

Identification of Objects

From visual to Electromagnetic labeling

UHF RFID Microchips

University of Roma

Frequency bands

give a "state" to an object

Sensing:

Labeling: give an ID to an object

Pervasive Electromagnetics Lab

Gaetano Marrocco – RFID Technology for Passive Sensing

17

What the Reader may measure

Reader-tag measurement position

Pervasive

Electromagnetics Lab

Technology

- Shape Memory Alloys
- Carbon Nanotubes
- Hygroscopic Polymer
- Textile & Elastic Substrates
- Inertial Switches

Environment & Things

- Humidity
- Temperature
- Ammonia
- Deformations
- Cracks

Wearable systems

- Motion
- Breath
- Neuropathologies
- Stress
- Edema
- Stenosis

Gaetano Marrocco – RFID Technology for Passive Sensing

21

1. Temperature Thresholds Shape Memory Alloy

A Shape memory alloy is an alloy that "**remembers**" its original forged shape: after being deformed, it returns to that shape, if it is put in a hot environment

1. Temperature Thresholds *RF-Thermal device*

Antenna which senses the change of the object (or of the environment) through the variation of its **shape**

So: parameter-independent Shape

S(T): parameter-dependent Shape

S. Caizzone, C. Occhiuzzi, G. Marrocco, "Temperature Sensing by Multi-Chip RFID Antenna Integrating Shape-Memory Alloys", *IEEE Trans. Antennas. Propagat.*, 2011

Pervasive Electromagnetics Lab

1. Temperature Thresholds Temperature-controlled Modulation

When T>Ta the sensor reacts changing **permanently** its state.

									k		
100 L K S			1								
SENSING		ITE	M 1		SEN	ISING		ITE	мз		- 4
SENSING		ITE	M 1		SEN	ISING		ITE	м з		1
sensing		ITE	M 1	Ţ	SEN	ISING		ITE	M 3		1
SENSING	20	1TE	60	80	5EN	ISING ID	20	ITE 40	M 3 60	80	100
SENSING	20	40 175	60 60	80	SEN	ISING ID	20	40 1175	60 60	80	100
	20	40 1TE	60 60 001	80	100 SEN		20	40 1788 100 1788 100	60 60 M 4	80	100
SENSING	20	40 1TE	60 61 1M 2	80	100 SEN		20	40 11E	60 60 M 4	80	100
SENSING SENSING ID ID	20	40 111 111 111 111	60 0MI 2	80	SEN		20	11E 40 7500 3 4 11E	M 3 60 087 M 4	80	100
SENSING	20	40 111 111 111 111 111 111 111	60 60 60 60	80	SEN		20	11E 40 17E0 24 1TE	M 3 60 M 4 60	80	100

2. Absolute Temperature Logger

- On-chip **integrated** temperature measurement
- Reduced power sensitivity w.r.t. *conventional* microchips
- Price: €.1
- Battery-less and Battery-assisted mode (extended read-range)
- Temperature Range: -40°C - +85°C

Pervasive		
Electromagnetics Lab	Gaetano Marrocco – RFID Technology for Passive Sensing	27
Università di Roma Tor Vergata		

2. Absolute Temperature Logger Example of implantable tag

2. Absolute Temperature Logger Experiments

- The thermistor is directly attached over the boiler
- Sensor tag includes a Forex insulator

2. Absolute Temperature Logger Experiments

2. Absolute Temperature Logger

University of Roma

University of Roma

1. RFID Strain-Gauge RF model

The antenna's **shape factor** changes as well as the **distributed loading**, and hence both the input impedance and the antenna gain will be accordingly modified.

Strain ∆Zin ∆G

C. Occhiuzzi, C. Paggi, G. Marrocco, "Passive Strain-Sensor based on Meander-line Antennas", *IEEE Trans. Antennas and Propagat. 2011*

1. RFID Strain-Gauge Prototype

1. RFID Strain-Gauge **Experiments**

Gaetano Marrocco – RFID Technology for Passive Sensing

36

1. RFID Strain-Gauge

Measurements

1. RFID Strain-Gauge Stress over Pillar

Planar MLA over elastic substrate

