
Inter Process Communication (IPC)

Contents

● Introduction
● Universal IPC Facilities
● System V IPC

Introduction

● The purposes of IPC:
– Data transfer

– Sharing data

– Event notification

– Resource sharing

– Process control

Signal Generation & Handling

● Signal:
– A way to call a procedure when some events occur.

● Generation:
– when the event occurs.

● Delivery:
– when the process recognizes the signal’s arrival (handling)

Signal Generation & Handling

● Pending: between generated and delivered.
● System V: 15 signals
● 4BSD/SVR4 : 31 signals
● Signal numbers: different in different system or

versions

Signal Handling

● Default actions: each signal has one.
– Abort: Terminate the process after generating a core dump.
– Exit: Terminate the process without generating a core dump.
– Ignore: Ignores the signal.
– Stop: Suspend the process.
– Continue: Resume the process, if suspended

● Default actions may be overridden by signal handlers

Signal Handling

● issig() (Kernel call) : check for signals
– Before returning to user mode from a system call or interrupt.
– Just before blocking on an interruptible event
– Immediately after waking up from an interruptible event

● psig(): dispatch the signal
● sendsig(): invoke the user-defined handler

Signal Handling

Execute normal code

Signal
delivered

Resume normal code

Signal handler runs

Signal Generation

● Signal sources:
– Exceptions
– Other processes
– Terminal interrupts
– Job control
– Quotas
– Notifications
– Alarms

Typical Scenarios

● ^C (Ctrl-c)
● Exceptions:

– Trap
– issig(): when return to user mode.

● Pending signals
– processed one by one.

Sleep and signals

● Interruptible sleep:
– waiting for an event with indefinite time.

● Uninterruptible sleep:
– is waiting for a short term event such as disk I/O

● Pending the signal
● Recognizing it until returning to user mode or blocking on an

event
● if (issig()) psig();

Unreliable Signals

● Signal handlers are not persistent and do not mask
recurring instances of the same signal (SVR2)

● Race conditions: two ^C.
● Performance: SIG_DFL, SIG_IGN,

– Kernel does not know the content of u_signal[];

– Awake, check, and perhaps go back to sleep again (waste of
time).

Reinstalling a signal handler

void sigint_handler(int sig)

{
signal(SIGINT, sigint_handler);

 …

}

main()

{
signal(SIGINT, sigint_handler);

…

}

#include <stdio.h>
#include <sys/types.h>
#include <signal.h>

int cnt=0;
void handler(int sig)
{
 cnt++;
 printf("In the handler...\n");
 signal(SIGINT,handler);
}
main()
{
 signal(SIGINT,handler);
 while (1) {

printf("In main\n");
sleep(1);

 }
}

Unreliable Signals

Reliable Signals

● Primary features:
– Persistent handlers: need not to be reinstalled.
– Masking: A signal can be temporrtily masked (will be

delivered later)
– Sleeping processes: let the signal disposition info

visible to the kernel (kept in the proc)
– Unblock and wait: sigpause()-automatically unmasks

a signal and blocks the process.

The SVR3 implementation

int sig_received = 0;

void handler (int sig)

{
sig_received++;

}

main()

{
sigset (SIGQUIT, handler);

/* sighold(SIGQUIT); */

while (sig_received ==0) sigpause(SIGINT);

....

}

Universal IPC Facilities

● Signals
● Kill
● Sigpause
● ^C

– Expensive

– Limited: only 31 signals.

– Signals are not enough.

Pipes
● A unidirectional, FIFO, unstructured data stream

of fixed maximum size.
 int pipe (int * filedes)
● Write to filedes[1]
● Read from filedes[0]

Data

P
P

P

P

P

Fig 6-1 Data flow through a pipe.

SVR4 Pipes

● Bidirectional:
– status = pipe(int fildes[2]);

● write to fildes[1] & read from fildes[0]
● Or viceversa

– status = fattach(int fildes, char *path)

– fdetach()

Process Tracing

● ptrace(cmd, pid, addr, data)
– pid is the process ID

– addr refers to a location

– cmd: r/w, intercept, set or delete watchpoints, resume
the execution

– Data: interpreted by cmd

– Used by debuggers sdb or dbx

System V IPC

● Common Elements
– Key: resource ID

– Creator: Ids

– Owner: Ids

– Permissions: r/w/x for owner/group/others

Semaphores

● Special variable called a semaphore is used for
“signaling”

● If a process is waiting for a “signal”, it is
suspended until that “signal” is sent

● “Wait” and “signal” operations cannot be
interrupted

● Queue is used to hold processes waiting on the
semaphore

P/V Operations

● P(wait):
– s=s-1;

– if (s<0) block();

● V(signal):
– s= s+1;

– If (s>=0) wake();

Producer/Consumer Problem
● One or more producers are generating data and

placing these in a buffer
– A single consumer is taking items out of the buffer one

at time

– Only one producer or consumer may access the buffer
at any one time

– Three semaphores are used:
● Amount of items in the buffer
● Number of free entries in the buffer
● Right to use the buffer

Producer Function - Pseudocode
#define SIZE 100

semaphore s=1

semaphore n=0

semaphore e= SIZE

void producer(void)

{

 while (TRUE){

 produce_item();

 wait(e);

 wait(s);

 enter_item();

 signal(s);

 signal(n);

 }

}

Consumer Function

void consumer(void)

{

 while (TRUE){

 wait(n);

 wait(s);

 remove_item();

 signal(s);

 signal(e);

 }

}

Semaphore

 semid = semget(key, count, flag)
 status = semop(semid, sops, nsops)

struct sembuf{
 unsigned short sem_num;
 short sem_op; /*>0; =0, <0*/
 short sem_flg;
}

Add sem_op to the value, wake up

Block until the value becomes
zero

Block until the value becomes greater than
or equal to the absolute value of sem_op,
then subtract sem_op from that value

DeadLock

S2

Proc BS1

Proc A

lock

lock

Message Queue

msgqid = msgget(key, flag)
msgsnd(msgqid, msgp, size, flag)
struct msqid_ds {
 struct ipc_perm msg_perm;
 struct msg* msg_first;
 struct msg* msg_last;
 unshort msg_cbytes;
 unshort msg_qbytes;
 unshort msg_qnum;
}
count =msgrcv(msgqid, msgp, size, msgtype, flag)

An example of a msq

msqid
msg_perm;
msg_first;
msg_last;
msg_cbytes;
msg_qbytes;
msg_qnum;

Link
Type=100
Length=1
data

Link
Type=200
Length=2

Data

NULL
Type=300
Length=3

Data

msqid_ds

Message Queue

struct
msgqid_ds

msg msgmsg

P

senders

P

receivers

PP

Shared Memory

● A portion of physical memory that is share by
multiple processes.

Process A Process B

0x30000

0x50000
0x50000

0x70000Shared memory

region

Shared Memory API

shmid = shmget(key, size, flag)
addr = shmat(shmid, shmaddr, shmflag)
shmdt(shmaddr)

Client/server with shared memory

client server

kernel

Shared memory

Input fileOutput file

Discussion

● IPC is similar to the file system
● key = ftok(char *pathname, int ndx)

● Security:
– If a process holds the key, it might access the

resource.

Sockets

● A socket is an endpoint of communication.
● An in-use socket it usually bound with an

address; the nature of the address depends on the
communication domain of the socket.
– e.g. 161.25.19.8:1625 refers to port 1625 on host

161.25.19.8

Sockets

Sockets

● Communication consists between a pair of
sockets.

● A characteristic property of a domain is that
processes communication in the same domain use
the same address format.

Sockets

● A single socket can communicate in only one
domain

● Commonly implemented domains:
– UNIX (AF_UNIX)

– Internet (AF_INET)

– XEROX Network Service (NS) (AF_NS)

Socket Types

● Stream
– Reliable, duplex, sequenced data streams.

– Supported in Internet domain by the TCP protocol.

– In UNIX domain, pipes are implemented as a pair of
communicating stream sockets.

Socket Types

● Sequenced packet
– Provide similar data streams, except that record

boundaries are provided.

– Used in XEROX AF_NS protocol.

Socket Types
● Datagram:

– Transfer messages of variable size in either direction.

– Supported in Internet domain by UDP protocol

● Reliably delivered message:
– Transfer messages that are guaranteed to arrive.

– Almost unsupported.

● Raw:
– allow direct access by processes to the protocols that

support the other socket types.

– E.g., in the Internet domain, it is possible to reach
TCP, IP beneath that, or a deeper Ethernet protocol.

– Useful for developing new protocols.

Socket Types

Socket System Calls

● The socket() call creates a socket
● A name is bound to a socket by bind()
● The connect() system call is used to initiate a

connection

Socket System Calls
● A server process usually calls:

– socket() to create a socket

– bind() to bind the address of its service to that socket.

– listen() to tell the kernel that it is ready to accept
connections from clients.

– accept() to accept individual connections.

– (eventually) fork() a new process after the accept

Socket System Calls (Cont.)

● close()
– terminates a connection and destroys the associated

socket

● select()
– multiplex data transfers on several file descriptors and

/or socket descriptors

