzato di Sensori Mobili ovvero il Minimo Accoppiamento Bipartito (2)* * Accoppiamento perfetto di peso minimo in grafi bipartiti * cammini aumentanti * un algoritmo basato sui cammini aumentanti * formulazione del problema come programmazione Lineare * Accoppiamento massimo in grafi qualunque * boccioli (blossoms) * lemma della contrazione dei cicli * algoritmo di Edmonds *Il Problema del Dispiegamento distribuito di Sensori Mobili ovvero la costruzione del Diagramma di Voronoi (1)* * Il problema * L'approccio basato sulle forze virtuali * L'approccio basato sui diagrammi di Voronoi * Diagramma di Voronoi * posizione generale * proprieta' %RED% *Giovedi' 9 Dicembre 2010 (Ore 25-26):* %ENDCOLOR% *Il Problema del Dispiegamento distribuito di Sensori Mobili ovvero la costruzione del Diagramma di Voronoi (2)* * Diagramma di Voronoi * complessita' * Il problema duale: la triangolazione di Delaunay * algoritmi per calcolare il diagramma di Voronoi: divide et impera * algoritmi per calcolare il diagramma di Voronoi: sweep line (algoritmo di Fortune) %RED% *Lunedi' 13 Dicembre 2010 (Ore 27-28):* %ENDCOLOR% *Il Problema del Dispiegamento distribuito di Sensori Mobili ovvero la costruzione del Diagramma di Voronoi (3)* * Dispiegamento con sensori eterogenei * Distanza di Laguerre * Diagramma di Voronoi-Laguerre * L'approccio basato sui diagrammi di Voronoi-Laguerre * proprieta' dell'algoritmo %BLUE% *Giovedi' 16 Dicembre 2010 (Lauree)* %ENDCOLOR% %BLUE% *Lunedi' 20 Dicembre 2010 (Incontro con le aziende)* %ENDCOLOR% %BLUE% *Vacanze natalizie* %ENDCOLOR% %RED% *Lunedi' 10 Gennaio 2011 (Ore 29-30):* %ENDCOLOR% *Tesine* %RED% *Giovedi' 13 Gennaio 2011 (Ore 31-32):* %ENDCOLOR% *Tesine* %RED% *Venerdi' 14 Gennaio 2011 (Ore 33-34):* %ENDCOLOR% *Tesine* %RED% *Lunedi' 17 Gennaio 2011 (Ore 35-36):* %ENDCOLOR% *Tesine* %RED% *Giovedi' 20 Gennaio 2011 (Ore 37-38):* %ENDCOLOR% *Tesine* -- %USERSIG{TizianaCalamoneri - 2021-09-23}% ---++ Comments %COMMENT%
E
dit
|
A
ttach
|
Watch
|
P
rint version
|
H
istory
: r4
<
r3
<
r2
<
r1
|
B
acklinks
|
V
iew topic
|
Ra
w
edit
|
M
ore topic actions
Topic revision: r4 - 2024-09-04
-
TizianaCalamoneri
Log In
or
Register
Algoreti Web
Create New Topic
Index
Search
Changes
Notifications
Statistics
Preferences
Prenotazioni esami
Laurea Triennale ...
Laurea Triennale
Algebra
Algoritmi
Introduzione agli algoritmi
Algoritmi 1
Algoritmi 2
Algoritmi per la
visualizzazione
Architetture
Prog. sist. digitali
Architetture 2
Basi di Dati
Basi di Dati 1 Inf.
Basi di Dati 1 T.I.
Basi di Dati (I modulo, A-L)
Basi di Dati (I modulo, M-Z)
Basi di Dati 2
Calcolo
Calcolo differenziale
Calcolo integrale
Calcolo delle Probabilitą
Metodi mat. per l'inf. (ex. Logica)
canale AD
canale PZ
Programmazione
Fond. di Programmazione
Metodologie di Programmazione
Prog. di sistemi multicore
Programmazione 2
AD
EO
PZ
Esercitazioni Prog. 2
Lab. Prog. AD
Lab. Prog. EO
Lab. Prog. 2
Prog. a Oggetti
Reti
Arch. di internet
Lab. di prog. di rete
Programmazione Web
Reti di elaboratori
Sistemi operativi
Sistemi Operativi (12 CFU)
Anni precedenti
Sistemi operativi 1
Sistemi operativi 2
Lab. SO 1
Lab. SO 2
Altri corsi
Automi, Calcolabilitą
e Complessitą
Apprendimento Automatico
Economia Aziendale
Elaborazione Immagini
Fisica 2
Grafica 3D
Informatica Giuridica
Laboratorio di Sistemi Interattivi
Linguaggi di Programmazione 3° anno Matematica
Linguaggi e Compilatori
Sistemi Informativi
Tecniche di Sicurezza dei Sistemi
ACSAI ...
ACSAI
Computer Architectures 1
Programming
Laurea Magistrale ...
Laurea Magistrale
Percorsi di studio
Corsi
Algoritmi Avanzati
Algoritmica
Algoritmi e Strutture Dati
Algoritmi per le reti
Architetture degli elaboratori 3
Architetture avanzate e parallele
Autonomous Networking
Big Data Computing
Business Intelligence
Calcolo Intensivo
Complessitą
Computer Systems and Programming
Concurrent Systems
Crittografia
Elaborazione del Linguaggio Naturale
Estrazione inf. dal web
Fisica 3
Gamification Lab
Information Systems
Ingegneria degli Algoritmi
Interazione Multi Modale
Metodi Formali per il Software
Methods in Computer Science Education: Analysis
Methods in Computer Science Education: Design
Prestazioni dei Sistemi di Rete
Prog. avanzata
Internet of Things
Sistemi Centrali
Reti Wireless
Sistemi Biometrici
Sistemi Distribuiti
Sistemi Informativi Geografici
Sistemi operativi 3
Tecniche di Sicurezza basate sui Linguaggi
Teoria della
Dimostrazione
Verifica del software
Visione artificiale
Attivitą complementari
Biologia Computazionale
Design and development of embedded systems for the Internet of Things
Lego Lab
Logic Programming
Pietre miliari della scienza
Prog. di processori multicore
Sistemi per l'interazione locale e remota
Laboratorio di Cyber-Security
Verifica e Validazione di Software Embedded
Altri Webs ...
Altri Webs
Dottorandi
Commissioni
Comm. Didattica
Comm. Didattica_r
Comm. Dottorato
Comm. Erasmus
Comm. Finanziamenti
Comm. Scientifica
Comm Scientifica_r
Corsi esterni
Sistemi Operativi (Matematica)
Perl e Bioperl
ECDL
Fondamenti 1
(NETTUNO)
Tecniche della Programmazione 1° modulo
(NETTUNO)
Seminars in Artificial Intelligence and Robotics: Natural Language Processing
Informatica generale
Primo canale
Secondo canale
II canale A.A. 10-11
Informatica
Informatica per Statistica
Laboratorio di Strumentazione Elettronica e Informatica
Progetti
Nemo
Quis
Remus
TWiki ...
TWiki
Tutto su TWiki
Users
Main
Sandbox
Home
Site map
AA web
AAP web
ACSAI web
AA2021 web
Programming web
AA2021 web
AN web
ASD web
Algebra web
AL web
AA1112 web
AA1213 web
AA1920 web
AA2021 web
MZ web
AA1112 web
AA1213 web
AA1112 web
AA1314 web
AA1415 web
AA1516 web
AA1617 web
AA1819 web
Old web
Algo_par_dis web
Algoreti web
More...
Algoreti Web
Create New Topic
Index
Search
Changes
Notifications
RSS Feed
Statistics
Preferences
P
P
View
Raw View
Print version
Find backlinks
History
More topic actions
Edit
Raw edit
Attach file or image
Edit topic preference settings
Set new parent
More topic actions
Account
Log In
Register User
Questo sito usa cookies, usandolo ne accettate la presenza. (
CookiePolicy
)
Torna al
Dipartimento di Informatica
E
dit
A
ttach
Copyright © 2008-2025 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki?
Send feedback