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Abstract. A fast parallel arithmetic using a Cellular Automaton
(CA) environment is presented. The Redundant Binary (RB) number
representation, first studied for optical computing, is used in order to
perform a carry-free parallel addition or algebraic sum of arbitrary
large numbers in constant time.

1. Introduction

Parallel computing models, like the Cellular Automaton (CA), that explicitly
consider the ultimate impact of fundamental physical limitations, have been
the subject of several recent studies (e.g., [1, 3]). Two-dimensional CAs are
inherently parallel computing machines, that are very suitable for processing
two-dimensional data structures in a way similar to that used on optical
computers. Both devices can be considered as finite state machines that
perform operations on two-dimensional data wavefronts in the finite time
interval [t,, ¢n41), where ¢, is a transition between two machine states.

A method for performing binary additions on CAs has been presented
by Sheth et al. in [5]. This method works serially and the addition of two
numbers is performed in O(N) time, where N is the length of the bit strings
representing the operands. The method of Sheth et al. is similar to that
presented by Huang et al. [8] to implement a binary arithmetic on optical
computers. As in the case of optical computing, a faster arithmetic can
be obtained using suitable number representations [6, 7, 9, 10, 12]. In this
paper, a carry-free algebraic sum on CAs is implemented. This operation
can be performed in constant time independently of the length of the bit
strings representing the operands, using the Redundant Binary (RB) number
representation introduced in [12].

The attainment of parallel carry-free addition using redundant number
representations has been investigated by many authors. Using this approach
it is possible to build totally parallel adders operating in constant time (i.e.,
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the adding time is independent of the operand digit string length N), using
very small truth tables which are independent of the digit position. The mod-
ified signed digit (MSD) representation is the one most widely investigated,
particularly in the field of optical computing, on which there are numerous
works (e.g., [10, 11]). In some recent works the RB number representation
has been presented and studied in detail (e.g., [12, 13]). This number rep-
resentation has the following advantages: it allows building an inherently
parallel arithmetic with a two step carry-free algebraic sum, it naturally fits
the 2s complement binary number system, and it requires only two symbols
{0,1} instead of three or more (such as required by the MSD).

2. The Redundant Binary number representation

As presented in [12], an unsigned integer z is in Redundant Binary represen-
tation (RB representation) when:

N-1
z=Y 23 with N even (1)

=0

where a; € {0,1}, ¢ is the position index, N is the length of the bit string, and
the most significant bit is on the left end of the bit string. The symbols [] rep-
resent rounding up to the next integer. In the RB representation each number
has a canonical form and several redundant representations (e.g., [12]).

Informally, the RB number representation is obtained by doubling the
weight positions in the natural binary representation of a given number z;
in this way, a sequence of N = |z| bit pairs (ny_1,7n-1),...,(no,To) is
generated, with position weight 2V, 2V=1 . 20 20 respectively. In each
pair the bits have the same weight, the left and right bit are called the n
(normal) and r (redundant) bit, respectively.

In a way similar to the 2s complement number system, signed RB numbers
can also be defined (e.g., [12]):

N1 N-3
==Y a; 20150 4 > ;27131 with N even. (2)
i=N-2 =0 :

From equations 1 and 2 it follows that an RB representation of a number
can be obtained from its binary (or 2s complement) representation by using
the following one step recoding rules:

0— 00 1—10

wherein n; bits take the same value of the corresponding binary bit of the
same weight, while all r; bits are zeroed.

The decoding of an RB number can be performed simply by one binary
addition. In fact, the decoded value is the sum between two binary numbers,
the first made by the n; digits and the second by r; digits. The nonconstant
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Figure 1: Parallel application of the algebraic sum rule (Table 1) on
two RB numbers. a; and b; are the bits of the input operands, c;
and d; are the bits of the intermediate sum, and s; are the bits of the
result.

time complexity in the decoding operation is not particularly important be-
cause this operation is required only when data must be given to the external
world.

In [12] it is proved that the RB representation of numbers permits a two
step totally parallel algebraic sum performable by a rule table which acts
on (n;,r;) bit pairs. This rule table operates on two superposed and aligned
sequences representing the RB input numbers (simply denoted as upper and
lower number, see Figure 1) and gives results that are still on two superposed
and aligned sequences.

Table 1 shows this rule, which is twice applied in parallel on all bit pairs
of two RB numbers (operands) giving the result. The upper number is zeroed
and the lower one gives the algebraic sum. The rule table does not depend
on the relative position of the bit pair in the sequences, however, it has an
unavoidable nonhomogeneous structure: it depends both on which RB input
number (lower or upper) the pair belongs to and on the type of the bit (n;
or ;). An example of an RB algebraic sum is shown in Figure 2.

3. The cellular automaton local rule

The formal description of the CA local rule performing the parallel algebraic
sum will be given using the CAM-Forth language of the Cellular Automata
Machine (CAM) designed by the Information Mechanics Group of the Mas-
sachusetts Institute of Technology (e.g., [2, 4]). However, for the sake of
clarity, the normal order notation is preserved instead of using the Reverse
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Table 1: Symbolic substitution rule table for the algebraic sum of RB num-
bers. This table acts on nr pairs; u and [ indicate the upper and lower row
respectively. The lower output pair is shifted left one position.

U 00 01 10 11

00 10 00 10
00 00 00 01 01
00 10 00 10
01 01 01 10 10
00 10 00 10
10 01 01 10 10
00 10 00 10
11 10 10 11 11

Polish Notation adopted by the CAM-Forth, and the simple construct: begin

. end is also used. According to the CAM terminology, the state binary
components of cells will be denoted as Planes. In particular, the cell state
of the local rule consists of four Planes and the adopted neighborhood is the
Moore neighborhood.

A pair of RB input numbers is located on any pair of adjacent rows
(which will be respectively denoted as upper and lower row), of the initial
configuration of Plane 0. Consequently, if the size of the CA is N it is then
possible to perform N/2 RB algebraic sums in parallel. The output can be
recovered on Plane 0 of the lower row after two applications of the local
rule consisting of two consecutive phases. In the first phase the rule table
is applied without considering the shifting of the resulting lower row. The
left shift of the lower row is then performed in the second phase. After two
applications of the local rule (i.e., after four phases), the resulting sum is
obtained on the lower row.

(1703865068)10 (1011111011010010010000001001100010010100000111110110001110100000) g 5
(-1876663285)10 (1110101110010110110010000000101100001110110010101001011110001010)RB

(1820616592)10 (0010100010100000100000000010000000101000001010101000001600000000) g 5
(-1993414809)1¢ (1101011100101101000010001001010010010011000101001100111100101010) g 5

(0)10 (0000000O000()()0000000000O0000000000000000000000000000000000000000)RB
(-172798217)10 (0101010011010010100010001100100011001100010100111001011000101010) g g

Figure 2: Algebraic sum of two signed RB numbers. After two appli-
cations of Table 1 the upper row is zeroed while the lower row contains
the algebraic sum.
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The other three Planes assume the following roles: Plane 1 is used to
distinguish between the two phases, Plane 2 is devoted to distinguishing
between the left and right cells (i.e., between the bit of type n and that of
type r), and Plane 3 is used to distinguish between the upper and lower
operand. The starting configuration is defined in the following way: the RB
operands are located on Plane 0, all bits of Plane 1 are set to 1, and each row
of Plane 2 is an alternating sequence of 0/1 bits (starting with 1). Finally,
Plane 3 has the bits of the upper operand set to 1 and those of the lower
operand set to 0.

Here is the CAM-Forth representation of the CA local rule.

new-experiment
n/moore & /centers

RB_algebraic_sum: {* Rules for Plane 0 }
begin
sum: 2 * & center’ + & center;
if center’ ‘ {x Computing phase }
then begin
if sum = 0

then if not(n.west)
then (west xor center) > plnO;
else not(west xor center) > plnO;
if sum = 1
then if north
then (center and east) > plnO;
else not(east) > pln0;
if sum = 2
then false > plnO;
if sum = 3
then east > plnO;
end;
else if not(& center’) {* Shifting phase }
then east > plnO;
else center > plnO;
not(center’) > plni; {* Rules for the other Planes }
& center > pln2;
& center’ > pln2;
end.
make-table algebraic-sum

In Figure 3 the execution of the local rule on a CA of size N = 64 working
on 32 pairs of RB numbers simultaneously is shown.

4. Conclusion

A CA performing constant time carry-free parallel addition or algebraic sum
has been presented. The resulting CA can be implemented using the CAM
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(d) (e

Figure 3: Execution of the local rule on a CA of size N = 64.

environment. The algebraic sum is executed in parallel in constant time by
using the RB representation of numbers. The method presented in [5], which
performs binary addition on CAs in linear running time, is enhanced.

A property of the RB number algebraic sum, performed with the rules of
Table 1, is that the algebraic sum of two strings, considered as the concatena-
tion of many RB numbers, gives a resulting string that is the concatenation
of RB sums (e.g., [12]). This property is very useful if CAs with large N are
used.
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