
Wireless Systems Lab - 2014

Smartphone sensing
10 November 2014

Wireless Systems Lab - 2014

Urban Noise Pollution

● Example project:
http://noisetube.net

● Started at the Sony Computer Science Lab in Paris and
currently hosted by the Vrije Universiteit Brussel.

● Mobile app turns smartphones into noise sensors:
○ measure sound exposure in everyday environments
○ geolocalized measurement data

● Software released under the GNU LGPL v2.1 open
source license

● Researcher access to (anonymized) collective noise
data

Wireless Systems Lab - 2014

Classifying Personality Traits
Who's Who with Big-Five: Analyzing and Classifying Personality Traits with Smartphones

Wireless Systems Lab - 2014

What are you wearing today?

Huy Tran and Thanh Dang.
Clothing classification with smart phones.
In Proceedings of the 2014 ACM International
Symposium on Wearable Computers: Adjunct
Program (ISWC '14 Adjunct).
http://dang.encs.vancouver.wsu.edu/pubs/papers/ubicomp14.pdf

● Classification based on thermal insulation
● Use ambient data from smartphone in user

pocket: relative humidity + temperature
● Ambient data sample at 2Hz for 5 minutes
● 70% accuracy

http://dang.encs.vancouver.wsu.edu/pubs/papers/ubicomp14.pdf
http://dang.encs.vancouver.wsu.edu/pubs/papers/ubicomp14.pdf

Wireless Systems Lab - 2014

Sensor data analysis

● Server-based:
○ Necessary for resource-intensive tasks
○ Data transfer: energy/monetary cost, latency,

security, privacy
● Device-based:

○ Requires fast and lightweight methods
○ Battery consumption
○ Privacy concerns

Wireless Systems Lab - 2014

Sensor data analysis
● Common phases:

1. Data acquisition
2. Signal processing
3. Feature extraction
4. Classification

Wireless Systems Lab - 2014

Features extraction
● Extract information from raw data

Wireless Systems Lab - 2014

Classify Activity & Transportation Modes

● Accelerometer data can be used to classify
a user activities:
○ Running, Walking, Stationary
○ Low power

● Combining motion classification with GPS
tracking can recognize the user’s mode of
transportation:
○ Subway, bike, bus, car, walk…
○ GPS is power-hungry (400 mW)

Wireless Systems Lab - 2014

An example from the literature

Arvind Thiagarajan, James
Biagioni, Tomas Gerlich, and
Jakob Eriksson.
Cooperative transit
tracking using smart-
phones.
In Proceedings of the 8th
ACM Conference on
Embedded Networked
Sensor Systems,
ACM SenSys 2010.

Wireless Systems Lab - 2014

An example from the literature

Arvind Thiagarajan, James Biagioni, Tomas Gerlich, and Jakob Eriksson. Cooperative transit
tracking using smart-phones. In Proceedings of the 8th ACM Conference on Embedded
Networked Sensor Systems, ACM SenSys 2010.

Wireless Systems Lab - 2014

Low-power motion detection

● Detect transitions away from the stationary state (e.g.,
sitting, standing)

● Sample the accelerometer at 1Hz
● Continuously compute exponentially weighted means

and standard deviations of X, Y and Z readings
● If an incoming sample falls outside of three standard

deviations of any axis, a motion is detected
→ Increase sampling rate, wake up more energy-hungry sensors

Let’s try it..

Wireless Systems Lab - 2014

On-line mean and std calculation

● Running mean and standard deviation
● Produce incremental results after each sample

becomes available

new sample x available:
diff = x - mean
incr = alpha * diff
mean = mean + incr
variance = (1 - alpha) * (variance + diff * incr)

[http://nfs-uxsup.csx.cam.ac.uk/~fanf2/hermes/doc/antiforgery/stats.pdf]

What happens for different alphas?

http://nfs-uxsup.csx.cam.ac.uk/~fanf2/hermes/doc/antiforgery/stats.pdf

Wireless Systems Lab - 2014

Low-power motion detection app
@Override protected void onCreate(Bundle savedInstanceState) {

[....]
senSensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);

 senAccelerometer = senSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
 senSensorManager.registerListener(this, senAccelerometer , sensRate);
}

@Override public void onSensorChanged(SensorEvent event) {
 Sensor mySensor = event.sensor;

 if (mySensor.getType() == Sensor.TYPE_ACCELEROMETER) {
 long curTime = System.currentTimeMillis();

 if ((curTime - lastUpdate) > sensRate / 1000.) {
 lastUpdate = curTime;
 for(int i = 0; i < axis; ++i){
 double tsd = 3 * Math.sqrt(var[i]);
 if ((event.values[i] > mean[i] + tsd || event.values[i] < mean[i] - tsd)){

MOTION DETECTED
 }

 double diff = event.values[i] - mean[i];
 double incr = alpha * diff;
 mean[i] = mean[i] + incr;
 var[i] = (1.0 - alpha) * (var[i] + diff * incr);

 }
 }
 }
 }

Data values are not necessarily
evenly spaced in time

(SensorEvent.timestamp field)

Wireless Systems Lab - 2014

An example from the literature

Arvind Thiagarajan, James Biagioni, Tomas Gerlich, and Jakob Eriksson. Cooperative transit
tracking using smart-phones. In Proceedings of the 8th ACM Conference on Embedded
Networked Sensor Systems, ACM SenSys 2010.

Wireless Systems Lab - 2014

Walking detection
● More complex: No control over and no knowledge of

the orientation or placement of the smartphone

● Increase sampling frequency to 20Hz
● Make raw values orientation-independent by computing

the L2-norm (magnitude) of readings

● Compute the discrete Fourier transform to detect
frequency bands common to walking

● Binary classification: walking/not walking
● Decision trees are popular tools for classification:

● Easy to implement and use
● Computationally cheap

Wireless Systems Lab - 2014

Decision Tree Learning

● Goal: Classify each item in a dataset into one of
predefined set of classes = fixed (known) set of
categories

● Given a set of examples with known categories (training
dataset), learn to assign category to future samples
(testing dataset)

● Each example (instance) represented by a set of
attributes (features) that take values in a finite set

● Classification tree:
○ Nodes test features (one branch for each

possible value)
○ Leaves specify category

Wireless Systems Lab - 2014

Decision Tree: example
● Features and values:

○ outlook {sunny, overcast, rain}
○ humidity {high, normal}
○ windy {strong, weak}

● Classes: positive instances vs negative instances
○ should we play tennis?

Example: (Rain, Strong, Normal)
Example: (Sunny, Strong, Normal)

Wireless Systems Lab - 2014

Training set example
● Tree built based on a training set of labeled instances

[Full example: http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/mlbook/ch3.pdf]

Outlook Humidity Wind Play tennis

Sunny High Weak No

Sunny High Strong No

Overcast High Weak Yes

Rain High Weak Yes

Rain Normal Weak Yes

Overcast Normal Strong Yes

Sunny High Weak No

...

Features

Wireless Systems Lab - 2014

Building a decision tree (ID3)
● Top-down greedy search through the space of possible branches

with no backtracking
● Partition data into subsets that contain instances with similar values
● “Best” split based on information gain = expected reduction in

entropy caused by partitioning the examples with respect to a
feature

Wireless Systems Lab - 2014

Prediction performance
k-fold cross-validation
1. Randomly partition initial samples into k subsets
2. Of the k subsets, k-1 are used for training and

the remaining one is used as testing set
3. Validation repeated k times, each subset used

exactly once as testing set

Wireless Systems Lab - 2014

Back to walking detection..
● Binary classification: walking/not walking
● Features:

1. Variance of the sample window
2. Magnitude of the discrete Fourier transform in frequency bands

common to walking (1-3Hz)
3. Peak frequency power (independent of the walking speed)

Wireless Systems Lab - 2014

DFT examples

Wireless Systems Lab - 2014

Walking detector: architecture

Annotated
accelerometer

traces

Features
extraction

Decision tree

Real-time
accelerometer

sampling
(20Hz)

Features
extraction

Activity
classifier

Walking /
Not walking

Off-line

Wireless Systems Lab - 2014

Walking detector performance
● Training set:

○ “walk”: 5 volunteers walking while varying location of the phone
○ “not walk”: bus, train, car and bike rides; stationary users;

waving phone around
● 10-fold cross validation
● Window size = 256 samples
● Classification every 1.5 seconds (32 samples @ 20Hz)

Wireless Systems Lab - 2014

Hands on!
Build a walking classifier (off-line)
1. Read accelerometer traces

http://wwwusers.di.uniroma1.
it/~spenza/files/labWireless2014/accelerometer-
traces.tar.bz2

2. Every 32 samples
a. Consider a sliding window (size w = 256 samples)
b. Compute L2-norm
c. Compute the Discrete Fourier transform (numpy.fft)
d. Store features:

■ Variance of the sample window
■ Peak power frequency
■ Power of the DFT coefficient in the 1-3Hz range

3. Build classifier (sklearn.tree.DecisionTreeClassifier)
4. Test performance with 10-fold cross validation

Wireless Systems Lab - 2014

 fft_x = numpy.fft.fft(x)
 l = len(fft_x)

 freq = numpy.fft.fftfreq(l, 1.0 / 20) # Matching vector of frequencies
 fft_x_shifted = numpy.fft.fftshift(fft_x) # Shift DC component
 half_l = numpy.ceil(l/2.0)
 fft_x_half = numpy.abs((2.0 / n) * fft_x[:half_l]) # Fold negative frequencies and scale
 freq_half = freq[:half_l]

Compute features: DFT

Inverse of sampling rate

DFT definition

fft_x_half: amplitude of the
FFT at positive frequencies

freq_half: frequency bins (Hz)

DC component (at frequency 0)

0 0.07 0.15 … … 1.01 … … 2.96 ...

Frequency range 1-3Hz

Wireless Systems Lab - 2014

Variance of the sample window (time domain)

variance =

Peak frequency: frequency at which the amplitude is max
(excluding DC component)
pf_index = …

Amplitude of the DFT in the 1-3 Hz range
freqs = ….

return [variance, pf_index] + freqs

Compute features

Wireless Systems Lab - 2014

How to build the classification tree
from sklearn import tree

samples = list of computed features
classes = classification of each sample (walking/not walking)

clf = tree.DecisionTreeClassifier(criterion='entropy', random_state=0)
clf = clf.fit(samples, classes)

tree.export_graphviz(clf, out_file='trees/tree.dot')
os.system("dot -Tpng trees/tree.dot -o trees/tree.png")

Wireless Systems Lab - 2014

Resulting decision tree

Peak Frequency

Variance

Wireless Systems Lab - 2014

Classification performance
● Precision: ratio tp / (tp + fp). Intuitively, ability of not to label as

positive a sample that is negative.

● Recall: ratio tp / (tp + fn). Intuitively, ability to find all the positive

samples.

Wireless Systems Lab - 2014

Measuring performance
from sklearn import cross_validation
scores = cross_validation.cross_val_score(clf, samples, classes, cv=10,
scoring="recall")
print("Recall: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
scores = cross_validation.cross_val_score(clf, samples, classes, cv=10,
scoring="precision")
print("Precision: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))

With peak power Without peak power

Recall 0.98 (+/- 0.08) 0.81 (+/- 0.37)

Precision 0.98 (+/- 0.05) 0.90 (+/- 0.29)

Wireless Systems Lab - 2014

Data pre-processing

● Accelerometer data are not generally evenly spaced in
time (check SensorEvent.timestamp field)

● DFT requires a finite list of equally spaced samples of
a function

➔ Interpolate accelerometer
traces

from scipy.interpolate import interp1d
f = interp1d(timestamps, accelerometer, kind='cubic')
new_timestamps = np.arange(0, timestamps[-1], s_p)
es_accelerometer = f(new_timestamps)

Wireless Systems Lab - 2014

Using the classifier online
1. Convert the decision tree to a sequence of rules and

implement them in the app

Wireless Systems Lab - 2014

Using the classifier online
1. Convert the decision tree to a sequence of rules and

implement them in the app
2. App samples accelerometer @ 20Hz
3. Performs classification every 32 samples
4. Computes features based on the last 256 samples:

a. Variance of the sample window
b. Peak power frequency
c. Power of the DFT coefficient in the 1-3Hz range

5. Feed features to the classifier
6. Output classification (walking/not walking)

Wireless Systems Lab - 2014

Homework
Write an app to collect your own accelerometer data traces
1. Read accelerometer @20Hz
2. Use the External Storage to store collected data in a

file. Format:
timestamp, acc_x, acc_y, acc_z

3. Collect training data:
a. Perform different activities (e.g., walking, dancing,

standing on a bus, …)
b. Label traces with activity

Wireless Systems Lab - 2014

Privacy concerns

● Several commonly-available sensors do not require
explicit permission for data reading

● Can be done by apps silently
● Privacy concerns
● Example: accelerometer:

○ Can be used to identify user activity
○ They have unique fingerprints (see next slides)

Wireless Systems Lab - 2014

Accelerometers have fingerprints
Sanorita Dey, Nirupam Roy, Wenyuan Xu,
Romit Roy Choudhury and Srihari
Nelakuditi. AccelPrint: Imperfections of
Accelerometers Make Smartphones
Trackable. In proceedings of NDSS 2014.
[http://www.internetsociety.org/sites/default/files/03_2_1.pdf]

Wireless Systems Lab - 2014

Hardware imperfections

http://www.instrumentationtoday.com/mems-accelerometer/2011/08/

Small gaps between structural parts can
change the absolute value of the
capacitance

Target applications for smartphones are
marginally affected, as they primary
depends on the relative change in
accelerometer readings

Wireless Systems Lab - 2014

Recognize user based on accelerometer hw

Sanorita Dey, Nirupam Roy, Wenyuan Xu, Romit Roy Choudhury and Srihari Nelakuditi. AccelPrint: Imperfections of
Accelerometers Make Smartphones Trackable. In proceedings of NDSS 2014.
[http://www.internetsociety.org/sites/default/files/03_2_1.pdf]

Wireless Systems Lab - 2014

Large scale exploration
● 107 stand-alone chips, smartphones and tablets
● 36 time domain and frequency domain features
● 30 seconds of acc.data enough to model fingerprint

[http://www.internetsociety.org/sites/default/files/03_2_1.pdf]

