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Sommario

Underwater Acoustic Sensor Networks (UASNs): Motivazioni e
applicazioni
Confronto tra propagazione delle onde radio (in aria e in
acqua) e onde acustiche.

— |l problema dell’interferenza

— Curvatura dei percorsi: il fenomeno delle shadow zones

Risposta in frequenza: variabilita nel tempo e nella frequenza
dei canali

Tipi di rete particolari: data-muling e DTN

Confronto tra protocolli



Underwater Acoustic Sensor Networks (UASNSs):
Motivazione e applicazioni

Border control: porti, cantieri, zone protette

Monitoraggio di

infrastrutture Impianti di Estrazione e
critiche condotte sottomarine

Drilling

Monitoraggio ambientale

Temperatura e salinita Correnti Vulcani e sismi Tsunami alert Flora sottomarina




Propagazione delle onde

Onde radio nel vuoto
* Velocita: 3*108m/sec
* In presenza di un ostacolo I'onda viene parzialmente riflessa

* In assenza di ostacoli, 'onda si propaga in linea retta (fino ad un
certo limite).

* La potenzaincidente su uno stesso elemento di superfice si
attenua con l'inverso del quadrato della distanza (~1/r?).

Onde acustiche in acqua:
* Velocita: 1,5%103m/sec
* In presenza di un ostacolo I'onda viene parzialmente riflessa

* Inassenza di ostacoli, 'onda puo curvarsi, a causa di variazioni
di pressione e temperatura.

e Grazie alla ricurvatura dei raggi verso il basso in prossimita della
superficie, oltre una certa distanza, I'onda si propaga secondo
una legge di attenuazione cilindrica invece che sferica. La
potenza decade (in prima approssimazione) come 1/r.

...in realta:

channel attenuation: A(r, f) = Aga( f)rri,,c

a(f) = absorption coefficient: increases with f



Propagazione delle onde

SOUND SPEED PROFILE

* Esprime la velocita di propagazione dell’onda acustica alle diverse profondita

* E’ funzione della temperatura e della pressione alle diverse profondita
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Propagazione delle onde

Effetti del SOUND SPEED PROFILE

La diversa velocita a profondita diverse provoca
la curvatura dei raggi, in particolare:

* Propagazione cilindrica:
I’energia dell’onda si espande in due
dimensioni invece che tre perché parte dei T
raggi che vanno verso la superficie vengono
ripiegati verso il basso e quindi la loro
energia viene “trattenuta” nello strato
d’acqua. Il suono si propaga facilmente
anche per centinaia di chilometri.

e Fenomeno delle shadow-zones
Inoltre:
Variabilita temporale dovuta a:

— Correnti
— Moto ondoso sulla superficie




Risposta in frequenza

Gli effetti descritti, provocano comportamenti diversi su
frequenze diverse

* Il canale acustico sottomarino presenta . i
rilevanti variazioni sia nel tempo che nella | ‘H
frequenza A

 Time spread e doppler spread e

—> difficile ottenere sotto-canali ortogonali

Notare che i disturbi possono provenire da sorgenti
acustiche (navi) diverse da modem.

- L'interferenza tra nodi € uno dei problemi maggiori
per le UASNs, (anche a causa delle lunghe distanze di

propagazione).



Protocolli e reti UASNSs

- | protocolli per UASNs devono essere, per quanto
possibile, adattivi

Inoltre:
La presenza delle shadow zones, introduce la necessita

di reti di tipo particolare
 Data muling

* Delay-Tolerant Networks

(possibili anche al fatto che i requisiti in termini di data-rate e
delay sono molto meno stringenti rispetto a reti terrestri)



MAC comparison

* UASNs MAC characteristics:
Nodal synchronization
Use of control packets for channel acquisition
Ways for accessing the channel
Use of ACKs
Slotted or unslotted time

The considered protocols are:

ALOHA
APCAP (Adaptive Propagation-Delay Collision Avoidance Protocol)

DACAP (Distance Aware Collision Avoidance Protocol)
PDAP



ALOHA

Random Access with CSMA and backoff:

If the channel is idle, the node transmits
If it is busy, it waits for a backoff time

Possible use of ACKs,
Limit of (2*delay + acktime) for retransmission
Backoff time ~ U[0,T] with T=2*txRetry

Does not require synchronization

Slotted ALOHA
slot duration is an important parameter

time_slot = f*maxDelay + datatime
Requires synchronization




ALOHA

* Nodes are not synchronized
* Uses carrier sensing.
* No control packets fo channel acquisition
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Slotted ALOHA

Nodes are synchronized

Uses carrier sensing

Transmissions start at the beginning of the slot
No control packets for channel acquisition
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Slotted ALOHA
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Slotted ALOHA

Nodes are synchronized

Uses carrier sensing

Transmissions start at the beginning of the slot
No control packets for channel acquisition
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APCAP adaptive propagation delay collision avoidance protocol

Random access. Based on RTS-CTS with the use of windows

The sender indicates a CTS_window for the reception of the
CTS and a data_window for the data sending
— Negotiation of the transmission time

Interference is reduced through suitable setting of the potential
interferers Network Allocation Vectors (NAV) so as to exclude

the CTS window and DATA window from transmission



APCAP adaptive propagation delay collision avoidance protocol

* Nodes are synchronized

* RTS/CTS-based channel acquisition (with timestamp)

* Each node has its own schedule

* Source and destination negotiate packet transmission timing
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APCAP adaptive propagation delay collision avoidance protocol
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APCAP adaptive propagation delay collision avoidance protocol

* Nodes are synchronized

* RTS/CTS-based channel acquisition (with timestamp)

* Each node has its own schedule
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APCAP adaptive propagation delay collision avoidance protocol

* Nodes are synchronized

* RTS/CTS-based channel acquisition (with timestamp)

* Each node has its own schedule

* Source and destination negotiate packet transmission timing
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APCAP adaptive propagation delay collision avoidance protocol

* Nodes are synchronized

* RTS/CTS-based channel acquisition (with timestamp)

* Each node has its own schedule

* Source and destination negotiate packet transmission timing
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APCAP adaptive propagation delay collision avoidance protocol

* Nodes are synchronized

* RTS/CTS-based channel acquisition (with timestamp)

* Each node has its own schedule

* Source and destination negotiate packet transmission timing

Max prop. delay

— —

RTS

Source

RX RTS

Destination

Other

Max prop. delay

—




DACAP distance aware collision avoidance protocol

Random access. Based on RTS-CTS

* Differently from APCAP, the replies are instantaneous

* Collisions are avoided through the insertion of a WARNING time between
the reception of the CTS and the actual data transmission.

* During this interval, the receiver can send a WARNING packet if it hears any
control packet from other nodes.

* Likewise the sender can overhear control packets.

* If the sender receives a warning or listens to other control packets during the
warning time, it aborts the data transmission.

* The challenge is the best choice of the WARNING time, which is performed
through an inference of the sender-receiver distance obtained by measuring
the RTS CTS round trip delay

No synchronization required



DACAP distance aware collision avoidance protocol

* Nodes are not synchronized
RTS/CTS-based channel acquisition
Distances between nodes are measured based on control packets RTT
Uses a warning period before transmitting for avoiding collisions
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DACAP distance aware collision avoidance protocol
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DACAP distance aware collision avoidance protocol
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DACAP distance aware collision avoidance protocol

* Nodes are not synchronized
RTS/CTS-based channel acquisition
Distances between nodes are measured based on control packets RTT
Uses a warning period before transmitting for avoiding collisions
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DACAP distance aware collision avoidance protocol

* Nodes are not synchronized
RTS/CTS-based channel acquisition
Distances between nodes are measured based on control packets RTT
Uses a warning period before transmitting for avoiding collisions
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PDAP propagation delay aware protocol

Nodes are synchronized
RTS/CTS-based channel acquisition

RTS/CTS timestamp are used to compute distance between nodes
Infer distance between source and destination

Uses random time and backoff to avoid nodes synchronization and collisions
Every node has its own schedule and interleaved communications are possible
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PDAP propagation delay aware protocol

Nodes are synchronized
RTS/CTS-based channel acquisition

RTS/CTS timestamp are used to compute distance between nodes
Infer distance between source and destination

Uses random time and backoff to avoid nodes synchronization and collisions
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PDAP propagation delay aware protocol

Nodes are synchronized
RTS/CTS-based channel acquisition

RTS/CTS timestamp are used to compute distance between nodes
Infer distance between source and destination

Uses random time and backoff to avoid nodes synchronization and collisions
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PDAP propagation delay aware protocol

Nodes are synchronized
RTS/CTS-based channel acquisition
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PDAP propagation delay aware protocol

Nodes are synchronized
RTS/CTS-based channel acquisition

RTS/CTS timestamp are used to compute distance between nodes
Infer distance between source and destination

Uses random time and backoff to avoid nodes synchronization and collisions
Every node has its own schedule and interleaved communications are possible
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Performance evaluation (parameters)

New ns2-based simulation framework for performance comparison

Shallow water scenario

N static nodes randomly and uniformly scattered on the lower face of a
cuboid L x L (base) x H, where H = 200m

Single-hop and multi-hop with shortest path routing scenarios
Different average nodal degrees (5, 10 and 15)

Acoustic modem transmission range set to 1000m

Poisson traffic process with different rate (low traffic up to high traffic)
Three data rates: 2000bps, 8000bps and 28000bps

Data packet size set to 2400 bits

Physical header size set to 60 bytes



Performance evaluation (metrics of interest)

Percentage of data packets sent
Percentage of data packets received

Percentage of data packets lost
End-to-end latency
Goodput



Performance evaluation (results)

Single-hop (average degree 15 --> 16 nodes in the network)
2000bps (transmission delay is twice the maximum propagation delay)
28000bps (transmission delay is 1/6 the maximum propagation delay)

SLOTTED
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28000bps

more than
90% data
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28000bps
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Performance evaluation (Results)
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Performance evaluation (Results)

Single-hop (average degree 15 --> 16 nodes in the network)
2000bps (transmission delay is twice the maximum propagation delay)
28000bps (transmission delay is 1/6 the maximum propagation delay)
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Viultg-honp

Effects of physical level interference

Testo

A is sending data to B
Cis sending datato D
d(A,B) = 250m

d(C,B) £1150m

If while B is receiving the
packet from A, it is reached

by the signal transmitted by
C, both packets have to be

discarded




Multi-hop scenarios

Effects of physical level interference

A is sending data to B
Cis sending datato D
d(A,B) = 500m

d(C,B) £1750m

If while B is receiving the
packet from A, it is reached

by the signal transmitted by
C, both packets have to be

discarded




Multi-hop scenarios

Effects of physical level interference

A is sending data to B
Cis sending datato D
d(A,B) = 1000m
d(C,B) £2765m

If while B is receiving the
packet from A, it is reached

by the signal transmitted by
C, both packets have to be

discarded




Performance evaluation (Results)

Multi-hop (average degree 15 --> 100 nodes in the network)
2000bps (transmission delay is twice the maximum propagation delay)

28000bps (transmission delay is 1/6 the maximum propagation delay)
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Performance evaluation

(Results)

Multi-hop (average degree 15 --> 100 nodes in the network)
2000bps (transmission delay is twice the maximum propagation delay)

28000bps (transmission delay is 1/6 the maximum propagation delay)
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Performance evaluation (Results)

Multi-hop (average degree 15 --> 100 nodes in the network)
2000bps (transmission delay is twice the maximum propagation delay)
28000bps (transmission delay is 1/6 the maximum propagation delay)
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Conclusioni

Rispetto ai protocolli per reti radio, in ambito UASNSs le differenti

problematiche assumono differenti priorita.

« |l delay puo essere considerato un requisito meno stringente
rispetto alle reti wireless di comunicazione

« Una grande cura deve essere dedicata alla gestione delle
collisioni (tenendo presente che il rapporto tra i tempi di
propagazione e i tempi di trasmissione € ben maggiore che nel
caso di reti radio)

| protocolli devono essere adattivi per poter operare in differenti
condizioni rispetto a: propagazione delle onde, dimensione
dalla rete, range trasmissivi, densita dei nodi, intensita del
traffico.

* Node placement and mobility planning



