1. Introduction to 802.11 Wireless LANs

Ilenia Tinnirello

llenia.tinnirello@tti.unipa.it

WLAN History

→ Original goal:

- ⇒ Deploy "wireless Ethernet"
- ⇒ First generation proprietary solutions (end '80, begin '90)
 - →WaveLAN (AT&T))
 - →HomeRF (Proxim)
- ⇒ Abandoned by major chip makers (e.g. Intel: dismissed in april 2001)

→ IEEE 802.11 Committee formed in 1990

- ⇒ Charter: specification of MAC and PHY for WLAN
- ⇒ First standard: june 1997
 - \rightarrow 1 and 2 Mbps operation
- ⇒ Reference standard: september 1999
 - → Multiple Physical Layers
 - → Two operative Industrial, Scientific & Medical unlicensed bands
 - » 2.4 GHz: Legacy; 802.11b/g
 - » 5 GHz: 802.11a

→ 1999: Wireless Ethernet Compatibility Alliance (WECA) certification

- ⇒ Later on named Wi-Fi
- ⇒ Boosted 802.11 deployment!!

WLAN data rates

→ Legacy 802.11

- ⇒ 1 mbps & 2 mbps

→ The 1999 revolution: PHY layer impressive achievements

- ⇒ 802.11a: PHY for 5 GHz
 - → Published in 1999
 - → Products available since early 2003
- ⇒ 802.11b: higher rated PHY for 2.4 GHz
 - → Published in 1999
 - → Products available since 1999
 - → Interoperability tested (wifi)

→ 2003: extend 802.11b

- ⇒ 802.11g: OFDM for 2.4 GHz
 - → Published in june 2003
 - → Products available, though no extensive interoperability testing yer
 - → Backward compatibility with 802.11b Wi-Fi

Standard	Transfer Method	Frequenc y Band	Data Rates Mbps	
802.11 legacy	FHSS, DSSS, IR	2.4 GHz, IR	1, 2	
802.11b	DSSS, HR-DSSS	2.4 GHz	1, 2, 5.5, 11	
"802.11b+" non-standard	DSSS, HR- DSSS, (PBCC)	2.4 GHz	1, 2, 5.5, 11, 22, 33, 44	
802.11a	OFDM	5.2, 5.5 GHz	6, 9, 12, 18, 24, 36, 48, 54	
802.11g	DSSS, HR- DSSS, OFDM	2.4 GHz	1, 2, 5.5, 11; 6, 9, 12, 18, 24, 36, 48, 54	

Why multiple rates? "Adaptive" coding/modulation

Table 11-3. Encoding details for different OFDM data rates							
Speed (Mbps)	Modulation and coding rate (R)	Coded bits per carrier ^[a]	Coded bits per symbol	Data bits per symbol ^[b]			
6	BPSK, R=1/2	1	48	24			
9	BPSK, R=3/4	1	48	36			
12	QPSK, R=1/2	2	96	48			
18	QPSK, R=3/4	2	96	72			
24	16-QAM, R=1/2	4	192	96			
36	16-QAM, R=3/4	4	192	144			
48	64-QAM, R=2/3	6	288	192			
54	64-QAM, R=3/4	6	288	216			

Example: 802.11a case

PHY distance/rate tradeoffs (open office)

Coverage performance Cisco Aironet 350 Access Point

Greater TX power, faster battery consumptions!

Question: how to select transmission rate? STA does not explicitly know its distance from AP.

More later (implementation-dependent)

WLAN NIC addresses

- → Same as Ethernet NIC
 - \Rightarrow 48 bits = 2 + 46
- → Ethernet & WLAN addresses do coexist
 - ⇒ Undistinguishable, in a same (Layer-2) network
 - ⇒ Role of typical AP = bridge
 - » To be precise: when the AP acts as "portal" in 802.11 nomenclature

802 IEEE 48 bit address

1 bit = individual/group1 bit = universal/local46 bit adress

Protocol stack

→802.11: "just" another 802 link layer ©

802.11 MAC Data Frame

MAC header:

- -28 bytes (24 header + 4 FCS) or
- 34 bytes (30 header + 4 FCS)

Details and explanation later on!

2. Wireless LAN Networks and related Addressing

Basic Service Set (BSS)

group of stations that can communicate with each other

→Infrastructure BSS

- ⇒or, simply, BSS
- ⇒Stations connected through AP

→Independent BSS

- ⇒or IBSS
- ⇒Stations connected in ad-hoc mode

Frame Forwarding in a BSS

BSS: AP = relay function No direct communication allowed!

IBSS: direct communication between all pairs of STAs

Why AP = relay function?

→ Management:

- ⇒ Mobile stations do NOT neet to maintain neighbohr relationship with other MS in the area
 - →But only need to make sure they remain properly associated to the AP
 - →Association = get connected to (equivalent to plug-in in a wire to a bridge ©)

→ Power Saving:

- ⇒ APs may assist MS in their power saving functions
 - →by buffering frames dedicated to a (sleeping) MS when it is in PS mode
- → Obvious disadvantage: use channel bandwidth twice...

Extended Service Set

ESS: created by merging different BSS through a network infrastructure (possibly overlapping BSS – to offer a continuous coverage area)

Stations within ESS MAY communicate each other via Layer 2 procedures

APs acting as bridges

MUST be on a same LAN or switched LAN or VLAN (no routers in between)

The concept of Distribution System

Basically. DS role:

- track where an MS is registrered within an ESS area
- deliver frame to MS

Association and DS

→ Typical implementation (media)

- ⇒ Switched ethernet backbone
- ⇒ But alternative "distribution medium" are possible
 - → E.g. wireless distribution system (WDS)

DS implementation:

- an AP must inform other APs of associated MSs MAC addresses
- proprietary implementation→ no interoperability
- standardized protocol IAPP (802.11f) in june 2003

Current trend:

- Centralized solutions (Cisco, Aruba)- CAPWAP?

Wireless Distribution System

- not necessarily an ethernet backbone!
- could be the 802.11 technology itself

Resulting AP = wireless bridge

Addresses

→At least three addresses

- ⇒Receiving station
- ⇒Transmitting station
- ⇒BSS address
 - → To make sure a frame is valid within the considered BSS
 - →For filtering purpose (filter frame within a BSS)

BSSID

- →Address of a BSS
 - ⇒Infrastructure mode:
 - →AP MAC address
 - ⇒Ad-hoc mode:
 - → Random value
 - » With universal/local bit set to 1
 - →Generated by STA initiating the IBSS

802 IEEE 48 bit addresses

1 bit = individual/group 1 bit = universal/local 46 bit address

Addressing in an IBSS

Frame Control Duration / ID Address 1 **DA**

Address 2 SA Address 3 **BSSID**

Sequence Control Address 4

Data

FCS

SA = Source Address

DA = Destination Address

Addressing in a BSS?

Addressing in a BSS!

Frame must carry following info:

- 1) Destined to DA
- 2) But through the AP

What is the most general addressing structure?

Addressing in a BSS (to AP)

Addressing in an ESS

Addressing in a BSS (from AP)

From AP: do we really need 3 addresses?

DA correctly receives frame, and send 802.11 ACK to ... BSSID (wireless transmitted)

DA correctly receives frame, and send higher level ACK to ... SA (actual transmitter)

Addressing within a WDS

Addressing: summary

Receiver	Transmitter
IXCCCIVCI	1 I alisiiiittei

Function	To DS	From DS	Address 1	Address 2	Address 3	Address 4
IBSS	0	0	RA = DA	SA	BSSID	N/A
From AP	0	1	RA = DA	BSSID	SA	N/A
To AP	1	0	RA = BSSID	SA	DA	N/A
Wireless DS	1	1	RA	TA	DA	SA

→ BSS Identifier (BSSID)

unique identifier for a particular BSS. In an infrastructure BSSID it is the MAC address of the AP. In IBSS, it is random and locally administered by the starting station. (uniqueness)

→ Transmitter Address (TA)

⇒ MAC address of the station that transmit the frame to the wireless medium. Always an individual address.

→ Receiver Address (RA)

⇒ to which the frame is sent over wireless medium. Individual or Group.

→ Source Address (SA)

- ⇒ MAC address of the station who originated the frame. Always individual address.
- May not match TA because of the indirection performed by DS of an IEEE 802.11 WLAN. SA field is considered by higher layers.

→ Destination Address (DA)

- ⇒ Final destination . Individual or Group.

Service Set IDentifier (SSID)

- → Name of the WLAN network
 - ⇒ Plain text (ascii), up to 32 char
- → Assigned by the network administrator
 - ⇒ All BSS in a same ESS have same SSID
- → Typically (but not necessarily) is transmitted in periodic management frames (beacon)
 - ⇒ Typical: 1 broadcast beacon every 100 ms (configurable by sysadm)
 - ⇒ Beacon may transmit a LOT of other info

IEEE 802.11 wireless LAN management frame Fixed parameters (12 bytes) Timestamp: 0x00000109EAB69185 Beacon Interval: 0,102400 [Seconds] Capability Information: 0x0015 1 = ESS capabilities: Transmitter is an AP 01... = CFP participation capabilities: Point coordinator at AP for delivery and polling (0x0001) 1 = Privacy: AP/STA can support WEP 0. = Short Preamble: Short preamble not allowed0.. = PBCC: PBCC modulation not allowed 0... = Channel Agility: Channel agility not in use 0... = Short Slot Time: Short slot time not in use = DSSS-OFDM: DSSS-OFDM modulation not allowed Tagged parameters Tag Number: 0 (SSID parameter set) Tag length: 4 Tag interpretation: WLAN Tag Number: 1 (Supported Rates) Tag length: 4 Tag interpretation: Supported rates: 1,0(B) 2,0(B) 5,5 11,0 [Mbit/sec] Tag Number: 6 (IBSS Parameter set) Tag length: 1 Tag interpretation: ATIM window 0x2 Tag Number: 5 ((TIM) Traffic Indication Map) Tag length: 4 example Tag interpretation: DTIM count 0, DTIM period 1. Bitmap control 0x0, (Bitmap suppressed)

Giuseppe Bianchi, Ilenia Tinnirello

Beacon

3. 802.11 MAC: CSMA/CA Distributed Coordination Function

Wireless Ethernet

- → 802.3 (Ethernet)
 - ⇒ CSMA/CD
 - → Carrier Sense Multiple Access
 - → Collision Detect

- **→** 802.11(wireless LAN)
 - ⇒ CSMA/CA
 - ⇒ (Distributed Coordination Function)
 - → Carrier Sense Multiple Access
 - → Collision Avoidance

- → Both A and C sense the channel idle at the same time → they send at the same time.
- → Collision can be detected at sender in Ethernet.
- → Why this is not possible in 802.11?
 - Either TX or RX (no simultaneous RX/TX)
 - 2. Large amount of power difference in Tx and Rx (even if simultaneous txrx, no possibility in rx while tx-ing)
 - 3. Wireless medium = additional problems vs broadcast cable!!

Hidden Terminal Problem

- → Large difference in signal strength; physical channel impairments (shadowing)
 - ⇒ It may result that two stations in the same area cannot communicate
- → Hidden terminals
 - ⇒ A and C cannot hear each other
 - ⇒ A transmits to B
 - □ C wants to send to B; C cannot receive A; C senses "idle" medium (Carrier Sense fails)
 - ⇒ Collision occurs at B.
 - ⇒ A cannot detect the collision (Collision Detection fails).
 - ⇒ A is "hidden" to C.

C

A D Ichi Ilania Tinniralla

802.11 MAC approach

- → Still based on Carrier Sense:
 - →Listen before talking
- →But collisions can only be inferred afterwards, at the receiver
 - → Receivers see corrupted data through a CRC error
 - → Transmitters fail to get a response
- → Two-way handshaking mechanism to infer collisions
 - ⇒DATA-ACK packets

Channel Access details

→ A station can transmit only if it senses the channel IDLE for a DIFS time

⇒ DIFS = Distributed Inter Frame Space

→ Key idea: DATA and ACK separated by a different Inter Frame Space

⇒ SIFS = Short Inter Frame Space

⇒ Second station cannot hear a whole DIFS, as SIFS<DIFS</p>

DIFS & SIFS in wi-fi

→DIFS = **50** μs

→SIFS = 10 μs

Why backoff?

RULE: when the channel is initially sensed BUSY, station defers transmission; But when it is sensed IDLE for a DIFS, defer transmission of a further random time (BACKOFF TIME)

Slotted Backoff

Note: slot times are not physically delimited on the channel! Rather, they are logically identified by every STA

Slot-time values: 20µs for DSSS (wi-fi)

Accounts for: 1) RX_TX turnaround time

2) busy detect time

3) propagation delay

Backoff freezing

→ When STA is in backoff stage:

- ⇒ It freezes the backoff counter as long as the channel is sensed BUSY
- ⇒ It restarts decrementing the backoff as the channel is sensed IDLE for a DIFS period

Backoff rules

→ First backoff value:

⇒ Extract a uniform random number in range (0,CW_{min})

→ If unsuccessful TX:

 \Rightarrow Extract a uniform random number in range (0,2×(CW_{min}+1)-1)

→ If unsuccessful TX:

 \Rightarrow Extract a uniform random number in range $(0,2^2\times(CW_{min}+1)-1)$

\rightarrow Etc up to $2^{m}\times(CW_{min}+1)-1$

Exponential Backoff!

CWmin = 31

CWmax = 1023 (m=5)

Throughput vs CWmin

RTS/CTS

- → Request-To-Send / Clear-To-Send
- →4-way handshaking
 - ⇒ Versus 2-way handshaking of basic access mechanism
- →Introduced for two reasons
 - ⇒Combat hidden terminal
 - ⇒Improve throughput performance with long packets

RTS/CTS and hidden terminals

Packet arrival

RTS/CTS and performance

RTS/CTS throughput

RTS/CTS convenient with long packets and large number of terminals (collision!);

RTS/CTS more robust to number of users and CWmin settings

Relation between IFS

PIFS used by Point Coordination Function

- Time-bounded services
- Polling scheme

PCF Never deployed

Parameters	SIFS (µsec)	DIFS (µsec)	Slot Time (µsec)	CWmin	CWmax
802.11b PHY	10	50	20	31	1023

EIFS

Time in microseconds. Update the NAV time in the neighborhood

Data Frame formats

Why NAV (i.e. protect ACK)?

Station C receives frame from station TX Station C IS NOT in reach from station RX But sets NAV and protects RX ACK

Why EIFS (i.e. protect ACK)?

Station C DOES NOT receive frame from station TX but still receives enough signal to get a PHY.RXEND.indication error

Station C IS NOT in reach from station RX But sets EIFS (!!) and protects RX ACK

5. DCF Overhead

Frame formats

DATA FRAME (28 bytes excluded address 4)

Frame Control Duration / ID Address 1 Address 2 Address 3 Sequence Control Address 4 Data FCS

RTS (20 bytes)

Frame Control	Duration	RA	TA	FCS
------------------	----------	----	----	-----

CTS / ACK (14 bytes)

	•	,	
Frame Control	Duration	RA	FCS

DCF overhead

$$S_{station} = \frac{E[payload]}{E[T_{Frame_Tx}] + DIFS + CW_{\min}/2}$$

$$\begin{split} T_{Frame_Tx} &= T_{MPDU} + SIFS + T_{ACK} \\ T_{Frame_Tx} &= T_{RTS} + SIFS + T_{CTS} + SIFS + T_{MPDU} + SIFS + T_{ACK} \end{split}$$

$$T_{MPDU} = T_{PLCP} + 8 \cdot (28 + L) / R_{MPDU_Tx}$$

 $T_{ACK} = T_{PLCP} + 8 \cdot 14 / R_{ACK_Tx}$

$$T_{RTS} = T_{PLCP} + 8 \cdot 20 / R_{RTS_Tx}$$

$$T_{CTS} = T_{PLCP} + 8 \cdot 14 / R_{CTS_Tx}$$

DCF overhead (802.11b)

DCF overhead (802.11b)

6. Point Coordination Function

PCF vs DCF

PCF deployed on TOP of DCF Backward compatibility

PCF

- → Token-based access mechanism
 - ⇒ Polling
- → Channel arbitration enforced by a "point Coordinator" (PC)
 - ⇒ Typically the AP, but not necessarily
- → Contention-free access
 - ⇒ No collision on channel
- → PCF deployment: minimal!!
 - ⇒ Optional part of the 802.11 specification
 - ⇒ As such, almost never deployed
 - ⇒ But HCCA (PCF extension in 802.11e) is getting considerable attention...

PCF frame transfer

Polling strategy: very elementary!!

- send polling command to stations with increasing Association ID value...
- (regardless whether they might have or not data to transmit)