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iAd Hoc Networks

= Networks with NO fixed infrastructure
= Every node is a router

= Every node can be mobile

= According to different mobility models
= Random waypoint, Brownian, Manhattan, etc.

= Different speed or pause times
= Very different from cellular telephony




iAd Hoc vs. Cellular

= Centralized vs. decentralized

= Asymmetric vs. symmetric

= With vs. without infrastructure
= Master/slave” vs. peer-to-peer

= Overall, a different architecture
= Different handling of mobility
= Different applications




iAd Hoc Challenges

= At all levels of the protocol stack
= MAC: hidden terminal, exposed terminal

= Routing: How to update table, how to find
routes

= Transport: Flow and congestion control
non-trivial

= Applications: Need for new services




i Ad Hoc Applications (Some)

= Disaster recovery and law enforcement
= Public safety networks

= Vehicular networks (VANETS)

= Mesh networking
= Multi-hop serving the mobile users
= Wireless sensor networks (WSNSs)

= ALL: One radio



iMuItl -radio: Why?

& Multiple radio interfaces in a single node ---
technically feasible today (802.11, Bluetooth...)

# Can be viewed as a network with multiple physical
layers

& Even a single interface can logically act as multi-radio
(several channels)

g Future systems may combine physical layers in even
more varieties (radio + infrared + laser...)

& Generates many new research issues

# Question: Does the added complexity pay off in
network performance?
& Can we somehow quantify the gain?



Possible Use for Multiple

i Radios

= Devices with multiple interfaces could
use them for common tasks to achieve:

= Reliability: One interface stops working and
another substitutes the first one

= Efficiency: Closer nodes are contacted via
the "best” interface (e.g., the one that
minimized power consumption)

=« Bandwidth increase: Splitting a single
communication on multiple channel




iSpecifying the Question

# Gain in general network performance
- too ambitious as a first step

# We focus on the gain in network
connectivity

# The degree of connectivity is important
for performance: related to fault
tolerance, routing, load balancing etc.



i Model

& Network topology with multiple physical layers >
multigraph

& Parallel edges between nodes represent various
physical layers

& Basic merging operation: multigraph sum

G =G HGo

& For more graphs:

g G =G WG + - + WG



A Curious Property:
iThe “Multigraph Advantage”

& We explain it through the property of edge-
connectivity

& Edge connectivity A(G): min number of edges that
need to be deleted to disconnect the graph -
important parameter

g First insight: we always have

MW Gy > S MG))

& Why? Simply because any cut in the multigraph is the
disjoint union of the corresponding cuts in the
components




iThe Surplus

& First we might guess that equality holds, that is, A(G)
IS additive

& But check out this example:
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& What we find is that A(G) is superadditive!



iAnaIysis

& IS this gain typical or it shows up only in a
few specially chosen examples?

& Will it occur in a large, random network
topology?

# We analyze the multigraph advantage
asymptotically in a random graph model



iThe random graph model

# [here are many random graph models = which one
to choose?

# As a first step, we choose the Erdos-Renyi model, in
which edges are picked independently at random

& In some situations it better captures the radio
network than the distance based geometric random
graph model:

When random obstacles are the main reasons for missing links, not
distance

Realistic propagation models tend to decrease link correlations >
becomes similar to Erdos-Renyi model

When power control counterbalances the effect of distance



Some background on random

*c:;raphs

& G, ,’a random graph on n nodes with edge probability

p=p(n)
& Asymptotically almost surely connected if and only if
__logn+w(n)
p(n) = ==,

where w(n) tends to infinity

# Moderately dense regime:
clogn

p(n) ==
with c>1.

- Only constant time more dense than the min needed
for connectivity




*Main result

Theorem 1 Let G, and G, ,, be independently drawn random graphs in the moderately dense regime,

on the same set of nodes. Let their edge probabilities be

pu(n) = alogn and pyfn) = blogn

T n

with constants a,b > 1. Then there exists a constant ¢ = c(a,b) > 0, such that the asymptotic multigraph

advantage regarding connectivity is at least clog n. That is,
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ilnterpretation

# The gain is comparable to the original
connectivities, as they are known to be O(log n)
in this regime

g There is a non-vanishing relative gain: a constant
percentage gain in connectivity

& The value of c=c(a,b) in the c log n gain can be
computed via solving a nonlinear equation



iExperimentaI validation
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- Our asymptotic formula well approximates the actual multigraph gain,
already for relatively small networks



Further experiments

& Dependence of gain on graph densities. Two random graphs:
the first with fixed p=0.05, the second with varying p=0.03...
0.25

Value of P (%)



Experiments with geometric
random graph models

& Similar phenomena observed in geometric models
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- There is an optimal density difference that maximizes the multigraph gain



Network diameter

i- The longest among the shortest paths
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Network diameter sensitivity

Number of links whose removal makes the
eter Increase
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Shortest paths
i?\verage of the minimum distance between

|| pairs of nodes
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iConcIusion

# Analyzed the effect of multiple radio interfaces
(multiple physical layers) on connectivity, captured by
a multigraph model

# Quantified the multigraph advantage for connectivity

# Experimentally showed that it extends to more
complex random graph models, too

& Further work

g Extend the formal analysis to other random graph models

& Quantify the gain for other parameters, such as average
distance, diameter etc.



