

Usage of same spectrum (12 carriers) (4 carriers/cell)

additional infrastructure costs

- Increased via frequency reuse
 - Frequency reuse depends on interference
 - need to sufficiently separate cells
 - ✓ reuse pattern = cluster size $(7 \rightarrow 4 \rightarrow 3)$: discussed later
- Cellular system capacity: depends on
 - overall number of carriers
 - ✓ Larger spectrum occupation
 - frequency reuse pattern
 - Cell size
 - ✓ Smaller cell (cell \rightarrow microcell \rightarrow picocell) = greater capacity
 - \checkmark Smaller cell = lower transmission power
 - \checkmark Smaller cell = increased handover management burden

- Reuse distance:
 - Key concept
 - In the real world depends on
 Territorial patterns (hills, etc)
 - \checkmark Transmitted power
 - and other propagation issues such as antenna directivity, height of transmission antenna, etc
- Simplified hexagonal cells model:
 - reuse distance depends on reuse pattern (cluster size)
 - Possible clusters:
 ✓ 3,4,7,9,12,13,16,19,...

 $D = R\sqrt{3K}$

- General formula
- Valid for hexagonal geometry
- D = reuse distance
- R = cell radius
- K=cluster size
- q = D/R = frequency reuse factor

If R is the radius of a hexagon, half the distance between two

adjacent hexagonal cells is

$$\left| (R)^2 - \left(\frac{R}{2}\right)^2 \right| = \sqrt{\frac{3}{4}R^2} = R\frac{\sqrt{3}}{2}$$

So the distance between two adjacent cells is 2 times this amount!

$$K = D_R^2 = i^2 + j^2 + ij$$

- Let us focus on a cell using a set of carriers A
- We cover the area with "clusters of cells" providing the pattern for frequency reuse
- Let D be the fixed distance between the centers of interfering cells in adjacent clusters
- We can approximate the area of each cluster with the area of a hexagon whose radius is given by $D/\sqrt{3}$

K=7

+

 $K = D_R^2 = i^2 + j^2 + ij$

+

+

+

+

+

+

• Let us focus on a cell using a set of carriers A

+

+

+

+

- We cover the area with "clusters of cells" providing the pattern for frequency reuse
- Let D be the fixed distance between the centers of interfering cells in adjacent clusters
- We can approximate the area of each cluster with the area of a hexagon whose radius is given by $D/\sqrt{3}$

24

- We can approximate the area of each cluster with the area of a hexagon whose radius is given by $D/\sqrt{3}$
- if the radius of a hexagonal cell is r, the distance between the centers of two adjacent hexagons is $d = \sqrt{3}r$
- The distance between the centers of adjacent clusters is defined as D
- Therefore, the radius r of the hexagon containing the cluster is

 The area occupied by a cluster A is then given by: How many hexagons of area $\frac{3}{2}(R)^2\sqrt{3}$ may be in an area equal to 3 $\sqrt{3}$ Answer: $\sqrt{3}$ $=\left(\frac{D}{R\sqrt{3}}\right)^2 = (D_R)^2$ t_{cluster} K = cella $K = \left(\frac{D}{R\sqrt{3}}\right)^2 = \frac{D^2}{3R^2}$ $D = \sqrt{3KR^2} = R\sqrt{3K}$

 The area occupied by a cluster A is then given by: How many hexagons of area $\frac{3}{2}(R)^2\sqrt{3}$ Since: may be in an area equal to ³ $\sqrt{3}$ $D = \sqrt{i^2 + j^2 + ij}\sqrt{3}R$ $D_R = \sqrt{i^2 + j^2 + ij}$ Answer: $\sqrt{3}$ $= \left(\frac{D}{R\sqrt{3}}\right)^2 = (D_R)^2$ cluster K =cella $K = \left(\frac{D}{R\sqrt{3}}\right)^2 = \frac{D^2}{3R^2}$ $D = \sqrt{3KR^2} = R\sqrt{3K}$ 26

Feasible cluster sizes: 1,3,4,7,9,12,13,16,...

- Signal for MS at distance

interferers at distance D

Power

 P_{o}

Key simplification

D_{int}

D

 $D_{int} \sim D$

Signal from BS

R

Power/

Ρ,

 \mathbf{R}

- Assumptions
 - $N_I = 6$ interfering cells
 - ✓ N_I=6: first ring interferers only
 - ✓ we neglect second-ring interferers
 - Negligible Noise N_S
 ✓ S/N ~ S/I
 - − d^{-η} propagation law
 ✓ η=4 (in general)
 - Same parameters for all BSs
 - ✓ Same P_{tx}, antenna gains, etc

SAPIENZA UNIVERSITÀ DI ROMA S/I computation assuming 6 interferers only (first ring)

K q=D/R		S/I dB
3 3,00	- 13,5	11,3
4 3,46	24,0	13,8
7 4,58	73,5	18,7
9 5,20	121,5	20,8
12 6,00	216,0	23,3
13 6,24	253,5	24,0
16 6,93	384,0	25,8
19 7,55	541,5	27,3
21 7,94	661,5	28,2
25 8,66	937,5	29,7
		/

С

В

В

D

В

note that for each cluster there are always N₁=6 firstring interferers

In CCI computation, contribute of additional interferers is marginal

Same antennas and same power $SIR = \frac{P_t \cdot G \cdot d^{-\eta}}{\sum_{i=1}^6 P_t \cdot G \cdot d_i^{-\eta}} =$ $=\frac{d^{-\eta}}{\sum_{i=1}^{6}d_{i}^{-\eta}}$ d_ d₅ de Worst case: d=r Approximation: $d_i = D - R$ $SIR = \frac{R^{-\eta}}{6(D-R)^{-\eta}}$

Directional antennas Sector 3 Cell divided into sectors $f_{a,2L+1}\cdots f_{a,3L}$ Each sector uses different Sector 1 frequencies $f_{a,1}\cdots f_{a,L}$ To avoid interference at sector borders • PROS: Sector 2 CCI reduction $f_{a,L+1}\cdots f_{a,2L}$ CONS: CELL a Increased handover rate Less effective "trunking" leads to performnce impairments

three sectors case

Conclusion: 3 sectors = 4.77 dB improvement

- 60° Directional antennas
- CCI reduction:
 - 1 interfereer only
 - 6 x S/I in the omni case
 - Improvement: 7.78 dB

Reference cell Only BS -F С G Ε which disturbs D receptions / D U D É В A transmissions È E E A to / from MU С Ē G F В D С in the Ð D reference cell G Ε A Ř

- Target: support users with a given Grade Of Service (GOS)
 - GOS expressed in terms of upper-bound for the blocking probability
 - ✓ GOS example: subscribers should find a line available in the 99% of the cases, i.e. they should be blocked in no more than 1% of the attempts
- Given:
 - ✓ Offered load A_o
 - ✓ Target GOS B_{target}
 - <u>C (number of channels) is obtained from numerical</u> inversion of

$$B_{\text{target}} = E_{1,C}(A_o)$$

Fundamental property: for same GOS, efficiency increases as C grows!

ErlangB Online calculator:

http://mmc.et.tudelft.nl/~frits/Erlang.htm

Cell size (radius R) may be determined on the basis of traffic considerations

Given a provider with 50 channels available, how many users can be supported If each user makes an average of 4 calls/hour, each call lasting on average 2 minutes? First step:

- Given num channels and GOS
 - C=50 available channels in a cell
 - Blocking probability<=2%
- Evaluate maximum cell (offered) load
 - From Erlang-B inversion(tables) A=40.25 erl
- Second step
 - Given traffic generated by each user
 - Each user: 4 calls/busy-hour
 - Each call: 2 min on average
 - A_i=4x2/60=0.1333 erl/user
 - Evaluate max num of users in cell
 - M=40.25/0.1333 ~ 302

Second question: if the user density Is 500 users/km2 how should we

Set the cell radius?

- Three service providers are planning to provide cellular service for an urban area. The target GOS is 2% blocking. Users make 3 calls/busy-hour, each lasting 3 minutes in average (A_i=3/20=0.15)
 - Question: how many users can support each provider?
- Provider A configuration: 20 cells, each with 40 channels
- Provider B configuration: 30 cells, each with 30 channels
- Provider C configuration: 40 cells, each with 20 channels

→ Provider A:

→ Provider B:

→ Provider C:

- \Rightarrow 40 channels/cell
- \Rightarrow at 2%: A_o=30.99 erl/cell
- \Rightarrow 619.8 erl-total (20 cells)
- ⇒ M=4132 overall users

- \Rightarrow 30 channels/cell
- \Rightarrow at 2%: A_o=21.93 erl/cell
- \Rightarrow 657.9 erl-total (30 cells)
- ⇒ M=4386 overall users

- \Rightarrow 20 channels/cell
- \Rightarrow at 2%: A_o=13.18 erl/cell
- \Rightarrow 527.2 erl-total (40 cells)
- ⇒ M=3515 overall users

Compare case A with C! The reason is the lower efficiency of 20 channels versus 40

→ President

⇒

- Three service providers are planning to provide cellular service for an urban area. The target GOS is 2% blocking. Users make 3 calls/busy-hour, each lasting 3 minutes in average (A_i=3/20=0.15)
 - Question: how many users can support each provid
- Provider A configuration: 20 cells, each with 40 channels
- Provider B configuration: 30 cells, each with 30 channels
- Provider C configuration: 40 cells, each with 20 channels

→ Provider A:

- → Provider B:
- \Rightarrow 40 channels/cell
- \Rightarrow at 2%: A_o=30.99 erl/cell
- \Rightarrow 619.8 erl-total (20 cells)
- ⇒ M=4132 overall users

- ⇒ 30 channels/cell
- \Rightarrow at 2%: A_o=21.93 erl/cell
- \Rightarrow 657.9 erl-total (30 cells)
- ⇒ M=4386 overall users

the fact to have more cells with a few channels (for example, because we have selected a different K) does not port an advantage in terms

of system capacity

Compare case A with C! The reason is the lower efficiency of 20

- Assume cluster K=7
- Omnidirectional antennas: S/I=18.7 dB
- 120° sectors:
- 60° sectors:
- Sectorization yields to better S/I
- BUT: the price to pay is a much lower trunking efficiency!
- With 60 channels/cell, GOS=1%,
 - Omni: 60 channels $A_0=1x46.95=46.95$ erl $\rho=77.46\%$

S/I=23.4 dB

S/I=26.4 dB

- 120°: 60/3=20 channels A_0 =3x12.03= 36.09erl ρ =59.54%
- 60°: 60/6=10 channels ρ =44.15%
- A_o=6x4.46= 26.76erl
- Erlang supported per sector =

- Assume cluster K=7
- S/I=18.7 dB Omnidirectional antennas: Lower CCI can allow
- 120° sectors:
- 60° sectors:
- Sectorization yields to better S/I
- BUT: the price to pay is a much lower trunking efficiency!
- With 60 channels/cell, GOS=1%,
 - A_=1x46.95= 46.95 erl 60 channels – Omni: **ρ=77.46%**

S/I=23.4 dB

S/I=26.4 dB

- 120°: 60/3=20 channels A_=3x12.03= 36.09erl **ρ=59.54%**
- 60°: 60/6=10 channels **ρ=44.15%**
- $A_0 = 6x4.46 = 26.76erl$
- Erlang supported per sector =

On the other hand

To select a smaller K

Cell border: local threshold, beyond which neighboring BS signal is received stronger than current one

- 1982: CEPT (Conférence Européenne des Administrations des Postes et des Télécommunications) sets up a special group to define a uniform set of rules for the future paneuropean cellular network
 - it was the Groupe Spécial Mobile from which GSM
 - later the acronym has been redefined as Global System for Mobile communications.
- Several analogic cellular systems had been previously developed in different european regions.
 - Lack of interoperability
 - Standardization required

- 1985: the group identifies the list of GSM recommendations that will be produced (in the end they will be 130: 1500 pages, 12 volumes! ... Plus all the recommendations dealing with the evolutions of GSM)
- 1986: a permanent group is set up to coordinate GSM standardization;
 - industry driven.

- 1987: Telecom operators sign a Memorandum of Understanding (MoU) on behalf of 12 european countries. MoU objectives are to:
 - Coordinate and align in time the development of european GSM networks
 - Verify cellular networks standardization
 - Plan/schedule service introduction
 - Agree on billing and routing policies

- 1988: ETSI (European Telecommunication Standards Institute) is established: work on GSM is moved to this forum and continued under the name of SMG-Special Mobile group
- 1990: it is decided that GSM specifications be also applied to DCS1800 (Digital Cellular System on 1800 MHz), a type of PCN (Personal Communication Networks) initially developed in UK
- 1991 (July) the commercial launch of GSM, scheduled for this date is postponed to 1992 due to the lack of compliant mobile terminals

- 1992: The final GSM standard is released. GSM becomes an acronym for Global System for Mobile Communications
- 1992: official introduction of GSM business
- 1993, the MoU now gathers 62 members from 39 countries; in addition other 32 organizations representing 19 countries participate as observers waiting to sign the MoU.

- 1994-95: introduction of SMS
- 1995-97: introduction of services at 1800 MHz and 1900 MHz (USA)
- 1996 standardization of enhanced coders, both full and half-rate
- 1997 dual-band terminals with enhanced encoder
- 1998: 320 GSM networks in 118 countries with 135 million users worldwide
- 1999: standard GPRS enables packet transmission, first WAP (Wireless Access Protocol) terminals over circuit-switched

2000/01: introduction of GPRS services 2001-2002: EDGE - Enhanced Datarates for GSM Evolution (2,5G) Standardised in 2001-2002 Introduced in September 2004 - Theoretical data rates up to 373 kbit/s

- 1993-2001: GSM cellular network becomes the most widespread in the world, with nearly 80M users in Europe and 200M worldwide (almost 40M only in China), a nonmarginal penetration in USA with nearly 10 operators, which have a share of market second only to AMPS (Advanced Mobile Phone Syestem) /D-AMPS. It has de facto become a global standard, affecting significantly the evolution towards 3rd generation networks and helping to determine the commercial failure of the satellite networks
- Mid 'OOies: smartphone are introduced, 3G cellular systems are deployed → multimedia applications start raising
- 2006: 2.18 billion connections in 212 countries. 82% market share globally. An incredible industrial success.

- Today: 4G LTE systems deployed in some systems, wireless access globally dominant, LTE-A standardization in progress
- Experts groups and standardization of 5G systems is starting

- 2^{*a*}/₋ Generation (2G) cellular system
- Carrier bandwidth=200KHz
- Multicarrier TDMA multiple access (8 slots per carrier, thus 8 channels per carrier) → TDMA/FDMA
- Full Duplex: Frequency Division Duplex (FDD)
- Modulation: GMSK; Spectrum efficiency: 1,35bps/Hz; Gross bit rate per carrier: 270,822 kbit/s
- 13Kbps full rate coder, 6.5Kbps half rate coder
- 992 full rate channels at 900Mhz, 2992 full rate channels for DCS 1800Mhz
- Frequency reuse
- Power control, discontineous transmission
- Adaptive equalization
- Services
 - telephony with many additional services
 - circuit swirching data network (single-channel or multi-channel)
 - packet switching data network (GPRS General Packet Radio Service)

downlink).

• Center frequencies are spaced 200 kHz

- Gross bit rate per channel: 270.833 Kb/s
- Carriers are identified by a ARFCN (Absolute Radio Frequency Channel Number)
- GMSK (Gaussian Minimum Shift Keying) modulation
- The two carriers used for transmission/reception to/from a device are always 45 MHz apart in GSM 900- They are spaced of a different fixed bandwidth (95 MHz) in DCS 1800

• On each radio carrier the TDMA structure allows us to create up to 8 channels for the transmission of voice encoded at 13 Kb/s

- Power Control
 - the power emitted from the stations, mobile and base, is adjusted according to the conditions of propagation
- Discontinous Trasmission
 - during pauses in speech, coded voice transmission is interrupted to reduce interference and energy consumption

- The network contains functionally of: User Equipment (UE), Access Network (AN), and Core Network (CN)
 - User equipment: Interfaces the user, handles radio functionality
 - Access network: Communication to and from the user equipment, handles all radio related functionality in the network
 - Core network: Communication between access network and external networks, handles all switching and routing
- Services and applications lie above the network

Architettura della rete

SAPIENZA

- PLMN (Public Land Mobile Network) Area:
 - Service area of a cellular network
- MSC/VLR Area:
 - Area managed by an MSC. Data regarding users in the area are temporarly stored in a database called VLR associated to the MSC
- Location Area:
 - a MSC/VLR area is logically divided into one or more Location Area (LA).
 If a user changes LA he(she has to perform a location update. LA are identified by the *LAI (Location Area Identifier)*, which is transmitted by the BTS of the LA over the broadcast control channel.
- Cell:
 - Area covered by a BTS. It is identified by a *BSIC (Base Station Identity Code)*, which is transmitted by the BTS over the broadcast control channel.

- Three categories depending on the nominal power:
 - Vehicular: antenna can emit up to 20 W
 - laptops: the antenna can emit up to 8 W to the antenna, are transportable, but they need a considerable source of power to operate (eg. laptops, fax, etc.)
 - personal (hand-terminal): the antenna can transmit up to 2, it is the "mobile phone"

	Classe	Potenza massima nominale [W]		Potenza media nominale [mW]	
		GSM 900 MHz	DCS 1800 MHz	GSM 900 MHz	DCS 1800 MHz
	1		1		120
	2	8	0,25	960	30
	3	5	4	600	480
	4	2		240	
	5	0,8	•	96	•

Features ٠

Università di Roma

- MS multi-band: can operate on different frequency bands (900, 1800, 1900, ...)
- MS multi-slot: can operate over different channels, in different slots ____ (only for GPRS)
- MS is composed of an ME (Mobile Equipment) and a SIM (Subscriber ٠ Identity Module)
 - ME is the terminal through which we access the cellular network (HW, radio interface HW/SW, interface to the final user). It is identified by the IMEI (International Mobile Equipment Identifier)
 - SIM activates the terminal for a given user and stores all the needed information: it identifies the user, enables terminal personalization

- Smart card (with processor and memory) which is needed to activate/operate an ME
- It mustbe inserted in ME reader
- There are different formats (from credit card like to small plug-in SIM)

78

- Serial number
 - Uniquely Identifies SIM card (and card holder)
- International Mobile Subscriber Identity (IMSI)
 - Uniquely identifies the user in the network
- Security authentication and cyphering information
 - A3 and A8 algorithm (procedures to perform authentication and encryption)
 - K_i, K_c (keys for authentication and encryption)
- Temporary Network information
 - LAI (Location Area Identifier), last visited location area identifier
 - TMSI (Temporary Mobile Subscriber Identity), temporary identifier assigned by the network; TMSI is transmitted to identify the user instead of the IMSI

- Lista os services to which the user subscribed
- Personal Identification Number (PIN)
- Personal Unblocking Number (PUK)
- Access rights
- Prohibited networks
- Call messages
- Phone numbers

- A Mobile Equipment without SIM is enabled to make only emergency calls
- A Mobile Equipmentis identified by a unique IMEI identifier (International Mobile Equipment Identity) that can be used to identify stolen mobile terminals.