
Pipelined Addition, Accumulation and Multiplication of Binary

Numbers on Cellular Automata

A. Clementi, G. A. De Biase and A. Massini

Dipartimento di Scienze dell’Informazione, Università di Roma la Sapienza

Via Salaria 113, 00198 Roma, Italy

Abstract

Some arithmetical operations on binary (or 2s com-
plement) numbers performed on Cellular Automata
(CA) are presented: a) by implementing on the CA
the half-adder functions it is possible to perform a
pipelined binary addition of binary number pairs
which gives results every two machine-state transi-
tions (after the start-up phase); b) by implementing
the full-adder functions on the CA, the sum of N
binary number of size N (i.e. the accumulation op-
eration) can be obtained in O(N) time; c) the accu-
mulation operation is also used to perform multipli-
cations between two binary numbers in O(N) time.
Implementations of these operations are made for
the MIT CAM-8 machine.

1 Introduction

The effectiveness of a computing model is related to
its practical usability. From this standpoint arith-
metic operations play a role of primary importance.
The problem of performing addition or algebraic
sum on a Cellular Automaton (CA) has been the
subject of two recent works, in particular, a method
to perform addition on binary numbers in O(N)
time has been presented by Sheth et al. in [6] and a
method to perform addition in constant time using
the redundant binary number representation has
been presented by Clementi et al. in [7].

In this paper, procedures to perform some
arithmetical operations on binary (or 2s comple-
ment) numbers using cellular automata are pre-
sented. The first procedure regards the pipelined
addition: this procedure gives sums in constant time
at every two state transitions of the cellular automa-
ton. Then, a procedure to perform the accumula-
tion (i.e. the addition of N numbers) on a CA is
presented. This last procedure is based on the im-
plementation of the full adder functions on the CA
and requires O(N) time, where N is both the num-
ber and the size of the operands. Finally, by using

u 0 1
l

0 1 u sum
0 0 0 l carry

1 0 u sum
1 0 1 l carry

Table 1: Table derived from the half adder true
table. This table acts on a pair of digits; u and l
indicate the upper and lower rows respectively. In
the output pair the lower digit is shifted left one
position.

a suitable initial configuration for the cellular au-
tomaton, the accumulation operation is also used
in order to perform multiplications between two bi-
nary numbers of size N/2 in linear time.

Implementations of these operations are made
on the CAM-8 machine, which is the novel version
of the Cellular Automaton Machine developed by
the MIT laboratories [5].

2 A pipelined binary adder

In the binary number system an unsigned integer
D is represented by a digit string aN−1, . . . , a1, a0,
with ai ∈ {0, 1}, where the most significant digit is
on the left end of the string. The decimal value of
D is given by:

D =
N−1∑

i=0

ai2
i (1)

If two strings (N bit wide) aN−1, . . . , a0 and
bN−1, . . . , b0, representing two binary numbers are
arranged on two aligned and superposed rows, the
sum of these strings can be obtained by an iterative
and parallel application of Table 1 (derived from

1

N

. . .

. . .

. . .

2

1

i i i i i i
i i i i i i
i i i i i i
i i i i i i
i i i i i i
i i i i i i

s0s1s2s3s4. . .

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�� �� �� �� �� ��

��

��

��

��

��

��

��

��

��

��

a0a1a2a3a4 b0b1b2b3b4
. . .

? ? ? ? ? ?

? ? ? ? ? ?

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�� �� �� �� �� ���� �� �� �� �� ��
	 	 	 	 	 	

Figure 1: Addition in pipeline of two binary (or 2s
complement) numbers. The nodes represent half-
adder functions, the arrows indicate the input and
output terminals. The values of the inputs and out-
puts of all other terminals and the data on thin lines
are always zero (if no overflows occour). After N
steps the sum is given.

the truth table of the popular half adder) [8]. In
fact the input of Table 1 is a pair of digits ai and
bi (having the same weight) and the output is also
two digits: an upper digit with position i (sum)
and a lower digit with position i + 1 (carry). After
a parallel application of the table on all digits of
the input strings, Table 1 gives an upper resulting
string which is the string of the sums and a lower
one which is the string of the carries. N subsequent
applications of Table 1 are sketched in Fig. 1. It is
evident that after N applications of this table (if
no overflows occour) the string of carries is always
formed by N zeros1 [8], while the string represent-
ing the sum is given. It is also evident (see Fig. 1)
that the addition operation can be performed in
pipeline.

The same procedure can be used to obtain the
algebraic sum on 2s complement numbers. In Fig. 2
an example of addition of two binary integers 6 bit
wide, obtained by means of 6 parallel applications
of Table 1, is presented.

1The use of tables to perform operations (symbolic substi-
tution) is widely employed in optical computing, see Ref. [9].

(31)10 0 1 1 1 1 1 1st operand
(1)10 0 0 0 0 0 1 2nd operand

(30)10 0 1 1 1 1 0
(2)10 0 0 0 0 0 1 ∅

(28)10 0 1 1 1 0 0
(4)10 0 0 0 0 1 0 ∅

(24)10 0 1 1 0 0 0
(8)10 0 0 0 1 0 0 ∅

(16)10 0 1 0 0 0 0
(16)10 0 0 1 0 0 0 ∅
(0)10 0 0 0 0 0 0

(32)10 0 1 0 0 0 0 ∅
(32)10 1 0 0 0 0 0
(0)10 0 0 0 0 0 0 ∅

Figure 2: Example of addition as a sequence of N
parallel applications of Table 1. In this example
N = 6.

3 Cellular Automata as pipelined
binary adders

The addition procedure described can be imple-
mented on a CA to realize pipelined additions of
number pairs following the scheme shown in Fig. 1.
The half adder functions can be obtained on the
CA by distinguishing two phases: in the first phase
the needed logical operations XOR and AND are
performed, whereas in the second phase the shift
operations, required by Table 1, are performed.

3.1 Cellular automaton local rule for
pipelined addition

According to the CAM (Cellular Automaton Ma-
chine) terminology [2, 4, 5], the state binary com-
ponents of cells will be denoted Planes. Six planes
are required to perform the half-adder rule shown in
Table 1. Two planes are used for the pairs of input
operands and two planes for the current elaborating
data. The use of each plane is:

Plane 0: the first row represents the current au-
gend, the remaining rows are used to store the
intermediate sums;

Plane 1: the first row represents the current ad-
dend, the remaining rows are used to store the
carries;

Plane 2: is used to store the N input binary num-
bers (augends);

Plane 3: is used to store the N input binary num-
bers (addends);

2

Plane 4: is used to individuate the first cell row
(current operand);

Plane 5: is used to distinguish between the com-
puting phase (application of the logical opera-
tion XOR and AND) and the shift phase.

In the computing phase, each cell of Plane 0 takes
the value of the XOR between center-0 and center-1;
each cell of Plane 1 assumes the value of the logi-
cal AND between center-0 and center-1. To per-
form pipelined operations, a shift phase is neces-
sary to prepare data on Plane 0 and Plane 1 for
the subsequent application of the computing phase.
In the shift phase the following copy operations
are performed: a) on Plane 0 each cell copies the
north cell (their content is shifted down), b) on
Plane 1 each cell copies the north-east cell (their
content is shifted down and left), c) on Plane 2
and Plane 3 each cell copies the south cell (their
content is shifted up). In this phase the current
operands are copied on the topmost row of Plane 0
and Plane 1 from the topmost row of Plane 2 and
Plane 3 respectively. After a start-up time (propor-
tional to the CA size) on the last row of Plane 0 a
sum is ready at every two machine state transitions.

The starting configuration is defined in the fol-
lowing way. The first row of Plane 0 contains the
augend and the first row of Plane 1 contains the ad-
dend (the remaining rows are all 0s). Plane 2 and
Plane 3 contain the N successive pairs of augends
and addends respectively. All cells of the topmost
row of Plane 4 are set to 1 and the cells of the re-
maining rows are set to 0. All cells of Planes 5 are
set to 0.

3.2 Implementation of the pipelined ad-
dition on the CAM-8 machine

The formal description of the cellular automaton lo-
cal rule are given using the CAM-Forth language of
the Cellular Automata Machine (CAM) designed
by the Information Mechanics Group of the Mas-
sachusetts Institute of Technology [2, 4, 5]. The no-
tation neighbor-k, where neighbor ∈ {center, south,
south-west, west, north-west, north, north-east,
east, south-east}, denotes the corresponding neigh-
bor bit of Plane k (k = 0, . . . , 5). According to the
use of cells in the described computing and shift
phases, the total number of inputs for the CA rule2

is 10.
For the sake of clarity, the normal order nota-

tion is still preserved instead of the Reverse Polish

2Observe that in spite of what holds in the CAM-6, the
only restriction in the CAM-8 for the structure and the di-
mension of the CA rule consists on the maximum number of
input bits which is 16.

Notation one (adopted by the CAM-Forth) and also
the simple construct: begin ... end is used.

new-experiment
n/vonn {∗ Neighborhood for planes 0 and 1}
& /centers {∗ Neighborhood for the other planes}
pipelined-binary-sum:
begin
if center-5 then begin {∗ Computing phase}

center-0 xor center-1 > pln0;
center-0 and center-1 > pln1;
center-2 > pln2;
center-3 > pln3;
end;
else begin {∗ Shift phase}
if center-4 then begin

center-2 > pln0;
center-3 > pln1;
end;
else begin
north-0 > pln0;
north-east-1 > pln1;
end;

south-2 > pln2;
south-3 > pln3;
end;

center-4 > pln4;
not center-5 > pln5;
end.
make-table pipelined-binary-sum

This program calculate the sums of N pairs
of binary (or 2s complement) numbers N bit wide.
After a start-up phase of 2N machine state transi-
tions, results are given every two state transitions.

4 Accumulation by Cellular Au-
tomata

To perform the addition of N numbers (accumu-
lation) the scheme presented in Fig. 3 can be
used. As one can see, on each node of each row
three quantities must be added: the sum and the
carry computed in the previous row and one of
the N operands. If three strings (N bit wide)
aN−1, . . . , a0, bN−1, . . . , b0 and cN−1, . . . , c0 repre-
senting three binary numbers are arranged on three
aligned and superposed rows, the sum of these
strings can be obtained by an iterative and parallel
application of Table 2 (derived from the truth table
of the full-adder). The input of Table 2 is a triple of
digit ai, bi and ci (upper, medium and lower digit
having the same weight) and the output is two dig-
its: an upper digit with position i (sum) and a lower
digit with position i + 1 (carry). This fact allows
the insertion of one operand (the medium string of
digits) before each application of the table. It is evi-
dent from Fig. 3 that after N insertions of operands

3

2N − 1

. . .

. . .

. . .

. . .

N

. . .

. . .

. . .

2

1

i i i i i i
i i i i i i
i i i i i i
i i i i i i
i i i i i i
i i i i i i
i i i i i i
i i i i i i
i i i i i i
i i i i i i
i i i i i i

. . . s4 s3 s2 s1 s0

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�� �� �� �� �� ��

��

��

��

��

��

��

��

��

��

��

�� �� �� �� �� ��

��

��

��

��

��

��

��

��

��

��

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

�
��

�
��

�
��

�
��

�
��

.

. . . e4 e3 e2 e1 e0

. . . d4 d3 d2 d1 d0

. . . c4 c3 c2 c1 c0

. . . b4 b3 b2 b1 b0

. . . a4 a3 a2 a1 a0

? ? ? ? ? ?

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

Figure 3: Accumulation of N binary (or 2s com-
plement) numbers. The nodes represent full-adder
functions, the arrows represent the data input and
output. The values of the input and the output of
all other terminals, and the data on thin lines are
always zero (if no overflows occour). After 2N − 1
steps the sum of all operands is given.

u 0 1 0 1
m 0 0 1 1

l

0 1 1 0 u sum
0 0 0 0 1 l carry

1 0 0 1 u sum
1 0 1 1 1 l carry

Table 2: Full-adder action. The table acts on a
triple of digits u, m and l (upper, medium and lower
respectively) and gives two digits u and l (upper and
lower). In the output pair the lower digit is shifted
left one position.

and further N − 1 applications of Table 1 without
new operand insertion (i.e. with the medium string
formed by all zeros), and if no overflows occour, the
string of carries is always formed by N zeros, while
the string representing the sum of all numbers is
given. In Fig. 4 an example of accumulation of 6
numbers each 6 bit wide, obtained by means of 11
parallel applications of Table 2, is presented. As
one can see, in 2N − 1 steps the sum of N num-
bers is provided: N steps are used to load the N
addends, and N −1 steps are required to propagate
the carries to the most significant bit (see Fig. 3).

A CA is suitable to perform the described
accumulation scheme of N binary (or 2s comple-
ment) numbers. Full-adder functions are obtained
by means of two cascaded half-adders and one OR
port whose actions spend three consecutive phases,
as shown in Fig. 5.

4.1 Cellular automaton local rule for ac-
cumulation

Six planes are required to perform the accumula-
tion procedure. One plane is used for storing the
N addends, another for storing the carries, and two
further planes to perform computations. Finally,
two planes are required to distinguish four addition
phases. Three phases are reserved to individuate
the full-adder functions, while the fourth one indi-
viduates the shift phase which acts on two differ-
ent planes: by moving up all the rows but the first
one of the plane of addends and by shifting left the
string of carries. The use of each plane is:

Plane 0: the first and second rows represent the
first and second inputs of full-adders, after the
action in the first row the output sums are
stored;

Plane 1: the first row represents the third input
of the full-adders, after the action it is used to
store the carries;

Plane 2: is used to distinguish the first row (the
top row) from the remaining ones;

Plane 3: is used to distinguish the second row
from the remaining ones;

Plane 4 and Plane 5: are used to distinguish the
needed four phases.

After the first half-adder phase (ha1-phase in Fig. 5)
the result of the XOR between the first and the
second rows of Plane 0 is stored in the first row of
Plane 0; the second row of Plane 2 takes the value
of the AND between the first and the second rows of

4

0 0 0 0 0 0
(5)10 → 0 0 0 1 0 1

0 0 0 0 0 0
0 0 0 1 0 1

(11)10 → 0 0 1 0 1 1
0 0 0 0 0 0 ∅

0 0 1 1 1 0
(5)10 → 0 0 0 1 0 1

0 0 0 0 0 1 ∅
0 0 1 0 0 1

(2)10 → 0 0 0 0 1 0
0 0 0 1 1 0 ∅

0 0 0 1 1 1
(8)10 → 0 0 1 0 0 0

0 0 1 0 0 0 ∅
0 1 1 1 1 1

(1)10 → 0 0 0 0 0 1
0 0 0 0 0 0 ∅

0 1 1 1 1 0
0 0 0 0 0 0

0 0 0 0 0 1 ∅
0 1 1 1 0 0
0 0 0 0 0 0

0 0 0 0 1 0 ∅
0 1 1 0 0 0
0 0 0 0 0 0

0 0 0 1 0 0 ∅
0 1 0 0 0 0
0 0 0 0 0 0

0 0 1 0 0 0 ∅
0 0 0 0 0 0
0 0 0 0 0 0

0 1 0 0 0 0 ∅
(32)10 → 1 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0 ∅

Figure 4: Example of accumulation as a sequence
of 2N − 1 parallel applications of Table 2. N steps
are used to load the N addends and N −1 steps are
required to propagate the carry. In this example
N = 6.

OR

��
��

��
��

HA

HA
�

�
�

�

�
�

��

��

�
�

��

ai bi
ci

c s

1st phase: ha1-phase

2nd phase: ha2-phase

3rd phase: OR-phase

Figure 5: Scheme of a full-adder obtained by means
of two half-adder (HA) and one OR port.

Plane 0. During the second half-adder phase (ha2-
phase in Fig. 5) in the first row of Plane 0 the result
of the XOR between the first row of Plane 0 and the
first row of Plane 1 is put; the first row of Plane 1
takes the value of the AND between the first row of
Plane 0 and the first row of Plane 1. Finally, during
the OR-phase, the first row of Plane 1 takes the
value of the OR between the second row of Plane 0
and the first row of Plane 1. During the shift phase
all the rows but the first of Plane 0 are shifted up
(each cell copies the south cell) and a new addend
is copied on the second row of Plane 0. Further, the
first row of Plane 1 (string of carries) is shifted to
the left.

The current state of the generic cell of Plane 0
depends on center-0, south-0, north-0 and center-
1. The current state of the generic cell of Plane 1
depends on center-1, east-1, center-0 and south-0.
For the remaining four Planes, the neighborhood of
each cell consists only of the cell itself.

The starting configuration is defined in the fol-
lowing way. Plane 0 contains the N addends. All
cells of Plane 1 are set to 0. All cells of the topmost
row of Plane 2 are set to 1 and the cells of the re-
maining rows are set to 0. All cells of the second
row of Plane 3 are set to 1 and the cells of the re-
maining rows are set to 0. All cells of Plane 4 and
Plane 5 are set to 0.

5

4.2 Implementation of the accumulation
on the CAM-8 machine

As in the previous case, the new available version
of Cellular Automata Machine, the CAM-8, is used
for the implementation. The total number of bits
used by the accumulation procedure is 9.

new-experiment
accumulation:
begin
center-2 > pln2;
center-3 > pln3;
if not center-4 then
begin {∗ Computing phases 1 and 2}
if not center-2 and not center-3 then begin

center-0 > pln0;
center-1 > pln1;
end;
else begin
if not center-5 then begin

if center-2 then center-0
xor south-0 > pln0;

if center-3 then center-0
and north-0 > pln0;

end;
else begin
if center-2 then center-0

xor south-0 > pln0;
if center-3 then center-0

and center-1 > pln1;
end;

end;
else
begin {∗ Computing phase 3 and shift phase}
if not center-5 then begin

center-0 > pln0;
center-0 or center-1 > pln1;
end;
else
if center-2 then begin

center-0 > pln0;
east-0 > pln1;
end;
else begin
south-0 > pln0;
center-1 > pln1;
end;

not center-5 > Pln5; {∗ 4-phase clock}
if center-5 then center-4 > Pln4;

else not center-4 > Pln4;
end;
end.
make-table accumulation

This program calculates the accumulation of
N binary (or 2s complement) numbers N bit wide
in 2N − 1 steps (8N − 4 machine state transitions).

5 Multiplication of two N/2 bit
wide binary numbers

The accumulation procedure shown in the previous
section can be easily adapted in order to perform
the multiplication between two binary (or 2s com-
plement), N/2 bit wide numbers in O(N) time.

The result of a multiplication of two numbers
is given by the sum of all partial products (see
Fig. 6a). For this reason, the multiplication proce-
dure is split into two parts: a) generation of partial
products, b) accumulation of all partial products.
The whole operation is sketched in Fig. 6.

5.1 Cellular automaton local rule for
multiplication

Seven planes are required to perform the multipli-
cation procedure. Six planes are used in the same
way as in the accumulation procedure, and a fur-
ther plane is required to store the multiplier. The
use of each plane is:

Plane 0 to Plane 5: the same use as in the accu-
mulation procedure;

Plane 6: is used to store the multiplier.

5.1.1 Generation of partial products

The multiplicand and the multiplier are stored on
the top row of Plane 0 and on the most left column
of Plane 6 respectively. To obtain on Plane 0 all
partial products, the following procedure is used:
the first row of Plane 0 is copied on all rows of the
plane; the most left column of Plane 6 is copied on
all columns of the plane. After, by means of an
AND operation between all cells of Plane 0 and all
cells of Plane 6, a certain number of cells are zeroed
according to the multiplier value. At this point all
partial products are generated, but their digits have
not the correct weights yet.

This procedure gives the needed partial prod-
ucts and costs O(N) time. In fact the two copy op-
erations can be performed in parallel and require N
steps, and the AND is performed in O(1) time (the
total time is N + 1 machine state transitions). Fi-
nally, all the rows but the first of Plane 0 are shifted
to the left; this left shift operation is performed in
constant time (one state transition each).

5.1.2 Sum of all partial products

The accumulation procedure is here applied with
just a little change: to obtain that all the digits
of all partial products have the correct weight, and
give the correct contribution to the sum, in the shift

6

sign extensions operands
︷ ︸︸ ︷ ︷ ︸︸ ︷

a5 a4 a3 a2 a1 a0

b5 b4 b3 b2 b1 b0

a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

. . . a4b1 a3b1 a2b1 a1b1 a0b1

. . . a3b2 a2b2 a1b2 a0b2

. . . a2b3 a1b3 a0b3

. . . a1b4 a0b4

. . . a0b5

p5 p4 p3 p2 p1 p0

a)

b)

N

. . .

. . .

. . .

2

1

p5 p4 p3 p2 p1 p0

i i i i i i
i i i i i i
i i i i i i
i i i i i i
i i i i i i
i i i i i i

�� �� �� �� �� ��

��

��

��

��

��

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�� �� �� �� �� ��

��

��

��

��

��

? ? ? ? ? ?

� � � � � �

� � � � �

� � � �

� � �

� �

�

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�

� �

� � �

� � � �

� � � � �

� � � � � �

�

� �

� � �

� � � �

� � � � �

� � � � � �

Figure 6: Accumulation of partial products to per-
form the multiplication operation: a) partial prod-
ucts used in the procedure, b) accumulation of par-
tial products, the nodes represent full-adder func-
tions. The data inputs, marked by arrows, are
loaded with the partial products in the same order
as presented in a). In this case the accumulation
procedure requires N steps.

phase on Plane 0, each cell of all the rows but the
first copies the south-east cell, instead of south.

In the multiplication operation, if a product N
bit wide is expected, the maximum length of input
operands must be N/2, for this reason, to avoid
result truncation the two strings representing the
operands must be N/2 bit wide (right giustified).
In the case of 2s complement numbers the most sig-
nificant part of the strings must contain the sign
extension of operands (see Fig. 6a).

The starting configuration of planes from 1 to
5 is the same as in the accumulation procedure and
planes have the same function. A further plane
(Plane 6) is needed to store the multiplier. Plane 6
is also used to store the partial products.

The formal implementation of this multiplica-
tion procedure can be immediately derived from
that shown for the accumulation procedure and
from the above description.

6 Conclusions

A cellular automaton performing pipelined parallel
addition (or algebraic sum), accumulation and mul-
tiplication on binary or 2s complement numbers has
been presented. The procedure which performs bi-
nary addition on cellular automata, presented in
[6], is enhanced by using the pipeline technique.
Both procedures use the conventional binary num-
ber representation, but Sheth et al. one requires
O(N) time to provide one result, whereas with the
pipelined addition, after the start-up time, results
are obtained in constant time (at every two machine
state transitions) which is the same time complexity
obtained in the work of Clementi et al. [7] for the
addition of two number in redundant binary repre-
sentation.

Then, a procedure to perform the accumula-
tion of N binary or 2s complement numbers of size
N , which runs in O(N) time, has been presented.
Finally, this accumulation operation can be easily
adapted to perform the multiplication between two
numbers of size N/2 in O(N) time.

All procedures presented are implemented on
the CAM-8 machine, showing that efficient arith-
metical operations can be easily and efficiently im-
plemented on cellular automata.

References

[1] G. Bilardi and F. Preparata, “Horizons of Par-
allel Computation”, Proceedings of Symposium
of 25th Anniversary of INRIA, Springer-Verlag
LNCS, 653 (1992) 155.

7

[2] A. Califano, T. Toffoli and N. Margolus, CAM-
6 User’s Guide, versions 2.1, (1986).

[3] G. Jacopini and G. Sontacchi, “Reversible Par-
allel Computation: an Evolving Space Model”,
Theoretical Computer Science, 73 (1990) 1.

[4] T. Toffoli and N. Margolus, Cellular Automata
Machines - A New Environment for Modeling,
(Cambridge, MIT Press, 1987).

[5] N. Margolus and T.Toffoli, STEP: a Space
Time Event Processor - Architecture reference,
(Cambridge, MIT Press).

[6] B. Sheth, P. Nag and R. W. Hellwarth, “Bi-
nary Addition on Cellular Automata”, Com-
plex Systems, 5 (1991) 479.

[7] A. Clementi, G. A. De Biase and A. Massini,
“Fast Parallel Arithmetic on Cellular Au-
tomata”, Complex Systems, 8 (1994) 435.

[8] G. A. De Biase and A. Massini, “Redundant
Binary Number Representation for an Inher-
ently Parallel Arithmetic on Optical Comput-
ers,” Applied Optics, 32 (1993) 659.

[9] K.-H. Brenner, A. Huang and N. Streibl, “Dig-
ital Optical Computing with Symbolic Substi-
tution”, Applied Optics, 25 (1986) 3054–3060.

8

