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A redundant binary number representation allows the
algebraic sum on signed numbers in constant time. This
number representation is suitable for parallel arithmetic on
images made by symbolic substitution on optical comput-
ers. Key words: Optical computing, image arithmetic, re-
dundant number representation.

Quick and efficient processing of images is an important
request of various disciplines and several applied fields.
Many authors have studied specialized computing architec-
tures (with electronic technology) devoted to image process-
ing (see, for example, Refs. 1-5), but other authors have
pointed out that optical computing architectures are more
suitable for massive computation on images because of the
2-D inherent structure both of data (images) and DOC (digi-
tal optical computing) architectures.

In recent works®? Huang et al. showed a complete formal
approach to a 2-D binary algebra and related arithmetic
oriented to 2-D objects. In the second work (regarding a
parallel optical arithmetic on images, with emphasis on the
symbolic substitution method®!1) the use of redundant
number representations is neglected in spite of several works
about this subject related to optical computing systems.
Redundant number systems can have important properties
such as the carry-free addition (namely, the possibility to
carry out addition in constant time independent of the bit
strings length &).12-16

In optical image arithmetic a novel redundant binary (RB)
number representation!’ can be used. Inthe RBrepresenta-
tion an integer D is given by

-1
D= 2 277 with & even,
i=0

where a; € {0,1}, i is the position index, and k& is the length of
the bits string. Each RB number has a canonical form and
several redundant representations. If, following the work of
Huang et al.,” the bits are symbol coded as

0—0 and 1— N,

the RB numbers canonical form can be obtained—from the
symbol coded natural binary representation—by the follow-
ing simple rules:

O—00 and ®m—0ON

TECHNICAL NOTES

(the formal definition of the RB and p-RB redundant num-
ber representations, their properties, and efficiencies will be
presented in Ref. 17).

Using RB numbers, a constant time addition [instead of
O(k) time of Ref. 7] can be performed by symbolic substitu-
tion, by applying the rules introduced in Fig. 1 twice on the
operands (see also Fig. 2).

The RB representation has several advantages if com-
pared with other redundant number representations, as, for
example, the modified signed digit (MSD) one (widely stud-
ied for optical computing).13-15 RB representation is particu-
larly suitable for machines with a two-valued logic, it allows
the parallel encoding of signed numbers in 2s complement
(in simply one step), and consequently, it allows use of the
addition algorithm as the algebraic sum on signed numbers.
This avoids the necessity of separate rules for the subtrac-
tion, and one table only is needed for the whole arithmetic.
Finalllgr, the multiplication can be obtained in O(loggk)
time.

The decoding of an RB number can be performed simply
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Fig.1. Symbolic substitution rules for the addition of unsigned RB

numbers or for the algebraic sum of signed ones. These rules act on

symbol pairs on two rows (see Fig. 2), the output lower pair is shifted
left one position.
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Fig.2. Parallel application of addition symbolic substitution rules

on two strings of symbols. Ateach step the input and the output are

on twostrings: a;and b; are the bits of the inputs operands, ¢; and d;

are the bits of the intermediate sums, and s; are the bits of the result.

The symbol @ is a padded zero. At the last step the upper string is
zeroed.

by one shift and one binary addition, in fact the decoded
value B—in natural binary representation—is given by

B= Beven + 2Bodd’

where
B2

- ieven
Beven - Z aievmz
0

=

and
k-1 :
= todd
Bodd - Z aim,dz ’

i=1

withk even. The nonconstant time complexity in the decod-
ing operation is not particularly important because this oper-
ation is used only when the data must be given to the external
world.

A property of the RB numbers addition, performed with
the rules of Fig. 1, is that the addition of two strings consid-
ered as the concatenations of many RB numbers gives a
resulting string which is the concatenation of RB sums (if the
numbers on each string are separated by at leasta pair0 Oin
the same positions on the two operands).’” This property
guarantees that the addition of all pixel pairs on a row coded
image (see Fig. 3, and Ref. 7) or the addition of two row coded
images can always be performed in parallel in two steps,
independent of the number of bits per pixel used (and of the
image dimension).

An RB numbers arithmetic can easily be implemented on
both optical and electronic systems making easier the attain-
ment of hybrid machines particularly suitable for image
processing.!920

This work was carried out within the framework of Pro-
getto Finalizzato Sistemi Informatici e Calcolo Parallelo of

CNR (National Research Council).
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Fig.3. Parallel addition on arow coded image (the pixels are 10 bits

wide and in RB representation): (a) example of the addition, (b)

operands on a row coded image, (c) first step (image with intermedi-
ate sums), (d) second step (image with results).
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An interferometrically generated off-axis holographic
optical element images a laser diode light sourcetoa 3 X 5
point array through 10 cm of glass. The element also re-
duces the elliptical beam cross section from 3:1 to 1.5:1.

Practical utilization of coherent optical correlators re-
quires compact designs which may include provisions for
addressing multiple parallel filters. Compact correlator de-
signs have been proposed in the past.!? We describe here a
compact correlator design featuring multiple Fourier trans-
form filter addressing. A holographic optical element
(HOE) was utilized to generate multiple Fourier transforms
as well as to perform a number of other functions.

Figure 1 shows the layout of the optical system with three
of the fifteen Fourier transforms (FT's) indicated. The in-
put image is introduced by means of a liquid crystal light
modulator.? A laser diode, rather than a helium-neon laser,
is used as a light source for greater compactness. In this
arrangement the HOE performs numerous functions: it
reduces the elliptical cross section of the illuminating beam
from a ratio of 3:1to 1.5:1, it corrects for the astigmatism that
would be expected from a diverging beam passing at a 60°
angle of incidence through the HOE cover plate, it replaces
both the collimating and the Fourier transform lenses that
are used in the classical VanderLugt matched filter correla-
tor,* and it corrects for the aberrations of multiple converg-

ing beams passing through the 10-cm thick polarizing beam
splitter glass.

To achieve aberration-free performance the HOE was fab-
ricated with the optical system shown in Fig. 2. The fifteen
point sources were generated by an array of fifteen 5-mm
diam HOEs recorded with a collimated reference beam. The
recording plate was translated between exposures with preci-
sion translating stages. This insured exact spacing and the
same focal lengths for all lenslets. The multiple FT HOE in
Fig. 2 was recorded with a converging reference beam that
included a tilted glass plate to correct for astigmatism and an
array of fifteen point sources with a 10-cm long glass block
between the sources and the HOE. The tilted plate was
adjusted until aberrations in the reference beam disap-
peared as observed at the focus. Exact aberration correction
for the multiple FT HOE requires the recording wavelength
to be the same as the use wavelength, thus the HOE was also
recorded with a laser diode. The recording was made with a
780-nm temperature-stabilized laser diode, adjusted for 20-
mW output, in Kodak 120 emulsion. Due tolow efficiency of
the fifteen HOEs and the fast divergence of beams, light level
was rather low at the HOE recording plane. To reduce the
exposure time to a few minutes, a 20:1 reference-to-signal
beam ratio was used and the plates were hypersensitized by
soaking them in 1.12% solution of ammonium hydroxide and
then drying them shortly before exposure. At 780 nm the
hypersensitized plates had about 1/30 the sensitivity of the
120 emulsion at 633 nm, while plates without hypersensitiza-
tion had a sensitivity of about 1/250 of that at 633 nm. The
emulsion was processed to obtain a silver halide sensitized
dichromated gelatin hologram.5¢

The multiple filter correlator was tested with a high
contrast 18-cycle (alternating light-dark spoke) star target
as the input image and a 30-mW 780-nm temperature-stabi-
lized laser diode as the light source. The same filter was
recorded at each filter position and the reference beam was
arranged to give correlations in a pattern similar to the filter
positions. The filters were recorded on Kodak 120 emulsion,
developed in the usual way, and then partly bleached. A
solution of iodine diluted with methanol, one part iodine to
50 parts of methanol, was prepared and then a few drops ata
time were added to water in which the developed plate was
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Fig.1. Compact multiple Fourier transform optical system.
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Fig. 2. Multiple Fourier transform HOE recording.

Fig. 3. Correlation peaks from fifteen matched filters correlated
against one input image.

submerged.” Bleaching was continued until the lightly ex-
posed areas were completely bleached while the central spot
of the filter remained opaque. With an opaque central spot
the filter acts as a high pass filter, an important and desirable
property in matched filter correlators.

Correlation peaks of the input target with the fifteen fil-
ters are shown in Fig. 3. While some variation in peak
brightness is evident, this is related to the alignment accura-
cy of fifteen filters with fifteen Fourier transforms. Energy
in each of the Fourier transforms was measured and found to
be the same to within a few percent. Figure 4 shows a 2-D
plot of one of the correlation peaks.

The method for generating multiple Fourier transforms
described here helps in the reduction of the correlator system
size and its weight. However, we observed that the signal
beam has a highly nonuniform amplitude which limits the
HOE efficiency. This is likely caused by the coherent addi-
tion of the fifteen wavefronts in the HOE recording plane.
An analysis of this problem and improvement in the signal
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Fig. 4. Plot of one correlation peak.

beam uniformity are needed. With improved uniformity,
efficiencies in excess of 50% should be achieved.
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The backpropagation neural network learning algorithm
is generalized to include complex-valued interconnections
for possible optical implementations.

Neural networks and neural network simulations are gen-
erally formed from large numbers of well-interconnected but
relatively simple analog elements. Since optical intercon-
nections are naturally noninterfering and optical compo-
nents are typically analog, it is widely recognized that neural
networks could have efficient optical implementations.
Many proposed optical implementations!-3 use multiple co-
herent optical beams to represent signals, holographic grat-
ings for interconnection (weighting), and nonlinear optical or
optoelectronic arrays for processing. In such architectures,
optical signals and weights are appropriately described using
complex numbers, when both magnitude and phase informa-
tion are included. However, with a few exceptions,*~7 com-
plex interconnection weights have not been considered in
neural network models.

The backpropagation learning algorithm® is by far the
most widely used procedure for training feed-forward neural
networks that solve practical recognition and classification
problems. Model optical implementations®? of this algo-
rithm have been proposed. A generalization of backpropa-
gation to include complex weights and thresholds is de-
scribed below. This generalization is directed toward
optical implementations in which the nonlinear operation in
a neuron is a function only of the optical intensity at the
neuron. This mode of operation is clearly appropriate when
the nonlinear operation is implemented optoelectronically
using direct detection followed by electronic thresholding,
and it may be applicable for many all-optical nonlinear pro-
cesses. The transmission of a saturable absorber, for exam-
ple, depends on the amount of energy absorbed.

Our neural network model as depicted in Fig. 1 has I
external inputs, J neurons in a hidden layer, and K neurons
in the output layer. We use subscript i to index inputs, and
subscripts j and & to index neurons in the hidden and output
layers, respectively. The ith external input is y; while the
outputs of the jth (kth) neurons in the hidden (output) layer
arey;(yx). Superscriptsrandiare used toindex thereal and
imaginary parts of a parameter, and a nonsubscripted i is
y=1. In this notation, w}; + iwj; represents the complex
interconnection weight between Input i and hidden layer
neuron j while wf, + iw}, represents the complex weight
between hidden layer neuron j and output layer neuron k.
Following Ref. 8, we use the symbol net j (net ) to represent
the total complex input to the jth (kth) neuron in the hidden
(output) layer, i.e.,

net} = Z w}{fy,- + w, (la)
J

Fig. 1. Visualization of an optically implemented, feed-forward
neural network. External inputs are represented by an array of
mutually coherent point sources, neurons in the hidden and output
layers are represented by arrays of nonlinear processing elements,
and interconnections are provided by multiplexed holograms.

net}'»/ iz Z w{fiyi + wf,é-". (1b)
i

Here r/i indicates that either the r or i superscript is to be
used consistently in the expression; the sums over i and j are
from 1 to I and 1 to oJ, respectively; the the w{} and w(/
weights represent thresholds (or offsets). With these con-
ventions, the neuron outputs are

Yi = gl(nety)* + (net})’], (2a)
y; = gl(net))? + (net})?. (2b)

Note that the nonlinearity here is described as a two-stage
process, the explicit coherent-to-incoherent conversion op-
eration and the as-yet-unspecified function g. Clearly one
form of g which is of interest is the sigmoid nonlinearity g(x)
= [1 + exp(—x)]~! commonly used in standard backpropaga-
tion. However, the first stage nonlinearity allows useful
network computation even if a linear function [g(x) = x] is
used in Eqgs. (2a) and (2b).

Suppose that when the neural network inputs are Vi the
desired outputs are d;. Then the weights wiy’, wif, w', w?,
are to be found such that a quantity E proportional to the
sum of squared errors is minimized, where

1
E= ; (d, — )% (&)

In general the above weights will have nonzero values due to
prior training or due to the selection of small random initial
values. Thus the problem reduces to finding optimum
weight changes. For weights terminating on output neu-
rons,

i — oF = nalin, .
Aij =-n aw;’/; 775k Vs (4)
where 7 is a gain parameter and
i _ OE _ _ ofi
ot = par 2(d,, — yp)nety'gp. (5)

Here g, represents the derivative of the nonlinearity func-
tion as evaluated for the kth neuron. For weights terminat-
ing on hidden neurons,
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: ) ;
Awff = —q ,,,—na”y., ®
where
)
J rfi
dnet;

= dju2net's;
k

+ Sw!,2net}/g’. @)

Results collected from Egs. (4), (5), (8), and (7) are

Aw = nijl'y;, (8a)
8" = 2netf/'(d), — y,)g1 (8b)
Awff = 8lty,, (9a)
5/ = onet?/ z (8w}, + Swhy)g). (9b)

k

Anotable feature of these results is that both d;and 6‘ depend
separately on both 8}, and 6k Note also that Eqgs. (8b) and
(9b) require that the total input to each neuron be available
during computation of the delta values. This is deemed a
relatively minor cost in that it requires additional storage
equal to the number of neurons (I + ¢J) rather than the
number of interconnections (IJ + JK).

Tests of the complex weight backpropagation algorithm
were made using computer simulations. These simulations
used a linear function for g and investigated the EXCLUSIVE-
OR logic problem. A neural network consisting of two in-
puts, two hidden-layer neurons, and one output neuron was
used. The weight adaptation Egs. (8a) and (9a) were modi-
fied to include the momentum term commonly used in back-
propagation?;

06 r . . . : .
a5 J
.
g 04}
o
:Sz. Standard
3 o03f Complex Weight Back-propagation
o Back-propagation /
[}
= /
o
02F

0.1

0.0 1 : : L
4] 200 400 600 800 1000 1200 1400 1600

Number of training pattern presentations

Fig. 2. Simulation results for the EXCLUSIVE-OR logic function

implemented with two hidden neurons and a single output neuron.

Gain () and momentum () parameters used are 7 = 0.0l and « = 0.9

for the complex weight backpropagation simulation and 7 = 0.3 and
a = 0.9 for the standard backpropagation simulation.

1592 APPLIED OPTICS / Vol. 28, No. 11 / 10 April 1990

Awlf = 5il'y; + adw'f, (10)
Awl = pgtliy. rfi
wijt = n8"y; + cAwi, (11)

We found that small gain values (y < 0.05) were necessary to
prevent learning from becoming unstable. Optimum per-
formance, as measured by learning speed, was achieved for 7
=0.01 and & = 0.9. The learning curve for this case is shown
in Fig. 2 along with the learning curve obtained using the
standard backpropagation algorithm with gain and momen-
tum of y = 0.3and « = 0.9. An order of magnitude improve-
ment in learning speed is noted for the complex weight case.
However, such a dramatic improvement may not persist for
other choices of algorithm parameters or for larger or more
complex problems.

Recently, a somewhat different generalization of backpro-
pagation to complex-valued weights was described.” This
approach is an extension of the complex Widrow-Hoff least
mean-square adaptive algorithm® in which neuron outputs
as well as weights are allowed to be complex. Inaddition, the
nonlinear function g is applied separately to both the real
and imaginary parts of the total input to the neurons. This
scheme is not as appropriate for optical implementation as is
our scheme.

As noted earlier, neural network modeling has traditional-
ly used only real-valued weights, presumably because this
choice is more nearly correct from a biological point of view.
We adopt the pragmatic view that, if the aim is to solve
engineering problems, biological plausibility need not be
retained. Itisinteresting to note, however, that Noest,> who
examined the use of complex weights in Hopfield nets, sug-
gests that phase information may be important in describing
biological interconnections.
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We underline the experimental feasibility of the extinc-
tion coefficient measurement ¢ = a + b (a is the absorption
coefficient, b is the diffusion coefficient) for a liquid medi-
um, extracted from the temporal shape of the backscattered
signal at 180° to the incident laser pulses.

This method using a pulsed laser was initially tried out on
pure water, loaded with scattering particles corresponding to
¢ extinction coefficients from 0.1 to 1.5 m~!. The possibility
of extracting certain optical characteristics of liquid media
from backscattered light has only been published for a few
experimental or theoretical works.!* The work described
here concerns the propagation of a laser beam at close range
(only a few meters).

A single scattering treatment of the backscattered light
pulses shows that time spreading can be expressed by

R(t) = P(¢) » T(t), 0

where P(t) concerns the incident light pulse, and

T(1) = o= A(180) exp — o+ (1) @

is the impulse response of the medium with Q(t) = 1/(nl + vt/
2n)2, ¢ is the extinction coefficient, 3(180) is the backscat-
tered diffusion coefficient, v/n is the celerity of the electro-
magnetic wave, n is the refractive index, and [ is the distance
from the detector to the scattering medium.’

For a very short laser pulse (Dirac pulse) Eq. (1) simplifies
to

R(t) = [K exp(—cvt/n)]/(2nl + vt/n)?,
and the ¢ value is obtained from the shape of the
log[R(t)(2nl + vt/n)?] = K’ — cut/n,

which may become more complicated due to the eventual
presence of a multiple scattered component. However simu-
lations using a semianalytical Monte Carlo treatment as
described by Poole et al.® have shown that this contribution
is limited in experimental conditions (according to the small
numerical aperture of the detection system and a maximum ¢
value of 1.5 m™1).

Figure 1 shows the experimental setup; the temporal shape
of the signal backscattered in the propagation medium is
obtained in the R, direction. The measurement of the global
extinction coefficient is obtained from differential measure-
ments of the 90° scattering along the laser beam direction
(with a single detector successively placed at 0.6 and 3 m
from the entrance window of the experimental tank).

The light source used was a pulsed dye laser pumped by a
nitrogen laser (4-ns pulse duration) and tuned to 532 nm.
The incident light was linearly polarized; the detection was

1.
1,z

[l
L

R synchro

R rétérence

LASER

Fig.1. Experimentalsetup: dye laser with4-ns pulse duration; Ry,
detector for the backscattered signal; Ry, lateral detector; Ms, 5- X
10-mm mirror.

detected intensity

T l/\v T T P———)
2 30 40 ns

0 10

Fig. 2. Backscattered signal in distilled water with ¢ = 0.08 m™!

(trace 1) and backscattered signal from a diffuse target (trace 2) at

the entrance of curve ¢ (temporal reference). The first maxima in
trace 1 can be attributed to diffusion on the M, small mirror.

global and analyzed by a transient digital analyzer (Tek-
tronix 7912).

Figure 2 shows an experimental shape obtained in pure
water (¢ = 0.08 m™!) and the laser pulse probe detected
[corresponding to P(¢) in Eq. (1)].

Figure 3 shows experimental profiles obtained using pure
water with added calibrated clay powder (with 85% of the
diameter of the particles between 1.6 and 3.5 um) for c values
corresponding to 0.1 and 0.45 m~1,

A comparison is made in Table I between the two methods
of ¢ measurement from the shape of the backscattered light
and from lateral differential scattering. Good agreement
was found using various samples of water with different
quantities of clay powder added. According to the respec-
tive accuracy of the different measurements on each sample,
the standard deviation was found between 10~2and 5 X 102
m~L, All these tests were undertaken using a total of 640
individual light pulses.
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Fig. 3. Experimental normalized traces from a backscattered sig-
nal (a;) and a 90° diffuse signal (as) using distilled water with

detected intensity

detected intensity

0 10 20 30 40 ns

kaolinite powder added for ¢ = 0.45 m™1.

Table l. ¢ Values in m~" (Pure Water + Clay Powder)

Backscattered method Lateral scattering
0.08 0.085 pure water
0.19 0.21 pure water + 0.3 mg/1
0.45 0.44 + 0.9 mg/l
0.80 0.85 +2.25 mg/1
1.13 1.13 +3.80mg/1

The advantages of using a backscatter measuring tech-
nique are twofold: first, the laser and detector can be used
independent of the medium studied and second, the tech-
nique can be used to pinpoint optical inhomogeneity.

This work was supported by the Direction des Recherches
Etudes et Techniques under grant 84.155.
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