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Abstract

The antibandwidth problem is to label vertices of a n-vertex graph injectively by 1, 2, 3, . . . n, such
that the minimum difference of labels of adjacent vertices is maximised. The problem is motivated by
obnoxious facility location problem, radiocolouring, work and game scheduling and is dual to the well
known bandwidth problem. We prove exact results for the antibandwidth of complete k-ary trees,
k even, and estimate the parameter for odd k up to the second order term. This extends previous
results for complete binary trees.
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1 Introduction

The antibandwidth problem consists of labelling vertices of an n-vertex graph G = (V,E)
injectively by 1, 2, 3, . . . , n, such that the minimum difference of labels of adjacent vertices is
maximised. The corresponding maxmin value is denoted by ab(G). This problem is the dual one
of the classical bandwidth problem [3]. It is naturally motivated by obnoxious facility location
problems [1], radiocolouring [5] and work and game scheduling tasks [7]. It also belongs to the
broad family of graph labelling problems [4]. In the literature it is know under different names:
separation number [7], dual bandwidth [9] and antibandwidth [12].

The antibandwidth problem is NP-hard [7]. So far it is known to be polynomially solvable for 3
classes of graphs: the complements of interval, arborescent comparability and treshhold graphs
[2,6]. Known results include simple relations of the antibandwidth invariant to the minimum,
maximum degree, chromatic index and powers of hamiltonian paths in the complement graph
[7,9,10]. Exact results and tight bounds are known for paths, cycles, special trees, meshes,
hypercubes [9,10,12,13]. The class of n-vertex forests with ab(F) = �n/2� is characterized in
[10], which for complete binary trees gives a value of (n − 1)/2. The same result for complete
binary trees was also independently proved in [13].

In our paper we prove that the antibandwidth of the n-vertex complete k-ary tree, for k ≥ 4
even, is (n − k + 1)/2. For odd k, we show tight bounds up to the second order term. In
particular, the antibandwidth of the n-vertex complete ternary tree of height h is n/2 − Θ(h).
For h = 2 and odd k the antibandwidth equals (k2 + 1)/2.

2 Basic Notions

Let T (k, n) be the n-vertex, complete k-ary tree. We have n = 1 + k + k2 + ... + kh =
(kh+1 − 1)/(k − 1), where h is the height of the tree. Divide vertices of the tree into h + 1
levels according to their distances from the root, which is on level 1. Let d(v) be the degree of
a vertex v. Of course d(v) can be either 1 (if v is a leaf), or k (if v is the root) or k + 1 (if v is
an internal vertex).

For a nonempty graph G = (V,E), let f be a one-to-one labelling f : V → {1, 2, 3, ...|V |}.
Define the antibandwidth of G according to f as

ab(G, f) = min
uv∈E

|f(u) − f(v)|.

The antibandwidth of G is defined as

ab(G) = max
f

ab(G, f).

It is useful to imagine the antibandwidth problem as a linear layout problem. The vertices are
mapped into integer points {1, ..., |V |} on a line such that the minimal distance of adjacent
vertices is maximised.

We say that a set of vertices U in a graph G = (V, E) is a vertex r-bisector if removing U
the remaining vertices are partitioned into disjoint sets V1, V2, s.t. |V1|, |V2| ≤ r and every path
between V1 and V2 contains a vertex from U .

Similarly, we say that a set of edges F in a graph G = (V,E) is an edge �n/2�-bisector if
removing F the vertices are partitioned into disjoint sets V1, V2, s.t. |V1|, |V2| ≤ �n/2� and every
edge between V1 and V2 belongs to F .
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3 Even k Case

In this section we will provide the exact value of the antibandwidth of a complete k-ary tree,
where k is even.

Theorem 3.1 For even k ≥ 4,

ab(T (k, n)) =
n + 1 − k

2
.

Proof. Lower bound. We prove the lower bound by providing a labelling. The idea is to assign
the middle label to the root, to assign the smallest and largest labels to nodes at the first level,
and to proceed by assigning labels to the children of a node labelled l by using labels as far as
possible from l. So, the root, at level 1, is labelled by (n + 1)/2. The vertices at level 2 have
labels consecutively from the left 1, 2, 3, . . . , k

2
, n− k

2
+1, n− k

2
+2, . . . , n. The vertices at level 3

have labels consecutively from the left n− k
2
− k2

2
+1, n− k

2
− k2

2
+2, . . . n− k

2
, k

2
+1, k

2
+2, . . . , k

2
+ k2

2

and so on. As an example, see Figure 1. One can check that the minimum difference of labels
is as claimed.

43

43

1 2 8485

1 2 84 85

3 10 76 83

3 1076 83... ... ... ... ... ...

11 42 44 75

11 42... ... ... 44 75... ... ...

Fig. 1. An example of labeling of a complete 4-ary tree.

Upper Bound. We proceed by contradiction, so let us assume that

ab(T (k, n)) ≥ n + 1 − k

2
+ 1.

Let f : VT → {1, 2, ..., n} be a bijective labelling of the vertices of T (k, n). Then, two cases can
arise:

(i) There exists a vertex v with neighbours u and w, such that f(u) < f(v) < f(w). Hence
d(v) ≥ k. Then, we can define two integer values l and r = d(v) − l, both ≥ 1 such
that u1, u2, ..., ul and w1, w2, ..., wr are neighbours of v and f(u1) < f(u2) < ... < f(ul) <
f(v) < f(w1) < f(w2) < ... < f(wr) (for a visualization, see Fig. 1).

It follows that f(w1) − f(ul) ≤ n − 1 − (l − 1) − (r − 1) ≤ n + 1 − k since l + r ≥ k.
Hence min{f(v) − f(ul), f(w1) − f(v)} ≤ n+1−k

2
, a contradiction.

(ii) For any v with neighbours u1, u2, ..., ud(v) either f(ui) < f(v), for all i = 1, 2, . . . , d(v) or
f(ui) > f(v), for all i = 1, 2, . . . , d(v). Let I be the interval [(n + 1 − k)/2, (n + 1 + k)/2]
and let us focus on the vertices with degree strictly greater than 1.
(a) Assume there exists v, with d(v) > 1, s.t. f(v) ∈ I. W.l.o.g. assume that f(v) ≤

(n + 1)/2.
If for all neighbours u1, u2, ..., ud(v) of v it holds f(u1) < f(u2) < ... < f(uj) < f(v),
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then

f(v) − f(uj) ≤ n + 1

2
− 1 − (j − 1) ≤ n + 1 − k

2
,

a contradiction.
If, on the contrary, for all neighbours u1, u2, ..., ud(v) of v, it holds f(v) < f(u1) <

f(u2) < ... < f(uj) then

f(u1) − f(v) ≤ n − n + 1

2
+

k

2
− (j − 1) ≤ n + 1 − k

2
,

again a contradiction.
(b) Assume that for all v with d(v) > 1, it holds f(v) /∈ I. Consider the root r. As

f(r) /∈ I, w.l.o.g. assume that f(r) ≤ n+1−k
2

− 1. Then for all vertices w on level 2 we
have f(w) ≥ n+1−k

2
+ 1. Similarly, for vertices w on level 3 we have f(w) ≤ n+1−k

2
− 1,

etc., until we reach the vertices on level h. W.l.o.g. assume that for all vertices w on
level h we have f(w) ≥ n+1−k

2
+ 1.

As kh ≥ n−1+k
2

, at least one leaf w satisfies:

f(w) ≥ n + 1 − k

2
+ 1.

Clearly, for the parent p of w: f(w) < f(p). Hence

f(p) − f(w) ≤ n − n − 1 + k

2
=

n + 1 − k

2
,

a contradiction.

�

4 Odd k Case

In this section we provide upper and lower bounds for the antibandwidth that differ in a lower
order term, in the case k odd. Unfortunately, in this case, the symmetric construction exploited
in the even case cannot be applied, so we will use a completely different technique.

Theorem 4.1 For odd k ≥ 3 and h ≥ 3

ab(T (k, n)) ≤ n

2
− max{k

2
,
h

8
− o(h)}

Proof. Sketch. The upper bound of the form (n − k)/2 can be obtained in a similar way as
for the k even case. For the second upper bound assume that h is odd. The even h case can
be proven similarly. Let S be the smallest set of vertices whose removal divides the vertices of
the resulting forest into independent sets X and Y , s.t. |X|, |Y | ≤ n/2. We claim that

ab(T (k, n)) ≤ n − |S|
2

.

To prove this, consider an optimal layout. Removing the last n−2ab(T (k, n)) vertices we get 2
independent sets: the first one is the set on positions 1, 2, 3, ..., ab(T (k, n)) and the second one
is the set on the positions ab(T (k, n)) + 1, ..., 2ab(T (k, n)). Note that there are possible edges
between the two sets only, otherwise we get an edge of length smaller than ab(T (k, n).

As ab(T (k, n)) ≤ n/2 we have

|S| ≤ n − 2ab(T (k, n)),

which proves the claim.
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In what follows we prove that |S| ≥ h/4 − o(h). We need some new notations. Let Li, for
i = 1, 2, 3, ..., h + 1 denote the set of vertices of the i-th level of the tree, while L1 contains the
root. Set xi = |Li ∩X|, yi = |Li ∩ Y |, si = |Li ∩ S|. Observe that, for i ≥ 2, as X, Y and S are
defined, and in view of the structure of a complete k-ary tree, we have that

k(xi−1 + yi−1 + si−1) = xi + yi + si.(1)

Furthermore, the properties of X, Y and S imply that the children of vertices in Li−1∩X must
be in Li ∩ (S ∪ Y ), hence yi + si ≥ kxi−1. By (1), this is equivalent to kyi−1 + ksi−1 ≥ xi.
Repeating this argument for Li−1 ∩ Y we derive the following:

xi − ksi−1 ≤ kyi−1 ≤ xi + si(2)

yi − ksi−1 ≤ kxi−1 ≤ yi + si(3)

Now we show that S is a vertex (n/2 + 7|S|/2)-bisector. It is easy to see that the sets

V1 = ∪even i(Li ∩ X) ∪ ∪odd i(Li ∩ Y ), V2 = ∪odd i(Li ∩ X) ∪ ∪even i(Li ∩ Y )

are distinct and any path between them contains a vertex from S. Hence S is a vertex r-bisector.
Let us estimate r.

|V1| =
∑

even i

xi +
∑
odd i

yi ≤
∑

even i

xi +
1

k

∑
even i

(xi + si) ≤ k + 1

k

∑
even i

xi +
1

k
|S|.(4)

To estimate the last sum we need estimations for every xi, for even i. From the left hand side
of inequality (3) we have

h+1∑
i=2

(yi − ksi−1) ≤ k

h+1∑
i=2

xi−1

|Y | − y1 − k|S| ≤ k(|X| − xh+1)

n − |X| − |S| − y1 − k|S| ≤ k(|X| − xh+1)

kxh+1 ≤ (k + 1)|X| − n + (k + 1)|S| + 1 ≤ (k + 1)n

2
− n + (k + 2)|S|

xh+1 ≤ k − 1

2k
n +

k + 2

k
|S|.(5)

Combining right hand sides of inequalities (2) and (3) we have:

xi−2 ≤ 1

k
(yi−1 + si−1) ≤ 1

k
(
1

k
(xi + si) + si−1) =

1

k2
(xi + si + ksi−1).

Iterating this inequality backwards, starting with i = h + 1 we get for even i ≥ 2

xi ≤ 1

kh−i+1
(xh+1 +

h+1∑
j=i+1

kh+1−jsj).

Using this estimation we compute

h+1∑
even i≥2

xi ≤
h+1∑

even i≥2

xh+1

kh−i+1
+

h+1∑
even i≥2

h+1∑
j=i+1

sj

ki−j

< xh+1

h−1∑
even t≥0

1

kt
+

h+1∑
j=3

(
1

k
+

1

k3
+ ... +

1

kh−2

)
sj

< xh+1

∞∑
even t≥0

1

kt
+

h+1∑
j=3

k

k2 − 1
sj
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<
k2

k2 − 1
xh+1 +

k

k2 − 1
|S|.

Substituting (6) into (4) and using (5) we obtain

|V1| ≤ k

k − 1
xh+1 +

2

k − 1
|S| ≤ k

k − 1
(
k − 1

2k
n +

k + 2

k
|S|) +

2

k − 1
|S| ≤ n

2
+

k + 4

k − 1
|S|

≤ n

2
+

7

2
|S|.

Repeating the same calculations for |V2| we get the same bound, hence concluding that S is a
vertex (n/2 + 7|S|/2)-bisector. Assume |V1| ≤ |V2|. Let |V2| = n/2 + p. By deleting a suitable
set of at most logk p + 1 vertices we can separate p vertices from V2 and add them to V1. To
see this, observe that p can be expressed in the form

p =
z∑

i=1

αi
ki − 1

k − 1
,

where 0 ≤ αi ≤ k are integers, and z is the smallest number s.t. (kz+1 − 1)/(k − 1) > p, i.e.,
z ≤ logk p+1. And note that by removing a suitable vertex from V2 we get k complete subtrees
of size (kj − 1)/(k − 1), where j ≤ z.

Thus we get a vertex n/2-bisector. Its size is

|S| + logk p + 1 ≤ |S| + logk

7

2
|S| + 1.

Further, removing all edges incident to the vertices of the vertex n/2-bisector and distributing
the isolated vertices among the current sets V1 and V2 in such a way that neither of them
contains more than n/2 vertices we get an edge n/2-bisector of the size at most

(k + 1)(|S| + logk

7

2
|S| + 1|).

It is known [11] that the size of the smallest edge �n/2�-bisector of the complete k-ary n-vertex
tree of height h is at least

k − 1

2
(h − logk h − 1).

Thus we have

(k + 1)(|S| + logk

7

2
|S| + 1) ≥ k − 1

2
(h − logk h − 1),

Hence

|S| ≥ k − 1

2(k + 1)
(h − logk h − 1) − logk

7

2
|S| − 1.

As |S| ≤ h, this yields

|S| ≥ k − 1

2(k + 1)
h − o(h) ≥ h

4
− o(h).

�

In the following paragraphs, for the sake of completeness, we shortly repeat the algorithm by
Miller and Pritikin [10]. This algorithm provides reasonably good layout for forests and we use
its slight modification in the lower bound construction in the next theorem.

For a bipartite graph B with a specified bipartition M,N with |M | ≤ |N |, we refer to the
minority MIN(B) = |M | and majority MAJ(B) = |N | of B and refer to M and N as being
the minority and majority sides, respectively.
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Given any bipartition X, Y of a forest with |X| ≤ |Y |, there always exists a vertex y ∈ Y of
degree 0 or 1 since the average degree of the majority side vertices is at most (|X|+|Y |−1)/|Y |,
which is less than two.

Let a forest F1 have minority side M1 and majority side N1. For each i ∈ [1,MAJ(F1)],
recursively define yi, xi,Mi, Ni as follows. Let yi ∈ Ni be a vertex of degree 0 or 1 in Fi. If
yi has degree 1 in Fi chooose xi as its sole neighbour. If Mi is empty, choose xi = yi. In any
other case, choose xi to be any element of Mi. Let Fi+1 = Fi − xi − yi, Mi+1 = Mi − xi,
Ni+1 = Ni − yi. The resulting layout is obtained by the following labeling. Assign f(xi) = i
for each i ∈ [1,MIN(F1)] and f(yi) = MIN(F1) + i for each i ∈ [1,MAJ(F1)]. This leads to
a construction with

ab(F ) ≥ MIN(F )

Theorem 4.2 For odd k ≥ 3 and h ≥ 3

ab(T (k, n)) ≥ n

2
− O(k2h)

Proof. Sketch. We proceed with the following construction.

(i) Number the levels of the tree by 1, 2, ..., h+1. For every level i : i ≥ 2 number the vertices

from left to right by integers 1, 2, ..., ki−1. Then delete the vertex with label �ki−1

2
� together

with its adjacent edges. Define the set D consisting of deleted vertices. The remaining
parts of the tree define the forest F .

(ii) Divide the vertices of F into two partitions X and Y s.t. |Y | − 1 ≤ |X| ≤ |Y |.
(iii) For every v : v ∈ Y such that v was adjacent to some d ∈ D define the priority to 2.

For all neighbours of every such v define the priority value to 1. The rest of vertices of F
obtain priority value 3. The higher priority the lower its value.

(iv) Use the modified Miller/Pritikin algorithm to get the layout of F with ab(F ) ≥ �n−h
2
�.

The modification of used algorithm simply follows the priorities of vertices defined in the
previous step. If it is not possible to label a vertex w with priority 1 directly, i.e. the
vertex w do not have neighbour from Y of degree 1 or there is no vertex from Y with
degree 0, label one of the leaves from Y of degree 1 and its parent from X and remove
them from the forest. This operation creates k − 1 isolated vertices from Y which can be
used for labeling the vertices with priority 1.

(v) Place the vertices from set D in the middle of the layout, between the sets X and Y .

The algorithm places the vertices from the sets X,Y,D in the order X,D, Y . For the final
lower bound the distance from the neighbours of D to D is important. Let Pi be the set of
vertices of priority i. Since every deleted vertex except the last one has (k + 1) neighbours,
approximately half of them belongs to the set Y , i.e. |P2| = (k + 1)h/2. Every vertex from
P2 has k neighbours from X, i.e. |P1| = (k + 1)kh/2. To label the vertices of P1 we need
|P1| vertices from Y of degree 0. These can be easily produced from leaves (see step 4 of the
algorithm). With a simple analysis we get that the labeling of P1 needs

hk(k + 1)

2
· (k + 1)

k
=

h(k + 1)2

2
leaves. Labeling of P1 vertices will make all of P2 vertices from Y isolated and therefore they
can be used to label the second half of P2 vertices from X. In resulting layout there will be
h(k + 1)2/2 P1 vertices, then h(k + 1)/2 P2 vertices. Since P2 are the neighbours of D, then

ab(T (k, n)) ≥ n/2 − h(k + 1)2/2 − h(k + 1)/2 = n/2 − O(hk2)
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Combining our methods we are able to prove that:

Theorem 4.3 For odd k ≥ 3 and h = 2

ab(T (k, n)) =
k2 + 1

2
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