
On Three-Dimensional Layoutof Interonnetion Networks(Extended Abstrat) ?Tiziana Calamoneri1 and Annalisa Massini21 Dipartimento di Matematia and Dipartimento di Sienze dell'Informazione,Universit�a di Roma \La Sapienza", Italy - alamo�dsi.uniroma1.it.2 Dipartimento di Sienze dell'Informazione, Universit�a di Roma \La Sapienza",Italy - massini�dsi.uniroma1.it.Abstrat. In this paper we deal with the layout of interonnetion net-works on three-dimensional grids. In partiular, in the �rst part we provea general formula for alulating an exat value for the lower bound onthe volume. Then we introdue the new notion of k-3D double hannelrouting and we use it to exhibit an optimal three-dimensional layout forbuttery networks. Finally, we show a method to lay out multigrid andX-tree networks in optimal volume.1 Introdution and PreliminariesReent hardware advanes have allowed three-dimensional iruits to have a ostlow enough to make them ommonly available. For this reason three-dimensionallayouts of graphs on retilinear grids are beoming of wide interest both in thestudy of the VLSI layout problem for integrated iruits and in the study ofalgorithms for drawing graphs. Indeed, the tie between VLSI layout studies andtheoretial graph drawing is very strong sine to lay out a network on a grid isequivalent to orthogonally draw the underlying graph.To the best of our knowledge, not many papers have been written aboutthree-dimensional grid drawing of graphs [2{6, 10℄ and all of them show resultsthat are valid for very general graphs and therefore they do not work eÆientlyfor strutured and regular graphs suh as the most ommonly used interonne-tion networks. On the other hand, the importane of representing interonnetionnetworks in three dimensions has already been stated in the 80's by Rosenberg[12℄: the most relevant aims are to shorten wires and to save in material.By virtue of the equivalene between layout of networks and drawing ofgraphs in the following we will prefer the network terminology instead of thegraph theory one; therefore we will use the word `node' instead of `vertex' and`layout' instead of `drawing', while we will interhangeably use the terms `graph'and `network', `edge' and `wire'.In this paper we fous our attention on three-dimensional grid layout of aninteronnetion network G, that is a mapping of G in the three-dimensional gridsuh that nodes are mapped in grid-nodes and edges are mapped in independentgrid-paths satisfying the following onditions:? The �rst author has been supported by Italian National Researh Counil.



� distint grid-paths are edge-disjoint (then at most three paths an ross at agrid-node);� grid-paths that share an intermediate grid-node must ross at that node (thatis `knok-knee' paths [9℄ are not allowed);� a grid-path may touh no mapped node, exept at its endpoints.If the layout of a graph G an be enlosed in a h�w� l three-dimensional grid,we say layout volume of G the produt h� w � l.In this work we give some results about lower and upper bounds on thelayout volume of some interonnetion networks. Namely, in the �rst part weprove a general formula for alulating an exat value for the lower bound onthe three-dimensional layout volume. Then we introdue the new notion of k-3Ddouble hannel routing and we use it to exhibit an optimal three-dimensionallayout for buttery networks. Finally, we show a method to lay out multi-gridand X-tree networks in optimal volume.2 Lower boundIn this setion we prove a general formula giving an exat value for the lowerbound on the layout volume of interonnetion networks.We obtain our result by generalizing to three dimensions the lassial lowerbound strategy for two dimensions invented in [13℄, and modi�ed in [1℄. In [12℄the order of magnitude of the result obtained in Lemma 2 is given for retiulatedgraphs and extended to more general graphs. Before proving the general formulafor the lower bound, we give some de�nitions and prove some preliminary results.De�nition 1. An embedding of graph G into graph H (whih has at least asmany nodes as G) omprises a one-to-one assoiation � of the nodes of G withnodes of H, plus a routing � whih assoiates eah edge fu; vg of G with a pathin H that onnets nodes �(u) and �(v). The ongestion of embedding h�; �i isthe maximum, over all edges e in H, of the number of edges in G whose �-routingpaths ontain edge e.De�nition 2. Let G be a graph having a designated set of 2 > 0 nodes, alledspeial nodes. The minimum speial bisetion width of a graph G, MSBW(G),is the smallest number of edges whose removal partitions G into two disjointsubgraphs, eah ontaining half of G's speial nodes.Lemma 1. [8℄ Let � be an embedding of graph G into graph H that has onges-tion C, then MSBW (H) � 1CMSBW (G):Now we prove a general formula to get a lower bound on the layout volumeof a network, given its MSBW.Lemma 2. For any graph H, the volume of the smallest three-dimensional lay-out of H is at least �MSBW (H)�12 �3=2.



Sketh of proof. We onsider an arbitrary layout ofH in the grid of dimensionh�w�l. A surfae S with a single jog J (see Fig. 1) an be positioned on the gridin suh a way that it uts the layout of H into two subgraphs, eah ontaininghalf of H's speial nodes.
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πFig. 1. Surfae S with the jog J .Removing the grid-edges rossed by S yields a bisetion of H. By de�nition,at least MSBW (H) edges of H must ross surfae S. By onstrution, at mosthl + l + 1 � 2hl + 1 edges of the grid ross surfae S. It follows that 2hl +1 � MSBW (H). On the other hand, without loss of generality, we an hoosew � h � l. Hene h� w � l � �MSBW (H)�12 �3=2.As a onsequene of Lemmas 2 and 1, if MSBW (H) is not known, a lowerbound on the layout volume of a networkH an be omputed through an embed-ding � into H of a graph G if MSBW (G) and the ongestion C of � are known.In this way, we have that a lower bound on the layout volume of H is no lessthan �MSBW (H)�12 �3=2 � � 1CMSBW (G)�12 �3=2 :Sine another lower bound on the layout volume of a graph is trivially givenby the number of nodes of the graph, the following theorem derives:Theorem 1. Given a graph H with n nodes, a lower bound on its layout volumeis given by max �n;�MSBW (H)�12 �3=2�. Alternatively, when an embedding ofongestion C for an auxiliary graph G into H and MSBW (G) are known, alower bound on the layout volume of G is max �n;� 1CMSBW (G)�12 �3=2�.3 Upper bound of some Interonnetion NetworksIn this setion we �rst give the de�nitions of all networks we are going to manage,then we exhibit a method to lay out eah of them in a three-dimensional grid.De�nition 3. The buttery network having N inputs BN , where N = 2n, hasnodes orresponding to pairs hw; li where l is the level (1 � l � logN + 1) andw is a logN-bit binary number that denotes the olumn of the node. Two nodeshw; li and hw0; l0i are linked by an edge if and only if l0 = l + 1 and either:



1. w and w0 are idential (straight-edge), or2. w and w0 di�er in preisely the l-th bit (ross-edge).Lemma 3. [7℄ The subgraph of BN indued by the nodes of levels 1; : : : ; h is thedisjoint sum of 2logN�h+1 opies of B2h�1 and the subgraph of BN indued by thenodes of levels h; : : : ; logN +1 is the disjoint sum of 2h�1 opies of B2logN�h+1.De�nition 4. The N �N multigrid network MN , where N = 2n, onsists oflogN+1 bidimensional arrays, eah one of size N=2k�N=2k for 0 � k � logN .The arrays are interonneted so that node (i; j) on the 2k�2k array is onnetedto node (2i; 2j) on the 2k+1 � 2k+1 array for 1 � i; j � 2k, and 0 � k < logN .De�nition 5. The N-leaf X-tree T N , where N = 2n, is a omplete N-leafbinary tree with edges added to onnet onseutive nodes on the same level ofthe tree.We an utilize Theorem 1 to ompute, in partiular, a lower bound on thelayout volume of the interonnetion networks just de�ned:� a lower bound on the layout volume of a buttery network BN is (N�12 )3=2and an be obtained by onsidering the embedding desribed in [1℄.� the number of nodes of a multigrid MN onstitutes a lower bound on itslayout volume, that is 4N2�13 . Indeed, the formula involvingMSBW (MN ) =�(N) produes a worse value.� similar onsiderations hold for anN -leaf X-tree T N , whoseMSBW is�(logN),and therefore a lower bound on its layout volume is 2N � 1.For what onerns the upper bound on the layout volume we divide the nextpart into three subsetions, one for eah network.3.1 Buttery NetworkIt is easy to obtain an optimal three-dimensional layout of a buttery networkby using the forerunner intuition of Wise [14℄ used to better visualize a butterynetwork in the spae. This idea is based on opportunely putting and onnetingin the spae O(pN) opies of any bidimensional optimal layout of a butterywith O(pN) inputs (possible in view of Lemma 3). A drawbak of suh a nielayout is that the maximum wire length is O(pN), and most of the wires reahthis upper bound.In the following we will desribe a method to lay out a BN in the three-dimensional grid so that all its wires have maximum length O(N1=4) but one(additive) edge-level haraterized by having maximum wire length O(pN).From now on, we will assume that logN is even; when logN is odd it is easyto adjust the details, that we omit for the sake of brevity.In view of Lemma 3 we an `ut' BN along its median node-level and get pNopies of BpN (O-group) whose output nodes must be re-onneted to the inputnodes of other pN opies of BpN (I-group) through an additive edge-level.Hene, our layout onsists of two main operations:



� three-dimensional layout of eah opy of BpN ;� re-onnetion of the two groups of pN opies of BpN through an additiveedge-level.Three-dimensional layout of eah opy of BpNIn order to explain how to manage this operation, we need to mark the followingobservation:Observation 1 An N-input buttery network BN an be overed by N edge-disjoint omplete binary trees as follows:� for any i = 2; : : : ; logN , there are 2logN�i trees Ti having i levels, sharingtheir leaves with some tree Tj ; j > i, and their internal nodes with someTk; k < i;� there are two trees TlogN+1 having (logN+1) levels, sharing their leaves eahother, and their internal nodes with some Tk; k < logN + 1.An example of this overing for B16 is depited in Fig. 2.

Fig. 2. Tree-overing of B16 (di�erent trees are represented by di�erent line types).Consider an H-tree representation of TlogpN+1, all it HlogpN+1. Call Hi aplane representation of Ti obtained from TlogpN+1 by eliminating superuouslogpN + 1 � i levels. Then Ti is represented aording to an H-tree shemewasting some area. Observe that if the leaves of a tree Tj oinide with someinternal nodes of a tree Ti; i > j, it is possible to lay out Ti and Tj in the three-dimensional grid by onsidering Hi and Hj on two parallel planes, suh that theorthogonal projetion of Hj on the plane ontaining Hi oinides, level by level,with Hi itself. To orretly onnet Hi and Hj we have to onnet dupliatenodes by a segment orthogonal to both planes and to eliminate the leaves of Hj ,substituting them with bends (see Fig. 3).In view of Observation 1, it remains to detail in whih order the planes on-taining the pN binary trees must be arranged. The following reursive pseudo-ode allows one to assign a z-oordinate to eah plane ontaining Tj (z  Tj forshort). The �rst all of the proedure is PUT(TlogpN+1; 0).PROCEDURE PUT(Tj , VAR z);BEGIN



z  Tj ;z + 1 (T2 sharing its leaves with level 2 of Tj);i := 3;WHILE (i < j) DOBEGINPUT(Ti sharing its leaves with level i of Tj ; z + 2);i:=i+1;END;END.
Fig. 3. Layout of two trees sharing some nodes.After the proedure is terminated, half of BpN has been lain out. The remain-ing part an be symmetrially laid out in suh a way that the planes ontainingtrees TlogpN+1 are onseutive.As far as the proedure is onerned, vertial lines are guaranteed:� not to ross tree-nodes of intermediate planes; indeed, the proedure puts thetrees onneted to a ertain tree Tj suh that as smaller they are as loser toTj they are positioned;� not to oinide with other vertial lines; indeed, no more than two trees anshare the same nodes.In view of the onstrution of the three-dimensional layout of BpN , of Ob-servation 1 and of the area of an H-tree, eah buttery BpN belonging bothto the O-group and to the I-group take a (2N1=4 � 1) � (2N1=4 � 1) � (N1=2)volume.Re-onnetion between the two groups of pN opies of BpNLet us onsider the two groups of pN opies of BpN . Eah group is positionedin the spae to form a square with N1=4 opies on eah side, suh that theorrespondent trees of eah opy lie on the same plane. The two groups are thenpositioned one in front of the other. Now we have to onnet the dupliatednodes through an additive edge-level.Before detailing this operation, we need to remind some known results. Ak-hannel routing involves a bidimensional grid and two sets S and S0 eahonsisting of k nodes to be onneted by a 1-1 funtion. S and S0 are arrangedon two opposite sides of the grid.Lemma 4. [11℄ The grid involved in any k-hannel routing is not greater than(k + 1)� ( 32k + 2) and S and S0 lie on the shorter sides.Coming bak to the buttery problem, observe that all the output nodesof the O-group and all the input nodes of the I-group an be provided of anoutgoing link towards the opposite group and their extremes an be leaded totwo parallel planes, having empty intersetion with the layouts of eah opy. If



we number in the same way {from left to right, row by row{ both the outputnodes of any buttery of the O-group and the input nodes of any buttery ofthe I-group and the butteries themselves of O- and I-groups, then eah edgemust onnet the i-th output node of the j-th buttery in the O-group to thej-th input node of the i-th buttery in the I-group. Furthermore, it is easy tosee that eah row of output nodes in the O-group is routed to a row of inputnodes in the I-group.In order to solve this problem we de�ne a new three-dimensional onstrainedrouting, alled k-3D double hannel routing, to whih we redue the previousproblem.De�nition 6. A k-3D double hannel routing involves a three-dimensional grid(the hannel) and two sets S and S0, both of k nodes, to be onneted by a 1-1funtion f . S and S0 are arranged on two opposite sides of the three-dimensionalgrid, on the nodes of a pk �pk grid. Funtion f assoiates to a node (x; y) ofS a node (x0; y0) of S0 suh that x0 = g(x) and y0 = h(y), where funtions g andh are two-dimensional pk-hannel routings.Theorem 2. A three-dimensional grid of size (pk+1)� (pk+1)� ( 32pk+2)is enough to realize a k-3D double hannel routing.
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S'Fig. 4. Three-dimensional double hannel routing.Proof. Projet the three-dimensional grid of the k-3D double hannel routingon plane xz. It is easy to see that funtion g mapping rows of S in rows of S0an be onsidered as a two-dimensional hannel routing on plane xz. Therefore,a (pk+1)� ( 32pk+2) two-dimensional grid is enough to realize suh a hannelrouting (Lemma 4). When oming bak to three dimensions, lines laid out torepresent funtion g beome (bent) planes. Eah of suh planes has on oppositehorizontal sides a row x of S and its orresponding row g(x) of S0 and it isat least 32pk + 2 long (see Fig. 4). Therefore, on eah plane we an realizea two-dimensional hannel routing given by funtion h, simply by adding anextra-plane, parallel to plane xz.We use this theorem to lay out the additive edge-level between the O-groupand the I-group in at most 32pN + 2 height.



Reombining all the arguments about the volume needed by the two opera-tions of laying out eah opy of BpN and re-onneting the two groups of pNopies of BpN , we an state the following theorem:Theorem 3. There exists a three-dimensional grid layout of a buttery networkwith N inputs and N outputs BN with volume (2N1=2 �N1=4 + 1)� (2N1=2 �N1=4+1)�( 72N1=2+2) and all edges have maximum wire length O(N1=4), exeptN edges having maximum wire length O(N1=2).3.2 Multi-Grid NetworkIn this subsetion we will show how to lay out an N � N multigrid MN in athree-dimensional grid of size O(N) �O(N) �O(1) and maximum edge lengthO(N). It remains an open problem to �nd an equal sided three-dimensionallayout suh that the maximum wire length is shortened.First, we desribe how to lay out all the bidimensional arrays (shortly arrays,where no onfusion arises), then we show how to onnet adjaent arrays.All nodes and edges of all the arrays an be positioned on a unique plane �in the following way (see Fig. 5):
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8x8 array 4x4 array
2x2 array 1x1 arrayFig. 5. How to lay out all the bidimensional arrays in aM8.� put all nodes of the N �N array at even oordinates, and onnet them inthe oblivious way;� let vk be the generi node on the N=2k �N=2k array. Put it at oordinates(x+2k�1; y+2k�1), where (x; y) are the oordinates of node vk�1 to whih vkis onneted. Finally, lay out the edges of the urrent array in the obliviousway.Edges onneting di�erent arrays an be lain out as follows:� from any node vk; 0 � k � logN � 1 that is endpoint of an edge towards avk+1, draw a unit length segment orthogonal to � going to an upper plane �0(u-lines);



� from any node vk; 1 � k � logN that is endpoint of an edge towards a vk�1,draw a broken line omposed by: a unit length segment orthogonal to � goingto a lower plane �00, a unit length segment along y oordinate on �00, and asegment orthogonal to �, going from �00 to �0 (l-lines);� on �0, onnet the endpoints of the u- and l-lines orresponding to the sameedge by means of an L-like line.Observe that, in view of the position of the nodes on �, both all these edgesnever ross any node and no ollisions arise on �00.It is easy to see that the area oupied on � by all the arrays is (2N � 1)�(2N�1) and that the addition of �0 and �00 is enough to lay out all the remainingedges. Furthermore, the longest wires on � are N long (they belong to the 2� 2array); the longest edge onneting adjaent arrays onnets the 2 � 2 and the1 � 1 arrays and is N + 4 long. All these onsiderations lead to the followingresult:Theorem 4. There exists a three-dimensional grid layout of an N�N multigridMN with volume (2N � 1) � (2N � 1) � 3 and all edges have maximum wirelength O(N).3.3 X-tree NetworkIn this subsetion we will show how to lay out an N leaf X-tree T N in a three-dimensional grid having O(pN)�O(pN)�O(1) volume, that is optimum. Theauthors are going to prove that it is possible to lay out an N leaf X-tree in anequal sided three-dimensional grid, suh that the maximum wire length is N1=3instead of pN .From the de�nition itself of X-tree, we an distinguish in a T N an N leafomplete binary tree and a set of 2N � 2� logN horizontal non-tree edges. It iseasy to lay out the binary tree, as an H-tree on a bidimensional O(pN)�O(pN)grid. From now on we will all � the plane where the H-tree lies.It is also easy to lay out a part of the set of non-tree edges in view of thefollowing observation:Observation 2 Consider the set of N � 1 non-tree edges lying alternately oneah level. Eah of them an be visualized on an N leaf omplete binary tree asa ouple of edges onneting two siblings, eliminating their father. See Fig. 6.It is possible to lay out all suh N � 1 non-tree edges on a new plane �0;to this end, lead a unit length onnetion orthogonal to � towards �0 from theextremes of suh edges and lay out on �0 the required onnetions. Then, on �0there is a kind of H-tree, whose nodes are substituted by knok-knees. We aneliminate them by using two parallel planes, �0 and �00, instead of one.To manage the set of the remaining non-tree edges, we use an indutivemethod.Our laim is that given any T k; k � 4 and k power of two, its 2k � 2� log knon-tree edges an be positioned on the three-dimensional grid in the followingway:a. k=2 non-tree edges lie on �;b. k � 1 non-tree edges lie on �0 and �00 (on a unique plane in Fig. 7);. the remaining k=2� log k � 1 non-tree edges lie on a further plane �000.



Fig. 6. Non-tree edges visualized as ouples of tree edges.The basis of the indution is represented by the three-dimensional layouts ofT 4; T 8 and T 16, all depited in Fig. 7. T 4 and T 8 are initial ases, while T 16 isthe �rst X-tree following our laim.
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cFig. 7. Three-dimensional layout of T 4; T 8 and T 16.The indutive step onsists in onsidering that eah T N is onstituted by twoopies of T N=2 onneted by a newly introdued root and logN new non-treehorizontal edges (see Fig. 8). Our indutive hypothesis is that N=4 edges lie on�, N=2�1 lie on �0 and �00 and the remaining N=4� logN=2�1 lie on a furtherplane �000. The N leaf omplete binary tree inside T N an be laid out on � asunion of the two N=2 leaf binary trees inside the two opies of T N=2 and of thenew root.Let us prove that our laim remains true for T N if it is true for T N=2:a. the N=4+N=4 non-tree edges of T N=2 lying on � onstitute all non-tree edgesof T N that must lie on �;b. the non-tree edge onneting the two hildren of the root of T N takes partin the speial H-tree of planes �0 and �00; therefore, non-tree edges we put onsuh planes are (N=2� 1) + (N=2� 1) from the two T N=2 plus one, that isN � 1;. on �000 lie all non-tree edges of the two T N=2 lying on it plus all logN � 1non-tree edges onneting the two opies of T N=2 and not laid yet, that is2(N=4� logN=2� 1) + logN � 1 = N=2� logN � 1.It remains to detail how non-tree edges on �000 are settled. Observe that non-tree edges lying on �000 we add in the indutive phase onnet the right-mostnodes of a T N=2 to the left-most nodes of the other T N=2. As far as the H-treeis onerned, we an lay out on �000 diretly only d logN�12 e of suh edges; for theremaining non-tree edges we need b logN�12  extra-lines on �000 with respet tothe area oupied by the H-tree on � (see Fig. 9).



Fig. 8. A T N as union of two T N=2 and non-tree edges.
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esFig. 9. Edges laid out on � and �000 during the indutive step.Atually, at eah indutive step, it is not neessary to add b logN�12  extra-lines but only one, sine we an use the extra-lines introdued in the previoussteps. Possible knok-knees on �000 an again be avoided by means of a furtherparallel plane.By following the previous onstrution, it is possible to express the layoutvolume of a T N by means of a reursive formula, whose solution is:� 5� ( 114 pN � 3)� ( 1916pN � 3) when logN is even;� 5� ( 2316pN=2� 3)� ( 3516pN=2� 3) when logN is odd.All the previous arguments lead to the following result:Theorem 5. There exists a three-dimensional grid layout of an N leaf X-treeT N with volume O(pN) � O(pN) � O(1) and all edges have maximum wirelength O(N1=2).Unfortunately, we did not sueed in applying our indutive method to thethree-dimensional version of the H-tree introdued in [12℄, without inreasingthe volume of a non-onstant fator. It would have implied an optimal layout inan equal sided volume with optimal wire length, that is O(N1=3).
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