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The 3-Sphere Regular Cellulation Conjecture
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Let X be a CW-complex [8] on the 3-sphere S3 = {x ∈ R4 : |x| = 1} with its standard topology.
X is also called a cellulation. The ascending sequence X0 ⊂ X1 ⊂ X2 ⊂ X3 = X of closed
subspaces of X satisfies the following conditions:

[1 ] X0 is a discrete set of points (0-cells)

[2 ] For 0 < k ≤ 3, Xk−Xk−1 is the disjoint union of open subspaces, called k-cells, each of which
homeomorphic to the open k-dimensional ball Uk(= {x ∈ Rk : |x| < 1}).

X is a regular cellulation if the boundary of every k-cell is homeomorphic to the k−1-dimensional
sphere Sk−1, for 1 ≤ k ≤ 3.

A biconnected graph G = (V,E) is 2-connected if |V | > 2. The 3-sphere regular cellulation
conjecture claims that every 2-connected graph is the 1-dimensional skeleton of a regular cellulation
of the 3-dimensional sphere [5]. The conjecture is trivially true for planar graphs. Biconnectivity is a
necessary condition for a graph to satisfy such property. Therefore, the question would be equivalent
to the biconnectivity test if the conjecture were proved to be true. On the contrary, it is not even
clear whether such decision problem is computationally tractable. In [1], the conjecture was proved
for hamiltonian graphs and complete graphs are hamiltonian. This consideration suggested that
this property might hold when the graph lies, as far as embeddability into surfaces is concerned,
in between a planar one and a complete one. Moreover, such extremal results were obtained for
k-partite graphs since complete k-partite graphs verify the conjecture for every k [4]. Finally, a
superclass of planar graphs and complete k-partite graphs verifying the conjecture was introduced
in [6] and called the class of extended split graphs. Extended split graphs are, therefore, the state
of the art for the proof of this open problem.

The 3-sphere regular cellulation conjecture was given for graphs with at least two cycles in [3]
because we assumed that two 2-cells cannot share the same boundary in order to relate it to the
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concept of spatiality degree [7]. The spatiality degree of a connected graph G is the maximum
number of 3-cells that the cellulation of a 3-sphere can have with G as a 1-dimensional skeleton,
assuming that two distinct 2-cells of the complex cannot share the same boundary and the 2-
dimensional skeleton is regular. In [1], [2], it is shown that the 3-sphere regular cellulation conjecture
is true if and only if the spatiality degree of a 2-connected graph G = (V,E) with at least two cycles
is equal to 2(|E| − |V |). We denote the spatiality degree of a connected graph G with s(G). In
[1], it is also shown that, for any connected graph G, s(G) =

∑k
i=1 s(Bi) − k + 1 where B1 · · ·Bk

are the biconnected components of G. It follows that computing the spatiality degree would be an
interesting problem only if the conjecture were false.
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