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Ad Hoc Networks 

  Networks with NO fixed infrastructure 
  Every node is a router 

  Every node can be mobile 
  According to different mobility models 

  Random waypoint, Brownian, Manhattan, etc. 

  Different speed or pause times 

  Very different from cellular telephony 



Ad Hoc vs. Cellular 

  Centralized vs. decentralized 
  Asymmetric vs. symmetric 
  With vs. without infrastructure 
  “Master/slave” vs. peer-to-peer 
  Overall, a different architecture 

  Different handling of mobility 
  Different applications 



Ad Hoc Challenges 

  At all levels of the protocol stack 
  MAC: hidden terminal, exposed terminal 
  Routing: How to update table, how to find 

routes 
  Transport: Flow and congestion control 

non-trivial 
  Applications: Need for new services 



Ad Hoc Applications (Some) 

  Disaster recovery and law enforcement 
  Public safety networks 

  Vehicular networks (VANETs) 
  Mesh networking 

  Multi-hop serving the mobile users 

  Wireless sensor networks (WSNs) 
  ALL: One radio 



Multi-radio: Why? 

  Multiple radio interfaces in a single node ---
technically feasible today (802.11, Bluetooth…) 

  Can be viewed as a network with multiple physical 
layers 

  Even a single interface can logically act as multi-radio 
(several channels)  

  Future systems may combine physical layers in even 
more varieties (radio + infrared + laser…) 

  Generates many new research issues 
  Question: Does the added complexity pay off in 

network performance?  
  Can we somehow quantify the gain? 



Possible Use for Multiple 
Radios 

  Devices with multiple interfaces could 
use them for common tasks to achieve: 
  Reliability: One interface stops working and 

another substitutes the first one 
  Efficiency: Closer nodes are contacted via 

the “best” interface (e.g., the one that 
minimized power consumption) 

  Bandwidth increase: Splitting a single 
communication on multiple channel 



Specifying the Question 

 Gain in general network performance    
- too ambitious as a first step 

 We focus on the gain in network 
connectivity 

 The degree of connectivity is important 
for performance: related to fault 
tolerance, routing, load balancing etc. 



                Model 

  Network topology with multiple physical layers  
multigraph 

  Parallel edges between nodes represent various 
physical layers 

  Basic merging operation: multigraph sum 

  For more graphs: 



A Curious Property:           
The “Multigraph Advantage” 
  We explain it through the property of edge-

connectivity 
  Edge connectivity  λ(G): min number of edges that 

need to be deleted to disconnect the graph   – 
important parameter 

  First insight: we always have  

  Why? Simply because any cut in the multigraph is the 
disjoint union of the corresponding cuts in the 
components 



The Surplus 
  First we might guess that equality holds, that is, λ(G) 

is additive 
  But check out this example: 

  What we find is that λ(G) is superadditive! 



Analysis 

  Is this gain typical or it shows up only in a 
few specially chosen examples? 

  Will it occur in a large, random network 
topology? 

  We analyze the multigraph advantage 
asymptotically in a random graph model 



The random graph model 
  There are many random graph models  which one 

to choose? 
  As a first step, we choose the Erdos-Renyi model, in 

which edges are picked independently at random 
  In some situations it better captures the radio 

network than the distance based geometric random 
graph model: 

-  When random obstacles are the main reasons for missing links, not 
distance 

-  Realistic propagation models tend to decrease link correlations  
becomes similar to Erdos-Renyi model 

-  When power control counterbalances the effect of distance 



Some background on random 
graphs 

  Gn,p: a random graph on n nodes with edge probability 
p=p(n) 

  Asymptotically almost surely connected if and only if 

    where ω(n) tends to infinity 
  Moderately dense regime:  

    with c>1.                                                                            
 Only constant time more dense than the min needed 
for connectivity 



Main result 



Interpretation 

  The gain is comparable to the original 
connectivities, as they are known to be O(log n) 
in this regime 

  There is a non-vanishing relative gain: a constant 
percentage gain in connectivity 

  The  value of c=c(a,b)  in the c log n gain can be 
computed via solving a nonlinear equation 



Experimental validation 

 Our asymptotic formula well approximates the actual multigraph gain,  
already for relatively small networks 



Further experiments 
  Dependence of gain on graph densities. Two random graphs: 

the first with fixed p=0.05, the second with varying p=0.03…
0.25 



Experiments with geometric 
random graph models 

  Similar phenomena observed in geometric models 

     Geometric random graph                                  k-nearest neighbor graph 

 There is an optimal density difference that maximizes the multigraph gain 



Network diameter 

  The longest among the shortest paths 



   Network diameter sensitivity 
 Number of links whose removal makes the 
network diameter increase 



Shortest paths 
 Average of the minimum distance between 
all pairs of nodes 



Conclusion 

  Analyzed the effect of multiple radio interfaces 
(multiple physical layers) on connectivity, captured by 
a multigraph model 

  Quantified the multigraph advantage for connectivity 
  Experimentally showed that it extends to more 

complex random graph models, too 
  Further work 

  Extend the formal analysis to other random graph models 
  Quantify the gain for other parameters, such as average 

distance, diameter etc. 


