
Mobile Netw Appl (2011) 16:134–145
DOI 10.1007/s11036-010-0247-5

On Adaptive Density Deployment to Mitigate
the Sink-Hole Problem in Mobile Sensor Networks

Novella Bartolini · Tiziana Calamoneri ·
Annalisa Massini · Simone Silvestri

Published online: 29 June 2010
© Springer Science+Business Media, LLC 2010

Abstract The use of mobile sensors is of great rele-
vance to monitor critical areas where sensors cannot
be deployed manually. The presence of data collec-
tor sinks causes increased energy depletion in their
proximity, due to the higher relay load under multi-
hop communication schemes (sink-hole phenomenon).
We propose a new approach towards the solution of
this problem by means of an autonomous deployment
algorithm that guarantees the adaptation of the sensor
density to the sink proximity and enables their selective
activation. The proposed algorithm also permits a fault
tolerant and self-healing deployment, and allows the
realization of an integrated solution for deployment,
dynamic relocation and selective sensor activation. We
formally prove the termination of our algorithm. Per-
formance comparisons between our proposal and pre-
vious approaches show how the former can efficiently
reach a deployment at the desired variable density with
moderate energy consumption under a wide range of
operative settings.

Keywords mobile sensors · self-deployment ·
sink-hole problem

N. Bartolini · T. Calamoneri · A. Massini · S. Silvestri (B)
Department of Computer Science,
“Sapienza” University of Rome, Rome, Italy
e-mail: simone.silvestri@di.uniroma1.it,
silvestris@di.uniroma1.it

N. Bartolini
e-mail: bartolini@di.uniroma1.it

T. Calamoneri
e-mail: calamo@di.uniroma1.it

A. Massini
e-mail: massini@di.uniroma1.it

1 Introduction

The deployment of mobile sensors is attractive in many
scenarios. For example, mobile sensors may be used
for environmental monitoring to track the dispersion
of pollutants, gas plumes or fires. They may also be
used for public safety, for example to monitor the
release of harmful agents as a result of an accident.
In such scenarios it is difficult to achieve an exact sen-
sor placement through manual means. Instead, sensors
may be deployed somewhat randomly from a distance,
and then reposition themselves to provide the required
sensing coverage. The potential of such applications has
inspired a great deal of work on algorithms for deploy-
ing mobile sensors. Most of this work has addressed
the deployment of homogeneous sensors to achieve a
uniform coverage of a certain density in a specific Area
of Interest (AoI). When the sensor network centralizes
the communications towards a single or a few sinks, the
energy depletion due to communications is uneven and
may possibly cause the so-called sink-hole phenomenon
[1–3]. In this paper we address this practical and chal-
lenging problem by deploying sensors at variable den-
sities to ensure uniform energy depletion even under
imbalanced communication load.

We propose an algorithm which is based on a gener-
alization of the Push & Pull approach presented in [4].
In summary, our contributions are:

– We identify the models of load imbalance caused by
centralized communications towards one or more
sinks in the network and propose a density function
that models the varying density requirements over
the AoI as a consequence of those unbalanced
communications;

Mobile Netw Appl (2011) 16:134–145 135

– We propose a new algorithm based on the known
Push & Pull algorithm so as to allow it a more direct
control over the placement of redundant sensors, to
provide a sensor deployment at variable controlled
density;

– We formally prove the termination of our algo-
rithm, showing that the sensors stop moving after
a finite time.

– We extend a virtual forces based algorithm to op-
erate in a scenario with variable density require-
ments, in order to make fair comparisons between
our approach and the one based on virtual forces.

The Push & Pull algorithm is practical as it provides
very stable sensor behavior, with fast and guaranteed
termination and moderate energy consumption. It does
not require manual tuning or perfect knowledge of the
operating conditions, and works properly if the sensor
positioning is imprecise. The algorithm does not require
any synchronization during the deployment phase. The
achieved deployment permits the use of alternate sen-
sor activation that can be adopted if a loose synchro-
nization is possible during the operative phase of the
network. Because it converges quickly and does not
require a priori knowledge of the deployment environ-
ment, it is also well suited for dynamic environments
in which multiple sinks can be dynamically placed in
consequence to dynamically changing missions.

The paper is organized as follows. Related work
is presented in Section 2. In Section 3 we motivate
the problem and introduce some preliminary concepts.
Section 4 is the core of the paper and presents a new
algorithm for variable density sensor deployment. We
prove the termination of the δ-Push & Pull algorithm
in Section 5. In Section 6 we show how to exploit the
described algorithm to jointly solve the problem of sen-
sor deployment, dynamic relocation, self-healing and
selective activation. Section 7 is devoted to summarize
a virtual force based algorithm that we use to perform
experimental comparisons whose results are shown in
Section 8. Section 9 concludes the paper addressing
some final remarks.

2 Related work

Various solutions have been proposed to the problem
of mobile sensor self deployment. The majority of them
are either based on the virtual force approach (VFA) or
on computational geometry models. According to the
VFA technique [5–8] the interaction among sensors is
modelled as a combination of attractive and repulsive
forces. Other solutions [9, 10] have been inspired by

different physical models. In [9] the sensors are mod-
elled as particles of a compressible fluid and regulate
their movement acting upon a diffusive behavior. In
[10], the authors propose two approaches that make
use of gas theory to model sensor movements in the
presence of obstacles.

All these approaches require a laborious tuning of
thresholds and constants to determine the magnitude
of the forces and to control possible oscillations. The
choice of these values influences the resulting deploy-
ment, the overall energy consumption and the con-
vergence rate. Possible improvements to decrease the
oscillations include the introduction of dissipative
forces [11, 12].

Most of the deployment methods based on compu-
tational geometry model the deployment problem in
terms of Voronoi diagrams or Delaunay triangulations
[13, 14]. In [13] each sensor iteratively calculates its own
Voronoi polygon, determines the existence of coverage
holes and moves to a better position if necessary. The
algorithm proposed in [14] exploits the Delaunay trian-
gulation formed by the current sensor placement and
moves sensors so as to position them as vertices of a
triangular lattice. Similarly to the VFA approach, these
proposals rely on the off-line tuning of key parameters
to reduce movement oscillations.

All the above mentioned solutions do not address
the sink-hole problem. In [12] a unified solution for sen-
sor deployment and relocation crowding sensors in the
presence of events is presented. This approach could
be adopted to increase the sensor density in proximity
of the sink. Other papers, dealing with the sink-hole
problem explicitly, only focus on static sensor deploy-
ment [2, 3, 15, 16]. The aim is to mitigate the effects
of the uneven energy depletion due to communication
with a sink by means of a variable density deployment.
In the next section we will detail some of these re-
sults that will be useful for our contribution. Only [17]
specifically address the sink-hole problem in the con-
text of mobile sensors. According to such an approach,
sensor can move only once and location information are
communicated to the sink which centrally compute the
movement strategy and then disseminate the results to
the sensors.

Many works deal with the k-coverage deployment
problem. In [18], Vu and Verma reduce the problem
of sensor placement with a redundancy of at least k
sensors to the problem of distributing k points evenly
on a torus manifold by minimizing the Riesz energy.
In [19] the k-coverage sensor deployment problem is
considered in both cases of the binary and probabilistic
sensing models. They also distinguish the problem of
sensor placement in the case of the different relation

136 Mobile Netw Appl (2011) 16:134–145

between the sensing radius rs and communication ra-
dius rc, i.e. rc <

√
3rs and rc ≥ √

3rs and propose two
different dispatch schemes.

The k-coverage sensor placement can be obtained
by shrinking a grid deployment until the k-coverage is
achieved. In both [4] and [20] the shrinking is used to
obtain a denser hexagonal grid.

In the present work, a redundant coverage with
adaptive redundancy level k is obtained by superim-
posing several grid translated from each other to the
purpose of achieving a variable controlled density de-
ployment. Furthermore the k-coverage is exploited to
the purpose of ensuring uniform energy depletion by
performing a selective activation of the sensors.

3 Energy consumption due to communications

Li and Mohapatra address the sink-hole problem in [2].
The authors analyze the applicative context of environ-
mental monitoring and data gathering. In this context
they assume that each sensor generates new traffic with
a constant bit rate (CBR) and sends it to the sink via
multi-hop communications. The examined deployment
consists of a uniform random placement of devices over
the AoI, where N is the total number of devices and
Anet is the measure of the area of the AoI, hence
the uniformly deployed density is ρ = N/Anet. Sensors
transmit their packets to the destination by selecting the
next-hop which is closest to the destination.

The authors propose a model to evaluate the per-
node energy consumption, by considering three main
contributions, namely energy spent for sensing, trans-
missions and receptions. They divide the AoI into sev-
eral concentric circular crowns of radius equal to the
transmission range r, centered at the sink position. The
energy consumption of the sensors is then calculated
separately in each crown.

According to this model the per-node energy con-
sumption of the i-th crown is the following:

ECRring ith = α1b

+ γ1
(M2

π
− (i + 1)2)

2i + 1
b

+ (β1 + β2rn)
(M2

3 − i2)

2i + 1
b (1)

where i = 0, 1, . . . , (M
2 − 1), and the parameters are the

following: b is the constant bit rate generated by each
sensor, α1, β1, β2 and γ1 are technology dependent
constant factors that are considered in the definition of
the three energy contributions mentioned above, and

the AoI is divided into M
2 concentric circular crowns

with a step size of r meters.
Also Olariu and Stojmenović deal with the sink-hole

problem in [3]. The authors also consider a uniformly
deployed sensor network, with devices transmitting the
same number of reports towards the sink. The authors
conclude that the energy consumption of sensors lo-
cated inside the i-th circular crown centered at the sink,
and determined by the radii ri−1 and ri, is as follows:

Ei = T
ρπ

[
1 − r2

i−1

rk
2

]
(ri − ri−1)

α + c

r2
i − r2

i−1
(2)

where T is the number of tasks handled by the network
during its lifetime, c is a technology dependent positive
constant, α > 2 is the power attenuation and ρ is the
sensor uniform density over the AoI.

Finally the problem of uneven energy depletion
due to many-to-one communications is addressed in
[1] under nonuniform sensor deployment. The authors
find a suboptimal deployment technique to ensure en-
ergy efficiency and mitigate the sink-hole problem.
They propose to deploy sensors into circular crowns at
different densities where the ratio between the sensor
densities of the adjacent (i + 1)-th and the i-th crowns
is equal to

ρi+1

ρi
= (2i − 1)

q(2i + 1)
(3)

and q > 1 is the geometric proportion defining the
increase in the number of sensors from the outer to
the inner crowns. The circular crowns are centered at
the sink position, and are dimensioned so as to ensure
that the sensors of each crown act as forwarders for the
outer crowns.

The authors assume a constant bit rate generated
by each sensor and two energy contributions due to
transmissions and receptions.

In this paper we refer to the above mentioned work
[1] to define the non-uniform density requirements to
be addressed by the deployment algorithm in order
to balance the energy consumption among the sensors
of the network. By deploying the sensors according to
Eq. 3 the proposed approach ensures the network en-
ergy efficiency and prolong the network lifetime avoid-
ing the generation of sink holes due to communications.

4 Variable density self deployment of mobile sensors

The proposed algorithm, called δ-Push&Pull, is in-
spired by the algorithm introduced in [4], to which we
made major modifications to the purpose of deploying

Mobile Netw Appl (2011) 16:134–145 137

sensors at variable densities according to position de-
pendent requirements.

Given a point P in the AoI, we define δ(P) the
coverage density required in position P. Let V be a
set of equally equipped sensors able to determine their
own location, endowed with boolean sensing capabil-
ities and isotropic sensing and communication model.
Notice that location capabilities are only necessary
to recognize the borders of the AoI while, in order
to make movement decisions, each sensor only needs
to know the position of its communicating neighbors.

As in its original counterpart, according to δ-
Push&Pull, the sensors aim at realizing a complete cov-
erage of the AoI and a connected network by means of
a hexagonal tiling deployment, where the side of each
hexagon is set to the sensing radius rs. The hexagonal
tiling is realized by snapping the necessary number of
sensors over the AoI in grid positions located in cor-
respondence to the vertices of a triangular lattice with
side

√
3rs. Such sensors will be referred to as snapped.

Given a snapped sensor x, we refer to Hex(x) as to the
hexagonal area that is covered by the sensor x and to
Px as to the position of the sensor x.

At the same time, δ-Push&Pull deploys redundant
sensors over the covered area, by distributing them at
variable density, according to δ(P) as follows: the num-
ber of sensors that will be located in Hex(x) centered at
Px is

nδ(Px) =
⌈

δ(P) · 3
√

3
2

r2
s

⌉

The nδ(Px) − 1 sensors utilized to obtain the de-
sired density in a specific hexagon will be indicated as
adjunct-snapped sensors. The sensors located in Hex(x)

which are neither snapped nor adjunct-snapped will be
named slaves of x. We hereafter refer to S(x) as the set
of slave sensors of x.

The algorithm starts with the concurrent creation of
several tiling portions. Every sensor not yet involved
in the creation of a tiling portion gives start to its own
portion in an instant which is randomly selected in
a given time interval. Such a starter sensor is called
sinit. The algorithm consists of four main interleaved
activities: snap, push, pull and merge.

4.1 Snap activity

The sensor sinit elects its position Pinit as the center of
the first hexagon of its tiling portion. It collects informa-
tion on the sensors in radio proximity, that will compose
the set L(sinit). Among the sensors located in its own
hexagon, sinit chooses up to nδ(Pinit) − 1 sensors for

the role of adjunct-snapped. Such sensors will remain
in their original hexagon and will not participate in the
following activities. The sensors belonging to L(sinit)
which have not been declared adjunct-snapped can be
used to cover adjacent hexagons. To this purpose, sinit
selects at most six sensors among those belonging to
L(sinit) and makes them snap to the center of adjacent
hexagons. Such deployed sensors, in turn, give start to
their own selection and snap activity, thus expanding
the boundary of the current tiling portion. This process
continues until no other snaps are possible, because
either the whole AoI is covered, or the boundary tiles
do not contain any unsnapped sensors.

Sensor x starts the push activity if slave sensors
are still present in Hex(x) after the adjunct-snapped
declaration and the adjacent positions are all covered
by snapped sensors. By contrast, sensor x starts the pull
activity if (1) the number of adjunct-snapped sensors is
lower than necessary to fulfill the density requirement,
or (2) some hexagons adjacent to Hex(x) are left un-
covered and x has no slaves.

All the snapped sensors position the adjunct-
snapped sensors in their hexagon according to a same
common rule. This way it is possible to obtain the
desired distribution of sensors over the hexagon area.
Moreover, it is possible to perform a selective sensor
activation which allows energy saving during the opera-
tive phase of the network, giving rise to alternate activa-
tion of different hexagonal grids composed by adjunct-
snapped sensors in the same position. Obviously, these
adjunct grids have the same coverage and connectivity
features of the main hexagonal grid, that is the grid
composed by the snapped sensors.

4.2 Push activity

After the completion of their snapping activity,
snapped sensors may have slave sensors located inside
their hexagon. In this case, they pro-actively push such
slave sensors towards the areas demanding a higher
number of sensors. Consequently, slave sensors being
in overcrowded areas migrate to zones with unsatisfied
density requirements.

In order to avoid endless cyclic movements of slaves,
we introduce the following δ-Moving Condition. The
offer of slave sensors by a sensor x to a sensor y located
in radio proximity is allowed if and only if:

{|S(x)| > (|S(y)| + 1)}
∨ {|S(x)| = (|S(y)| + 1) ∧ id(x) > id(y)} (4)

where id(·) is a function initially set to the unique
identity code of the sensor radio device.

138 Mobile Netw Appl (2011) 16:134–145

If the δ-Moving Condition is verified, sensor x can
push at least one of its slaves towards the destination
hexagon Hex(y) selected as the one that needs a higher
number of sensors to fulfill the local density require-
ments or to fill an adjacent coverage hole; among the
slave sensors which can be pushed to the destination, x
selects the closest to Hex(y).

4.3 Pull activity

The sole snap and push activities are not sufficient to
ensure the maximum expansion of the tiling and the
achievement of a deployment at the required density.
In the δ-Push&Pull algorithm, the pull activity starts
whenever a sensor x notices either a hole in its adjacent
snapping position or a density in Hex(x) that is lower
than nδ(Px).

Snapped sensors may detect a coverage hole ad-
jacent to their hexagon and may not have available
sensors to make them snap. Similarly, a snapped sensor
may need more adjunct-snapped sensors than available
to fulfill the density requirements. In these cases, they
send hole trigger messages, and re-actively attract non-
snapped sensors and make them fill the hole or the
density gap.

In order to start the pull activity, sensor x broadcasts
an invitation message at a higher and higher number
of hops, until it receives an acceptance of invitation
from a snapped sensor having a redundant slave. The
inviter acknowledges the acceptance message if it has
not found a number of slave sensors sufficient to fill the
hole or the density gap, or reject it otherwise. In the
former case, an agreement has been reached between
the two sensors and the slave can start moving. When
the snapped sensor that is performing the pull activity
reaches its objective (to fill either the hole or the den-
sity gap), it stops sending slave invitation messages.

4.4 Merge activity

The possibility that many sensors act as starters can give
rise to several tiling portions with different orientations.
In order to characterize and distinguish each tiling
portion, the time-stamp of each starter is included in
the header of all exchanged messages. Then, messages
coming from sensors located in different tiling portions
include different starter time-stamps. When the bound-
aries of two tiling portions come in radio proximity with
each other, the one with older starter time-stamp ab-
sorbs the other one by making its snapped sensors move
into more appropriate snapping positions. Hence this
activity provides a mechanism to merge all the tiling
portions into a unique regular and uniformly oriented

tiling, simply adjusting the positions of already snapped
sensors.

We conclude this description of the algorithm with
an activity called role exchange. According to the pre-
vious description of δ-Push&Pull, slaves consume more
energy than snapped and adjunct-snapped sensors, be-
cause they are involved in a larger number of message
exchanges and movements. We introduce a mechanism
to balance the energy consumption over the set of
available sensors making them exchange their roles.
This mechanism is similar to the technique of cascaded
movements introduced in [21]. Namely, any time a slave
has to make a movement across a hexagon as a conse-
quence of either push or pull activities, it evaluates the
opportunity to substitute itself with the snapped and
adjunct-snapped sensors of the hexagon it is traversing.
The criterion at the basis of this mechanism is that
two sensors exchange their role whenever the energy
imbalance is reduced. As a result, the energy balance is
significantly enhanced, though the role exchange has a
small cost for both the slave and the snapped sensor
involved in the substitution. Indeed, the slave sensor
has to reach the center of the current hexagon and
perform a prof ile packet exchange with the snapped
sensor that has to move towards the destination of the
slave. A profile packet contains the key information
needed by a sensor to perform its new role after a
substitution.

4.5 An example of the algorithm execution

Figure 1 illustrates the interleaved execution of the
algorithm actions through an example. For simplicity,
we do not consider the role exchange activity.

Figure 1a shows a starting configuration in which
a sink is positioned in the central point of the right
vertical side of the AoI and requires a density variation
in its proximity. The sensor 8 assumes the starter role.

This sensor snaps three of its slaves, as shown in
Fig. 1b, where the id values of such snapped sensors are
highlighted.

Figure 1c shows that the snapped sensor 8 has some
un-snapped sensors in its hexagon, and therefore starts
the push activity towards its three adjacent hexagons. In
the meantime, the sensor 4 acts as starter and another
grid portion is initiated. As it is in a zone with density
requirement 4, it designates the sensors 20, 36 and 11 as
adjunct-snapped.

In Fig. 1d the snapped sensor 19 detects a coverage
hole. As it has an un-snapped sensor in its hexagon, it
performs the snap activity. The sensor 6 must satisfy a
density requirement 2, so it designates the sensor 34 as
adjunct-snapped. Notice that the snapped sensor 1 does

Mobile Netw Appl (2011) 16:134–145 139

Required density 1
Required density 2
Required density 4

6

1
19

8

4

20

11

3615

28

313

34 7

2

25

22

10

16

9

12

27

13

5

17

14

35

(g)

6

1
19

8

4
20

11

36
15 28

31

3

34 7

2

25

22

10

16

9

12

27

13

5

17

14

35 24

21

29

(h)

6

1
19

8

4
20

11

36
15 28

31

3

34 7

2

25

22

10

16

9

12

27

13

5

17

14

35 24

21

29

23

(i)

6

1
19

8

4

20

11
3615

28

313

34

(d)

6

1
19

8

4

20

11
3615

28

313

34 7

2

(e)

6

1
19

8

4

20

11

3615

28

313

34 7

2

25

22

10

16

9

(f)

8

(a)

6

1
19

8

(b)

6

1
19

8

4

20

11
36

(c)

Fig. 1 Algorithm execution: an example

not have any hole around its hexagon, so its slave re-
mains where it is; furthermore, it does not execute any
push action as the Moving Condition is not satisfied.
The snapped sensor 8, having many slaves, continues
its push activity. At the same time, the snapped sensor 4
snaps three of its slaves. Figure 1e shows that, while the
snapped sensors 4 and 8 continue their push activities,
the sensors 3 and 7 start the pull activity, as both detect
a coverage hole and do not have any slaves to snap, so
new sensors are snapped in the left grid.

In view of the pull activity, some sensors arrive in
the hexagons of sensors 3 and 7, and become adjunct-
snapped. The same happens in the right grid, with
sensors 15, 28 and 31—see Fig. 1f. The sensors 4 and
8 continue their push activity.

In Fig. 1g the snapped sensors 4 and 8 continue their
push activity while some new sensors are snapped. In
the meantime, the snapped sensors in the zone with
density requirement 4 designate some adjunct-snapped
sensors.

As soon as the grid portions come in radio proximity
with each other, the tiling merge activity is started
(Fig. 1h) and a unique grid is built. The adjunct-
snapped sensors located inside the hexagon of the sen-
sor 31 will change their status from adjunct-snapped
to slaves, because the sensor 31 has been snapped
outside the AoI in consequence of the merge activity.
Finally, Fig. 1j concludes this example, showing the last
activities performed to completely cover the AoI.

5 Algorithm termination

In this section we formally prove the termination of
our algorithm. Let L = {�1, �2, . . . , �|L|} be the set of
snapped sensors.

Definition 1 A network state is a vector s whose i-
th component represents the number of slave sen-
sors deployed inside the hexagon Hex(i) governed by
the snapped sensor i. Therefore s =< s1, s2, . . . , s|L| >

where si = |S(i)|, ∀i = 1, . . . , |L|.
Notice that, adjunct-snapped sensors are not consid-

ered in the network state as they are not considered by
the push activity.

Definition 2 A state s =< s1, . . . , s|L| > is stable, if the
Moving Condition is false for each couple of snapped
sensors in L located in radio proximity to each other.

Theorem 1 Algorithm δ-Push&Pull terminates in a
f inite time.

Proof As long as new sensors are being snapped, the
covered area keeps on growing. This process eventually
ends either because the AoI has been completely cov-
ered or because the sensors have reached a stable state.
In order to prove the theorem, it suffices to prove that,
once the algorithm has reached the maximum coverage
for the current execution (i.e. no more snap actions are

140 Mobile Netw Appl (2011) 16:134–145

performed), the network reaches a stable configuration
in a finite time. Therefore we can consider the set of
snapped sensors L as fixed. The value of the order func-
tion related to each snapped sensor, id(�i), is set during
the unfolding of the algorithm, it can be modified only
temporarily by the pull activity a finite number of times
and remains steady onward. Let us define f : N

|L| →
N

2 as follows:

f (s) =
(|L|∑

i=1

s2
i ,

|L|∑
i=1

si · id(�i)

)
(5)

We say that f (s) � f (s′) if f (s) and f (s′) are in lexi-
cographic order. Observe that the function f is lower
bounded by the pair (|L|, ∑|L|

i=1 id(�i)), in fact 1 ≤ si ≤
|V|. Therefore, if we prove that the value of f decreases
at every state change, we also prove that no infinite
sequence of state changes is possible.

To this purpose, let us show that every state change
from s to s′ causes f (s) � f (s′). Let us consider a
generic state change which involves the snapped sen-
sors x and y, with x sending a slave sensor to Hex(y).
We denote with as(y) the number of adjunct-snapped
sensors currently located in Hex(y). Two cases may
occur:

(1) as (y) <

⌈
δ(Py)

3
√

3
2

r2
s

⌉

The snapped sensor y still needs some sensors to meet
the density requirement.

(2) as (y) =
⌈

δ(Py)
3
√

3
2

r2
s

⌉

The snapped sensor y has already fulfilled the den-
sity requirements, i.e. there is a sufficient number of
adjunct-snapped sensor in Hex(y).

Notice that, it is not possible that as(y) > nδ(Py), as
the algorithm provides that the status of all exceeding
sensors with respect to nδ(Py) is set to slave. In the
following we prove separately that f (s) � f (s′) in both
cases.

Case (1) The pushed sensor will be an adjunct-
snapped of the snapped sensor y. We have that s′

i =
si ∀i �= x, y, s′

x = sx − 1 and s′
y = sy. Thus, f (s) � f (s′)

because
∑L

i=0 s′
i <

∑L
i=0 si.

Case (2) The pushed sensor will be a slave of the
snapped sensor y. We have that si = s′

i ∀i �= x, y, and
s′

x = sx − 1 and s′
y = sy + 1. As the transfer of the

slave has been done according to the Moving Con-
dition (Eq. 4), two cases are possible: either sx >

sy + 1, or (sx = sy + 1) ∧ (id(x) > id(y)). In the first

case, the inequality sx > sy + 1 implies that
∑|L|

i=1 s2
i >∑|L|

i=1 s′2
i . In the second case, since sx = sy + 1 and

id(x) > id(y), lead to
∑|L|

i=1 s2
i = ∑|L|

i=1 s′2
i and

∑|L|
i=1 si ·

id(�i) >
∑|L|

i=1 id(�i)s′
i. Therefore in both cases f (s) �

f (s′).
The function f is lower bounded and always de-

creasing by discrete quantities (integer values) at any
state change. Thus, after a finite number of steps, it is
impossible to perform a further state change, i.e. the
network will be in a stable state in a finite time. �

6 Joint solution to sensor deployment, selective
activation, self-healing and dynamic relocation

6.1 Selective activation

Our approach relies on the availability of a sufficient
number of sensors to cover each hexagonal tile at
the required density, namely with a given number of
adjunct-snapped sensors. If the necessary number of
sensors is available, the algorithm achieves a complete
coverage, with a regular pattern that permits the use of
topology control algorithms [22] and allows a selective
sensor activation which saves energy during the opera-
tive phase of the network. As already highlighted, each
snapped sensor will place its adjunct-snapped in fixed
positions according to a predefined oriented pattern
inside each hexagonal tile.

The deployment of the adjunct-snapped sensors ac-
cording to the same pattern in each tile with the same
density requirements, allows us to define a selective acti-
vation pattern. The selective activation of the sensors in
a pattern guarantees the continuity and completeness
of the coverage of the tiles that belong to the same
circular crown.

When in an AoI there are crowns with different den-
sity requirements, temporary holes can appear along
the boundary of these zones since sensors in different
positions of the hexagons are activated in neighboring
areas. This situation is described in Fig. 2. Observe that
the coverage discontinuity of Fig. 2b is only intermit-
tent, and many real applications may not suffer from
it. Indeed, for some applications a continuous sensing
of the AoI is not required, for example in the case of
monitoring systems for the detection of pollutant levels,
temperature or humidity conditions. In these cases, the
monitoring activity can rely on the sole interpolation of
local measurements taken at discrete points in the AoI.

By contrast, other more critical applications require
that every point in the target area be accurately mon-
itored, for example when the sensors are deployed to

Mobile Netw Appl (2011) 16:134–145 141

Fig. 2 Coverage holes at the
borders of the circular crowns
during the execution of the
alternate activation of the
adjunct-snapped sensors

(a) (b)

monitor the presence of human-life threats such as
radioactive or chemical plumes or a forest fire. In these
cases, coverage discontinuities can be eliminated by
positioning the adjunct-snapped sensors in the wiggle
region of the snapped sensor. Indeed, the wiggle region
has been defined in [20] as the region comprising all
those points in which a sensor could be repositioned
such that full coverage is maintained. Of course, the
adoption of the wiggle region requires a slight shrinking
of the hexagonal lattice. In particular, if w is the radius
of the circle inscribed in the wiggle region, then the
grid size must be set to

√
3(rs − w), instead of

√
3rs.

It follows that in order to create a wiggle region that
is sufficiently large to accommodate all the adjunct-
snapped sensors, it is necessary to deploy a larger num-
ber of sensors.

Notice that only a loose clock synchronization is
actually necessary to perform the described selective
activation scheme.

6.2 Self-healing and dynamic relocation

The proposed algorithm ensures that, when a sufficient
number of sensors are available, the density require-
ments defined in correspondence to the center of each
tile, will be fulfilled. Nevertheless, the algorithm does
not give any indication on where to place redundant
slave sensors, which instead are uniformly spread over
the network as a consequence of the push activity.
The redundant slave sensors will thus be available to
recover possible failures. More in detail, as soon as
a coverage hole is detected by the sensors located
in proximity (for example, the detection may happen
thanks to a periodic polling scheme or signalled by
a failing sensor whose battery is almost exhausted),
the detecting sensors can restart the algorithm with
the consequence that the hole is immediately covered
or a pull activity is executed to attract the closest
slave sensors. The redundant slave sensors can thus
be dynamically relocated to respond to pull invitations
issued by the sensors located nearby failed devices. This
process endows the network with self-healing and self-

adapting capabilities that are not present in previous
solutions.

In addition, a sensor network application may re-
quire sensor relocation capabilities (see [12, 21]) also
to respond to dynamically occurring events when the
deployment of new sensors is not possible, and the
only choice is to re-use and move the available ones.
In consequence of a dynamically occurred event, each
snapped sensor may declare a new density requirement,
which better reflects the required position dependent
accuracy.

This way the new set of redundant slave sensors
become available to respond to new pull invitations
necessary to reactivate the algorithm execution and
fulfill the new density requirements.

7 On the use of the virtual force approach for variable
density deployment

In order to evaluate the performance of the δ-
Push&Pull algorithm proposed in this paper, we com-
pare it with an algorithm based on virtual forces called
Parallel and Distributed Network Dynamics (PDND),
proposed in [23]. In PDND the force exerted by the
sensor si on the sensor s j is modelled as a piecewise lin-
ear function. It is repulsive when the distance between
si and s j is lower than an arbitrarily tuned parameter
r∗; it is attractive when the distance is larger, until it
vanishes at another arbitrarily set distance. In order
to ensure the convergence of PDND, the formulation
of this force must respect the condition of Lipschitz
continuity. In this case, the single sensor movement is
limited by an upper bound that guarantees that the
potential energy is always decreasing, hence avoiding
oscillations.

PDND works under the assumption that density
requirements are uniform over the AoI. The algorithm
PDND addresses the problem arising when a sensor
that approaches the boundary of the AoI calculates a
target position outside the sensing field. Since sensors
have a prior knowledge of the shape of the boundary,

142 Mobile Netw Appl (2011) 16:134–145

in this case the sensor calculates the point that is closest
to the target position inside the AoI and moves to
that point following the optimal path. This point is
obtained by decomposing the part of the movement
vector outside the AoI in its orthogonal components
(using the boundary line as an axis) and using the sole
component which is parallel to the boundary line.

In order to make the algorithm achieve a variable
density deployment, we need to redefine the force
that one sensor exerts on the others. According to the
algorithm PDND, this implies the definition of the rest
distance r∗ at which the force exerted by two interacting
sensors is null. More specifically, we assign to all sen-
sors inside a region with the same density requirement a
position dependent virtual sensing radius. In particular,
given a sensor x located at Px, we set the virtual sensing
radius rvirtual

s (x) to the radius of a regular hexagonal tes-
sellation that would be obtained by optimally deploying
the sensors at the desired density, that is:

rvirtual
s (x) =

√
2

3
√

3δ(Px)

We consider a value of r∗ that allows to minimize the
overlaps among sensing disks, obtained as a combina-
tion of the sensing radii of two interacting sensors i and
j, ri and r j, namely r∗ = ri + r j. This value of r∗ models
the interaction between two sensors trying to position
themselves so that their sensing circles are tangential.

It is to notice that the discontinuity of the density
requirements over the AoI implies a discontinuity in
the force function, that no longer respects the Lip-
schitz condition. For this reason, the convergence of
the algorithm PDND is no longer guaranteed. In this
particular setting, PDND looses its peculiar charac-
teristic of guaranteed convergence and behaves as all
the other algorithms based on virtual forces that, since
the inspiring model is inherently dynamic, are prone
to oscillations. In order to halt the execution of the
PDND algorithm, we introduce a centralized oscillation
control method as in [6]. By examining the history of
movements of each sensor, we determine if oscillations
are going on by checking if the sensor has moved back
and forth around the same location many times. More
formally, we say that a sensor is in an oscillatory state
if in the last m movements it has not moved away more
than εm meters from the barycenter of such movements.
We artificially terminate the algorithm as all the sensors
are in an oscillatory state. We highlight that, although
impractical, this oscillation control is of benefit for
the performance of PDND and, for this reason, our
comparisons are fair.

8 Simulation results

In this section we compare our proposal with the
PDND algorithm, adapted to our context as described
in Section 7. To this purpose, we developed an OPNET
based simulator. We use the following parameter set-
ting: rtx = 10 m, rs = 5 m, sensor speed v = 1 m/sec.
We consider a squared AoI of 120 m × 120 m with
three concentric circular crowns, centered at the sink
position, located at the center of the AoI. According to
[1], each crown has a different density requirement in-
creasing geometrically towards the sink as described by
Eq. 3. In particular, we set the density requirement of
the most external zone to one sensor per hexagon, and
we use a parameter q = 1.2 for the geometric progres-
sion. In such a setting, the crown density requirements
are 1, 2, 4 and 12 sensors per hexagon as we move from
the outer to the inner crown.

We consider a random sensor initial deployment, as
depicted in Fig. 3a. Figure 3b also shows an example
of the initial deployment, highlighting the position de-
pendent sensing radii used under PDND. Figure 3c and
d show an example of the final deployment achieved
with 950 sensors by δ-Push&Pull and PDND, respec-
tively. The clusters of nodes of Fig. 3b are motivated
by the random choice of the positions of the adjunct-
snapped sensors. As it will be explained in the follow-
ing, PDND achieves a more uniform deployment at the
cost of a higher energy consumption and deployment
time.

In order to compare the performance of the two
algorithms we increase the number of deployed sensors
from 800 to 1100. The results are obtained by averaging
over 30 simulation runs.

Figure 4a shows the completion time, i.e. the time
required to reach the final deployment. Recall that
the PDND algorithm is artificially halted since it does
not guarantee the termination. Despite this external
intervention to halt the execution of PDND, the termi-
nation time of δ-Push&Pull is two orders of magnitude
shorter than PDND. The slowness of PDND is due to
the limitation to the distance each sensor is allowed to
traverse at each round. On the other hand, δ-Push&Pull
let sensors traverse entire hexagons at each movement,
thus resulting in a shorter termination time.

Figure 4b shows the average traversed distance. δ-
Push&Pull has a decreasing traversed distance as the
number of sensors increases. This is due to the fact
that less sensors have to be pulled in order to achieve
the desired density as the number of deployed sensors
increases. The PDND algorithm shows a higher tra-
versed distance than δ-Push&Pull due to the oscillating
movements typical of virtual force based solutions.

Mobile Netw Appl (2011) 16:134–145 143

Fig. 3 Initial configuration
with homogeneous (a) and
position dependent (b)
sensing radii. Final
deployment under
δ-Push&Pull (b) and
PDND (c)

(a) (b)

(c) (d)

The average number of starting/stopping actions is
shown in Fig. 4c. This is an important metric for mobile
sensor deployment algorithms, because start and stop
actions consume high energy [13]. PDND shows an
average number of starting/stopping two orders of mag-
nitude higher than δ-Push&Pull. As for the deployment
time, this is due to the short distance each sensor can
traverse at each round. δ-Push&Pull, instead, moves the
sensors precisely and without oscillations, resulting in a
lower number of movements.

We now consider the average energy consumption of
a sensor under the two algorithms. A sensor consumes
energy due to communications (sending and receiv-
ing messages) and movements (travelling and start-
ing/stopping movements). We consider two cumulative
energy consumption metrics, namely the average en-
ergy spent in communication and the average total en-
ergy consumed by sensors. Such metrics are expressed
in energy units: the reception of a message corresponds
to one energy unit, a single transmission costs the same
as 1.125 receptions [24], a 1 meter movement costs the
same as 300 transmissions [13] and a starting/stopping
action costs the same as 1 meter movement [13].

Figure 4d shows the energy spent in communica-
tions and the total energy consumption. As expected,
PDND has worse performance under both metrics. On
the one hand, the energy spent in communications is
higher because of the high number of rounds required
by PDND to terminate. Indeed, under PDND, each
sensor advertises its position to the neighborhood at
each round. δ-Push&Pull, instead, has no round based
communications, and messages are only exchanged to
perform the algorithm activities. On the other hand,
the higher number of starting/stopping actions as well
as the higher traversed distance, result in a major to-
tal energy consumption of PDND with respect to δ-
Push&Pull.

We finally evaluate the two algorithms considering
the quality of the achieved deployments. We compared
the percentage of AoI not meeting the desired density
at the end of the algorithm execution. The results are
shown in Fig. 5. The regularity of the deployment
achieved by PDND results in a better fulfilment of the
requirements. However, such regularity is achieved at
the cost of a higher energy consumption and a longer
deployment time. δ-Push&Pull consumes two orders of

144 Mobile Netw Appl (2011) 16:134–145

 1

 10

 100

 1000

 10000

 750 800 850 900 950 1000 1050 1100 1150

T
im

e
(s

ec
)

Number of sensors

δ-Push&Pull
PDND

 0

 5

 10

 15

 20

 25

 30

 35

 40

 750 800 850 900 950 1000 1050 1100 1150

M
ov

in
g

di
st

an
ce

 (
m

)

Number of sensors

δ-Push&Pull
PDND

(a) (b)

 1

 10

 100

 1000

 10000

 750 800 850 900 950 1000 1050 1100 1150

A
vg

 S
ta

rt
in

g/
st

op
pi

ng

Number of sensors

δ-Push&Pull
PDND

 1

 10

 100

 1000

 10000

 100000

 1e+006

 750 800 850 900 950 1000 1050 1100 1150

C
on

su
m

ed
 e

ne
rg

y
(u

ni
ts

)

Number of sensors

PDND - Tot.

PDND - Com.

δ-PushPull - Tot.

δ-PushPull - Com.

δ-Push&Pull - Total
PDND - Total

δ-Push&Pull - Communications
PDND - Communications

(c) (d)

Fig. 4 Performance comparisons between δ-Push&Pull and PDND

magnitude less energy with respect to PDND, and is
able to achieve a final stable deployment in a much
shorter time. It shows a small gap in the percentage of
area not meeting the desired density, that decreases as
the number of sensors increases. This gap corresponds
to the boundaries between adjacent circular crowns.
Indeed, the density requirement of a tile is advertised
according to the position of its snapped sensor. Never-

 0

 2

 4

 6

 8

 10

 750 800 850 900 950 1000 1050 1100 1150

C
ov

er
ag

e

Number of sensors

δ-Push&Pull
PDND

Fig. 5 Percentage of area not meeting the density requirements

theless, when a tile is crossed by the boundary line of a
circular crown, one of the two sections lies on a crown
where the density requirement is different from the one
declared by the snapped sensor.

9 Conclusions

We proposed an original algorithm for mobile sen-
sor self deployment, according to which sensors au-
tonomously coordinate their movements to achieve a
complete coverage with variable density. The sensor
density varies so as to uniform the energy depletion
due to communications towards the sink. The final de-
ployment consists in a hexagonal tiling with a variable
number of sensors deployed in each tile. We formally
prove the termination of our algorithm. Simulations
show that our algorithm performs better than previous
approaches in terms of several performance parame-
ters. Furthermore, we discussed some of the benefits
related to the regularity of the obtained deployment.
In particular we show how the regularity of the sensor

Mobile Netw Appl (2011) 16:134–145 145

distribution can be exploited to implement energy sav-
ing techniques and to achieve fault tolerance and self-
healing capabilities.

References

1. Wu X, Chen G, Das SK (2008) On the energy hole problem
of nonuniform node distribution in wireless sensor networks.
IEEE Trans Parallel Distrib Syst 19(5):710–720

2. Li J, Mohapatra P (2007) Analytical modeling and mitigation
techniques for the energy hole problem in sensor networks.
Perv Mob Comput (3):233–254

3. Olariu S, Stojmenovic I (2006) Design guidelines for maxi-
mizing lifetime and avoiding energy holes in sensor networks
with uniform distribution and uniform reporting. In: Proc. of
INFOCOM

4. Bartolini N, Calamoneri T, Fusco E, Massini A, Silvestri S
(2009) Push & pull: autonomous deployment of mobile
sensors for a complete coverage. ACM/Springer Wireless
Networks

5. Zou Y, Chakrabarty K (2003) Sensor deployment and tar-
get localization based on virtual forces. In: Proc. IEEE
INFOCOM

6. Heo N, Varshney P (2005) Energy-efficient deployment of
intelligent mobile sensor networks. IEEE Trans Syst Man
Cybern 35:78–92

7. Chen J, Li S, Sun Y (2007) Novel deployment schemes for
mobile sensor networks. Sensors 7:2907–2919

8. Poduri S, Sukhatme GS (2004) Constrained coverage for
mobile sensor networks. In: Proc. of IEEE ICRA

9. Pac MR, Erkmen AM, Erkmen I (2006) Scalable self-
deployment of mobile sensor networks; a fluid dynamics
approach. In: Proc. of IEEE IROS

10. Kerr W, Spears D, Spears W, Thayer D (2004) Two formal
fluid models for multi-agent sweeping and obstacle avoid-
ance. In: Proc. of the joint conference on autonomous agents
and multiagent systems (AAMAS)

11. Howard A, Mataric MJ, Sukhatme GS (2002) Mobile sen-
sor network deployment using potential fields: a distributed,

scalable solution to the area coverage problem. In: Proc. of
DARS

12. Garetto M, Gribaudo M, Chiasserini CF, Leonardi E (2007)
A distributed sensor relocation scheme for environmental
control. In: The ACM/IEEE Proc. of MASS

13. Wang G, Cao G, Porta TL (2006) Movement-assisted sensor
deployment. IEEE Trans Mob Comput 6:640–652

14. Ma M, Yang Y (2007) Adaptive triangular deployment algo-
rithm for unattended mobile sensor networks. IEEE Trans
Comput 56:946–847

15. Wu X, Chen G, Das SK (2006) On the energy hole problem
of nonuniform node distribution in wireless sensor networks.
In: Proc. of IEEE MASS, pp 180–187

16. Cardei M, Yang Y, Wu J (2008) Non-uniform sensor de-
ployment in mobile wireless sensor networks. In: Proc. of
WoWMoM, pp 1–8

17. Yang Y, Cardei M (2007) Movement-assisted sensor rede-
ployment scheme for network lifetime increase. In: Proc. of
the ACM symposium on modeling, analysis, and simulation
of wireless and mobile systems (MASS), pp 13–20

18. Wu C, Verma D (2007) A sensor placement algorithm for
redundant covering based on riesz energy minimization. In:
Proc. ISCAS

19. Wang YC, Tseng YC (2008) Distributed deployment schemes
for mobile wireless sensor networks to ensure multilevel cov-
erage. IEEE Trans Parallel Distrib Syst 19:1280–1294

20. Johnson M, Sarioz D, Bar-Noy A, Brown T, Verma D, Wu C
(2009) More is more: the benefits of denser sensor deploy-
ment. In: Proc. INFOCOM

21. Wang G, Cao G, Porta TL, Zhang W (2005) Sensor relocation
in mobile sensor networks. In: Proc. of IEEE INFOCOM

22. Pattem S, Poduri S, Krishnamachari B (2003) Energy-quality
tradeoffs for target tracking in wireless sensor networks.
In: Proc. of ACM international conference on information
processing in sensor networks (IPSN). Springer lecture notes
in computer science, vol 2634

23. Ma K, Zhang Y, Trappe W (2008) Managing the mobility of a
mobile sensor network using network dynamics. IEEE Trans
Parallel Distrib Syst 19(1):106–120

24. Anastasi G, Conti M, Falchi A, Gregori E, Passarella A
(2004) Performance measurements of mote sensor networks.
In: Proc. of ACM MSWiM 2004

	On Adaptive Density Deployment to Mitigate the Sink-Hole Problem in Mobile Sensor Networks
	Abstract
	Introduction
	Related work
	Energy consumption due to communications
	Variable density self deployment of mobile sensors
	Snap activity
	Push activity
	Pull activity
	Merge activity
	An example of the algorithm execution

	Algorithm termination
	Joint solution to sensor deployment, selective activation, self-healing and dynamic relocation
	Selective activation
	Self-healing and dynamic relocation

	On the use of the virtual force approach for variable density deployment
	Simulation results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

