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Chapter 1

| ntroduction

Robotics and computer vision are interdisciplinary subjects at the intersection of engineering and computer science.
By their nature, they deal with both computers and the physical world. Although the former are in the latter, the
workings of computers are best described in the black-and-white vocabulary of discrete mathematics, which isforeign
to most classical models of reality, quantum physics notwithstanding.

This class surveys some of the key tools of applied math to be used at the interface of continuous and discrete. It
isnot on robotics or computer vision. These subjects evolve rapidly, but their mathematical foundationsremain. Even
if you will not pursue either field, the mathematics that you learn in this class will not go wasted. To be sure, applied
mathematics is a discipline in itself and, in many universities, a separate department. Conseguently, this class can
be a quick tour at best. It does not replace calculus or linear algebra, which are assumed as prerequisites, nor isit a
comprehensive survey of applied mathematics. What is covered is a compromise between the time available and what
is useful and fun to talk about. Even if in some cases you may have to wait until you take a robotics or vision class
to fully appreciate the usefulness of a particular topic, | hope that you will enjoy studying these subjects in their own
right.

1.1 Who Should Take This Class

The main goal of thisclassisto present a collection of mathematical toolsfor both understanding and solving problems
in roboticsand computer vision. Several classes at Stanford cover the topics presented in this class, and do so in much
greater detail. If you want to understand the full details of any one of the topicsin the syllabus below, you should take
one or more of these other classes instead. If you want to understand how these tools are implemented numerically,
you should take one of the classes in the scientific computing program, which again cover these issues in much better
detail. Finally, if you want to understand robotics or vision, you should take classes in these subjects, since this course
isnot on robotics or vision.

On the other hand, if you do plan to study robotics, vision, or other similar subjects in the future, and you regard
yourself asauser of the mathematical techniques outlined in the syllabus bel ow, then you may benefit from thiscourse.
Of the proofs, we will only see those that add understanding. Of the implementation aspects of algorithms that are
availablein, say, Matlab or LApack, we will only see the parts that we need to understand when we use the code.

In brief, we will be able to cover more topics than other classes because we will be often (but not always)
unconcerned with rigorous proof or implementation issues. The emphasis will be on intuition and on practicality of
the various algorithms. For instance, why are singular values important, and how do they relate to eigenvalues? What
are thedangers of Newton-style minimization? How does a Kaman filter work, and why do PDEs|ead to sparse linear
systems? In this spirit, for instance, we discuss Singular Value Decomposition and Schur decomposition both because
they never fail and because they clarify the structure of an algebraic or a differentia linear problem.
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1.2 Syllabus

Here istheideal syllabus, but how much we cover depends on how fast we go.

1. Introduction
2. Unknown numbers

2.1 Algebraic linear systems
2.1.1 Characterization of the solutionsto alinear system
2.1.2 Gaussian elimination
2.1.3 The Singular Value Decomposition
2.1.4 The pseudoinverse
2.2 Function optimization
2.2.1 Newton and Gauss-Newton methods
2.2.2 Levenberg-Marquardt method
2.2.3 Congtraintsand Lagrange multipliers

3. Unknown functions of onereal variable

3.1 Ordinary differential linear systems

3.1.1 Eigenvaluesand eigenvectors

3.1.2 The Schur decomposition

3.1.3 Ordinary differential linear systems

3.1.4 The matrix zoo

3.1.5 Real, symmetric, positive-definite matrices
3.2 Statistical estimation

3.2.1 Linear estimation

3.2.2 Weighted least squares

3.2.3 The Kaman filter

4. Unknown functions of several variables

4.1 Tensor fields of several variables

4.1.1 Grad, div, curl
4.1.2 Line, surface, and volume integrals
4.1.3 Green'stheorem and potential fields of two variables
4.1.4 Stokes' and divergence theorems and potential fields of three variables
4.1.5 Diffusionand flow problems
4.2 Partia differential equations and sparse linear systems
4.2.1 Finitedifferences
4.2.2 Direct versus iterative solution methods
4.2.3 Jacobi and Gauss-Seidel iterations
4.2.4 Successive overrelaxation

INTRODUCTION
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1.3 Discussion of the Syllabus

In robotics, vision, physics, and any other branch of science whose subject belongsto or interacts with the real world,
mathematical models are devel oped that describe the rel ationship between different quantities. Some of these quantities
are measured, or sensed, while others are inferred by calculation. For instance, in computer vision, equations tie the
coordinates of pointsin space to the coordinates of corresponding pointsin different images. |mage points are data,
world points are unknowns to be computed.

Similarly, inrobotics, arobot arm ismodel ed by equationsthat describe where each link of therobotisasafunction
of the configuration of thelink’sown jointsand that of thelinksthat support it. The desired position of the end effector,
as well as the current configuration of al the joints, are the data. The unknowns are the motions to be imparted to the
joints so that the end effector reaches the desired target position.

Of course, what is data and what is unknown depends on the problem. For instance, the vision system mentioned
above could be looking at the robot arm. Then, the robot’s end effector position could be the unknowns to be solved
for by the vision system. Once vision has solved its problem, it could feed the robot’s end-effector position as data for
the robot controller to usein its own motion planning problem.

Sensed data are invariably noisy, because sensors have inherent limitations of accuracy, precision, resolution, and
repeatability. Consequently, the systems of equations to be solved are typicaly overconstrained: there are more
equations than unknowns, and it is hoped that the errors that affect the coefficients of one equation are partially
cancelled by opposite errors in other equations. This is the basis of optimization problems. Rather than solving a
minimal system exactly, an optimization problem tries to solve many equations simultaneously, each of them only
approximately, but collectively as well as possible, according to some global criterion. Least squares is perhaps the
most popular such criterion, and we will devote a good deal of attention toit.

In summary, the problemsencountered in roboticsand vision are optimization problems. A fundamental distinction
between different classes of problems reflects the complexity of the unknowns. In the simplest case, unknowns are
scalars. When there is more than one scalar, the unknown is a vector of numbers, typically either real or complex.
Accordingly, thefirst part of this course will be devoted to describing systems of agebraic equations, especialy linear
equations, and optimi zati on techniquesfor problemswhose solutionisavector of reals. Themain tool for understanding
linear algebraic systems is the Singular Value Decomposition (SVD), which is both conceptually fundamental and
practically of extreme usefulness. When the systems are nonlinear, they can be solved by varioustechniquesof function
optimization, of which we will consider the basic aspects.

Since physical quantities often evolve over time, many problems arise in which the unknowns are themselves
functionsof time. Thisisour second class of problems. Again, problems can be cast as a set of equationsto be solved
exactly, and this leads to the theory of Ordinary Differential Equations (ODEs). Here, “ordinary” expresses the fact
that the unknown functions depend on just one variable (e.g., time). The main conceptual tool for addressing ODEsis
the theory of eigenvalues, and the primary computational tool is the Schur decomposition.

Alternatively, problems with time varying solutions can be stated as minimization problems. When viewed
globally, these minimization problemslead to the calculus of variations. Althoughimportant, we will skip the calculus
of variations in this class because of lack of time. When the minimization problems above are studied locally, they
become state estimation problems, and the relevant theory is that of dynamic systems and Kalman filtering.

The third category of problems concerns unknown functions of more than one variable. The images taken by a
moving camera, for instance, are functions of time and space, and so are the unknown quantitiesthat one can compute
from theimages, such asthedistance of pointsintheworldfromthe camera. Thisleadsto Partial Differential equations
(PDEs), or to extensions of the calculus of variations. In this class, we will see how PDEs arise, and how they can be
solved numerically.



6 CHAPTER 1. INTRODUCTION

1.4 Books

The class will be based on these lecture notes, and additional notes handed out when necessary. Other useful references
include the following.

¢ R. Courant and D. Hilbert, Methods of Mathematical Physics, Volume | and 11, John Wiley and Sons, 1989.
e D. A. Danielson, Vectors and Tensors in Engineering and Physics, Addison-Wesley, 1992.
e J. W. Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

A. Gelb et al., Applied Optimal Estimation, MIT Press, 1974.

P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, 1993.

e G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd Edition, Johns Hopkins University Press, 1989, or
3rd edition, 1997.

e W. H. Press, B. P Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C, 2nd Edition,
Cambridge University Press, 1992.

G. Strang, Introduction to Applied Mathematics, Wellesley- Cambridge Press, 1986.

A. E. Taylor and W. R. Mann, Advanced Calculus, 3rd Edition, John Wiley and Sons, 1983.
e L. N. Trefethen and D. Bau, 111, Numerical Linear Algebra, SIAM, 1997.



Chapter 2

Algebraic Linear Systems

An algebraic linear system is a set of m equations in » unknown scalars, which appear linearly. Without loss of
generality, an algebraic linear system can be written as follows:

Ax =D 2.1)

where A isanm x n matrix, X is an n-dimensional vector that collects all of the unknowns, and b is a known vector
of dimension m. In thischapter, we only consider the cases in which the entries of A, b, and x are real numbers.

Two reasons are usually offered for the importance of linear systems. Thefirst isapparently deep, and refersto the
principle of superposition of effects. For instance, in dynamics, superposition of forces states that if force f; produces
acceleration a; (both possibly vectors) and forcef, produces acceleration az, then the combined forcef; + of, produces
acceleration & + aaz. Thisis Newton's second law of dynamics, athough in a formulation less common than the
equivalent f = ma. Because Newton’slaws are at the basis of the entire edifice of Mechanics, linearity appearsto bea
fundamental principle of Nature. However, like all physical laws, Newton's second law is an abstraction, and ignores
viscosity, friction, turbulence, and other nonlinear effects. Linearity, then, is perhaps morein the physicist’smind than
inreality: if nonlinear effects can be ignored, physical phenomena are linear!

A more pragmatic explanation is that linear systems are the only ones we know how to solve in general. This
argument, which is apparently more shallow than the previous one, is actualy rather important. Here is why. Given
two algebraic equationsin two variables,

f(z,y)
g(z,y) = 0,
we can eliminate, say, y and obtain the equivalent system
Fz) = 0
y = hx).

Thus, the original system is as hard to solve as it is to find the roots of the polynomia F in a single variable.
Unfortunately, if f and ¢ have degrees d; and d,, the polynomial /" has generically degree d;d,,.

Thus, the degree of a system of equationsis, roughly speaking, the product of the degrees. For instance, a system of
m quadratic equations corresponds to a polynomial of degree 2™ . The only case in which the exponential is harmless
iswhenitsbaseis1, that is, when the system islinear.

In this chapter, we first review afew basic facts about vectors in sections 2.1 through 2.4. More specifically, we
develop enough language to talk about linear systems and their solutions in geometric terms. In contrast with the
promise made in the introduction, these sections contain quite a few proofs. Thisis because alarge part of the course
material is based on these notions, so we want to make sure that the foundations are sound. In addition, some of the
proofs lead to useful algorithms, and some others prove rather surprising facts. Then, in section 2.5, we characterize
the solutions of linear algebraic systems.
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2.1 Linear (In)dependence

Givenn vectorsay, . . ., a, and n real numberszy, . . ., z,, the vector
b= Z ;85 (2.2)
j=1
issaid to be alinear combinationof ay, .. ., a, with coefficients x4, . . ., 2.
The vectors &, . . ., a, are linearly dependent if they admit the null vector as a nonzero linear combination. In
other words, they are linearly dependent if thereis a set of coefficients x4, . . ., z,,, not all of which are zero, such that
> w8, =0. (23
j=1
For later reference, it is useful to rewrite the last two equalitiesin a different form. Equation (2.2) is the same as
Ax=Db (2.9
and equation (2.3) isthe same as
Ax=0 (2.5
where
1 bl
A= [ a - a, ] , X = , b=
Ln bm

If you are not convinced of these equival ences, take the time to write out the components of each expression for asmall
example. Thisisimportant. Make sure that you are comfortable with this.

Thus, the columns of a matrix A are dependent if there is a nonzero solution to the homogeneous system (2.5).
Vectors that are not dependent are independent.

Theorem 2.1.1 Thevectorsa, . . ., a, are linearly dependent iff! at least one of themis a linear combination of the
others.

Proof.  In one direction, dependency means that there is a nonzero vector x such that

Zn: r;a; = 0.
j=1

Let xz;, be nonzero for some k. We have

n n
ijaj:xkak+ Z xjaj:O
Jj=1 J=1,5#k

o that
a=- > g (26)

as desired. The converse isproven similarly: if

L«iff” means“if and only if.”
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for some k&, then
Z l‘jaj =0
j=1

by lettingz;, = —1 (so that x is nonzero). A2

We can make thefirst part of the proof above even more specific, and state the following

Lemma2.1.2 If n nonzerovectorsay, .. ., a, arelinearly dependent then at least one of themisa linear combination
of the ones that precede it.

Proof.  Justlet & bethelast of the nonzero ;. Thenz; = 0 for j > & in(2.6), which then becomes

N g
& = Z D
Jj<k
as desired. A
2.2 Basis
Aseta,...,a, issadtobeabasisforaset B of vectorsif thea; are linearly independent and every vector in B can

be written as a linear combination of them. B issaid to be a vector space if it contains all the linear combinations of
its basis vectors. In particular, thisimplies that every linear space contains the zero vector. The basis vectors are said
to span the vector space.

Theorem 2.2.1 Given a vector b inthe vector space B andabasisay, .. ., a, for B, the coefficients x4, . . ., z,, such

that .
b= Z ;85
Jj=1
are uniquely determined.

Proof. Letaso

b= Zn:x;ay :
ij=1

Then,
0=b-b=> wza —> zja=> (r;—z})a
j=1 j=1 j=1
but because the a; are linearly independent, thisis possible only when z; — =’ = 0 for every ;. A

The previoustheorem isavery important result. An equivalent formulationis the following:

If the columns ay, . . ., a, of A are linearly independent and the system Ax = b admits a solution, then
the solutionis unique.

2This symbol marks the end of a proof.



10 CHAPTER 2. ALGEBRAIC LINEAR SYSTEMS

Pause for a minute to verify that thisformulation is equivalent.
Theorem 2.2.2 Two different bases for the same vector space B have the same number of vectors.

Proof. Leta,...,a,andai,...,a, betwo different basesfor B. Then each & isin B (why?), and can therefore
be written asalinear combinationof ay, . . ., a,. Consequently, the vectors of the set

G=a,a,...,a,

must be linearly dependent. We call a set of vectors that contains a basis for B a generating set for B. Thus, G isa
generating set for B.

The rest of the proof now proceeds as follows. we keep removing a vectors from G and replacing them with &
vectorsin such away asto keep G agenerating set for B. Then we show that we cannot run out of a vectors before we
run out of &’ vectors, which provesthat n > n’. We then switch theroles of a and & vectors to conclude that n’ > n.
Thisprovesthat n = n’.

Fromlemma 2.1.2, one of the vectorsin G isalinear combination of those preceding it. This vector cannot be &, ,
since it has no other vectors precedingit. So it must be one of thea; vectors. Removing the latter keeps ' agenerating
set, since the removed vector depends on the others. Now we can add &, to &, writingit right after a/ :

/ /
G=a,,a,,....

G is till agenerating set for B.

Let us continue this procedure until we run out of either a vectors to remove or @’ vectors to add. The a vectors
cannot run out first. Suppose in fact per absurdum that GG is now made only of & vectors, and that there are till
left-over & vectors that have not been put into G. Since the @'s form a basis, they are mutually linearly independent.
Since B is avector space, al theasarein B. But then G cannot be a generating set, since the vectors in it cannot
generate the |eft-over @'s, which are independent of those in G. Thisis absurd, because at every step we have made
sure that G remains a generating set. Consequently, we must run out of a’s first (or simultaneously with the last a).
Thatis, n > n'.

Now we can repeat the whole procedure with the roles of a vectors and & vectors exchanged. This shows that
n’ > n, and the two results together imply that n = n'. A

A consequence of thistheorem isthat any basis for R™ has m vectors. In fact, the basis of elementary vectors
e; = jth column of the m x m identity matrix

isclearly abasis for R™, since any vector
by

b
can be written as

b= i bje]'
ij=1

and the e; are clearly independent. Since this elementary basis has m vectors, theorem 2.2.2 implies that any other
basisfor R™ has m vectors.

Another consequence of theorem 2.2.2 isthat »n vectors of dimension m < n are bound to be dependent, since any
basisfor R™ can only have m vectors.

Since all bases for a space have the same number of vectors, it makes sense to define the dimension of a space as
the number of vectorsin any of its bases.
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2.3 Inner Product and Orthogonality

In this section we establish the geometric meaning of the algebraic notions of norm, inner product, projection, and
orthogonality. The fundamental geometric fact that is assumed to be known isthe law of cosines. given atrianglewith
sidesa, b, ¢ (see figure 2.1), we have

a?=b% 4 ¢? — 2bccosb

where ¢ is the angle between the sides of length b and ¢. A special case of thislaw is Pythagoras theorem, obtained
whend = +x/2.

Figure 2.1: The law of cosines states that a? = b2 + ¢? — 2bc cos 6.

In the previous section we saw that any vector in R™ can be written as the linear combination
b=> be (2.7)
j=1

of the elementary vectors that point along the coordinate axes. The length of these elementary vectors is clearly one,
because each of them goes from the origin to the unit point of one of the axes. Also, any two of these vectors form a
90-degree angle, because the coordinate axes are orthogonal by construction. How long isb? From equation (2.7) we
obtain

b=1be + Z bje]'
j=2

and thetwo vectors bye, and 37, b;€; are orthogonal. By Pythagoras' theorem, the square of the length ||b]| of b is
IbII” =03+ 11> bieill”
j=2

Pythagoras' theorem can now be applied again to the last sum by singling out its first term b,e, and so forth. In

conclusion,
m
2 __ 2
Ibl|? = > 0% .
j:l

This result extends Pythagoras' theorem to m dimensions.
If we define the inner product of two m-dimensional vectors as follows:

m
T _ . .
b'c= Zb]c] ,
j=1

then
Ib]|> = b’b . (2.8)

Thus, the squared length of a vector is the inner product of the vector with itself. Here and elsewhere, vectors are
column vectors by default, and the symbol ” makes them into row vectors.
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Theorem 2.3.1
b"c = ||b]|[|cl] cos ¢
where 6 isthe angle between b and c.
Proof.  Thelaw of cosines applied to the triangle with sides ||b|], ||c||, and ||b — || yields
[Ib—cll* = [blI* + llcll* — 2[|b]| ||c]| cos &
and from equation (2.8) we obtain
b”b+ c’'c—2b"c=b"b+c’c—2||b||||c|| cos b .

Canceling equal terms and dividing by -2 yieldsthe desired result. A

Corollary 2.3.2 Two nonzero vectors b and ¢ in R™ are mutually orthogonal iff b” ¢ = 0.

Proof. When ¢ = +7/2, the previoustheorem yieldsb’ ¢ = 0. A

Given two vectors b and ¢ applied to the origin, the projection of b onto c is the vector from the origin to the point
p ontheline through c that is nearest to the endpoint of b. See figure 2.2.

Figure 2.2: The vector from the origin to point p is the projection of b onto c. The line from the endpoint of b to p is
orthogonal to c.

Theorem 2.3.3 The projection of b onto ¢ isthe vector

p= Pcb
where Fg is the following square matrix:
cct
Pc=—.
€~ e

Proof.  Since by definition point p is on the line through c, the projection vector p has the form p = ac, where
a is some real number. From elementary geometry, the line between p and the endpoint of b is shortest when it is
orthogonal to c:

c’'(b—ac)=0
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which yields
)
~ cTc
so that
p=aC=Ca= ﬂ b
c’c
as advertised. A

2.4 Orthogonal Subspaces and the Rank of aMatrix

Linear transformations map spaces into spaces. It isimportant to understand exactly what is being mapped into what
in order to determine whether alinear system has solutions, and if so how many. This section introduces the notion of
orthogonality between spaces, defines the null space and range of a matrix, and its rank. With these tools, we will be
able to characterize the solutionsto alinear system in section 2.5. In the process, we a so introduce a useful procedure
(Gram-Schmidt) for orthonormalizing a set of linearly independent vectors.

Two vector spaces A and B are said to be orthogonal to one another when every vector in A isorthogonal to every
vector in B. If vector space A isa subspace of R™ for some i, then the orthogonal complement of A isthe set of all
vectorsin R™ that are orthogonal to all the vectorsin A.

Notice that complement and orthogonal complement are very different notions. For instance, the complement of
the zy planein R® isall of R® except the zy plane, while the orthogonal complement of the zy plane isthe = axis.

Theorem 2.4.1 Anybasisay, ..., a, for a subspace A of R™ can be extended into a basisfor R™ by adding m — n
vectorsa, 41, . . ., &y,

Proof. If n = m wearedone. If n < m, the given basis cannot generate all of R™, so there must be a vector, call
ita,+1, thatislinearly independent of ay, . . ., a,. Thisargument can be repeated until the basis spans al of R™, that
is, until m = n. A

Theorem 2.4.2 (Gram-Schmidt) Given n vectorsa, .. ., a,, the following construction

r=20
forj=1ton
& =a; -y, (a a)q
it | # O
r=r—+1
9 = ma
end
end

Sl

TS

yields a set of orthonormal 3 vectorsq; . . ., g, that span thesame spaceasay, . . ., a,.

Proof.  We first prove by induction on r that the vectors g, are mutually orthonormal. If » = 1, thereislittle to
prove. The normalizationin the above procedure ensures that g, has unit norm. Let us now assume that the procedure

3 Orthonormal means orthogonal and with unit norm.
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above has been performed anumber j — 1 of times sufficient tofind » — 1 vectorsqg, . . ., g,_,, and that these vectors
are orthonormal (the inductive assumption). Then for any ¢ < r we have

r—1
9/ & =afa; — > (d/a)afq, =0
=1
because theterm g7 a; cancels thei-th term (g7 a;) g7 g, of the sum (remember that g7 g, = 1), and theinner products
g7 q, are zero by the inductive assumption. Because of the explicit normalization step g, = a;/||&]|, thevector q,., if
computed, has unit norm, and because g a; = 0, itfollwosthat g, isorthogonal to all its predecessors, afq, = 0 for
i=1,...,r—1.
Finally, we notice that the vectors q; span the same space as the a;s, because the former are linear combinations
of the latter, are orthonormal (and therefore independent), and equal in number to the number of linearly independent
vectorsinay, . . ., a,. A

Theorem 2.4.3 If A isasubspace of R™ and A+ isthe orthogonal complement of A inR™, then

dim(A) + dim(AY) =m .

Proof. Leta,...,a, beabassfor A. Extend thisbasisto abasisa, ..., a,, for R (theorem 2.4.1). Orthonor-
malize this basis by the Gram-Schmidt procedure (theorem 2.4.2) to obtainq;, . . ., q,,. By construction, q,, . ..,d,
span A. Because the new basis is orthonormal, al vectors generated by q,, , 4, . - -, q,,, are orthogonal to all vectors
generated by q, . . ., d,,, SO there is a space of dimension at least m — n that is orthogonal to A. On the other hand,
the dimension of this orthogonal space cannot exceed m — n, because otherwise we would have more than m vectors
inabasisfor R”. Thus, the dimension of the orthogonal space A+ isexactly m — n, as promised. A

We can now start to talk about matrices in terms of the subspaces associated with them. The null space null(A)
of an'm x n matrix A isthe space of al n-dimensional vectors that are orthogonal to the rows of A. Therange of A
is the space of all m-dimensional vectors that are generated by the columnsof A. Thus, x € null(A) iff Ax = 0, and
b € range(4) iff AXx = b for somex.

Fromtheorem 2.4.3, if null(A) has dimension &, then the space generated by therowsof A hasdimensionr = n—h,
thatis, A hasn — h linearly independent rows. Itis not obviousthat the space generated by the columns of A hasaso
dimension » = n — h. Thisisthe point of the following theorem.

Theorem 2.4.4 The number » of linearly independent columns of any m x n matrix A isequal to the number of its
independent rows, and
r=n—nh

where 2 = dim(null(A4)).

Proof.  We have aready proven that the number of independent rowsis n — A. Now we show that the number of
independent columnsisalso n — h, by constructing a basis for range( A).

Letvy,...,Vv, beabasisfor null(4), and extend this basis (theorem 2.4.1) into abasis vy, . . ., v, for R™. Then
we can show that the n — & vectors Avy41, ..., Av, areabasisfor therange of A.

First, these n — h vectors generate the range of A. In fact, given an arbitrary vector b € range( A), there must be
alinear combination of the columns of A that isequal to b. In symbols, there is an n-tuple x such that Ax = b. The
n-tuple x itself, being an element of R™, must be some linear combination of vy, . . ., v,,, our basis for R™:

n

XIZC]'VJ'.

j=1
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Thus,

n

b=Ax= AZH:C]'VJ' = Zn:CjAVj = Z CjAVj
ij=1

j=1 j=h+1

sincevs, ...,V spannull(4), sothat Av; = 0forj =1,..., h. Thisprovesthat then — h vectors Avy4q, ..., Av,
generate range(A).

Second, we prove that the n — h vectors Avy41, .. ., Av,, arelinearly independent. Suppose, per absurdum, that
they are not. Then there exist numbers zs41, . . ., z,, not al zero, such that

n

Z l‘jAVj =0

j=h+1
S0 that

A Zn: l‘jVjIO.

j=h+1

But then the vector 377, | ;V; isinthe null space of A. Sincethevectorsvi, . . ., v, areabasis for null(A), there
must exist coefficients x4, . . ., «;, such that

n h
Z r;V; = Z Vi,
j=h+1 ij=1

in conflict with the assumption that the vectors v, . . ., v,, are linearly independent. A

Thanksto thistheorem, we can define therank of A to be equivalently the number of linearly independent columns
or of linearly independent rows of A:

rank(A4) = dim(range(4)) = n — dim(null(4)) .

2.5 The Solutionsof aLinear System

Thanks to the results of the previous sections, we now have a complete picture of the four spaces associated with an
m X n matrix A of rank » and null-space dimension A:

range(A); dimension r» = rank(A)
null(A); dimension 2
range(A)*+; dimensionm — r
null(4)L; dimensionr =n — h .
The space range(A)* is called the left nullspace of the matrix, and null(A)~ is called the rowspace of A. A
frequently used synonym for “range” is column space. It should be obvious from the meaning of these spaces that

nul(A)t = range(A”)
range(A)- = null(4T)

where A” isthe transpose of A, defined as the matrix obtained by exchanging the rows of A with its columns.

Theorem 2.5.1 The matrix A transforms a vector X in its null space into the zero vector, and an arbitrary vector x
into a vector in range(A).
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This allows characterizing the set of solutionsto linear system as follows. Let
Ax=Db
be an m x n system (m can be less than, equal to, or greater than n). Also, let
r = rank(A)
be the number of linearly independent rows or columns of A. Then,

b ¢ range(A) = nosolutions
b € range(A) = oo™ " solutions

with the convention that co® = 1. Here, oo” isthe cardinality of a k-dimensional vector space.

In thefirst case above, there can be no linear combination of the columns (no x vector) that gives b, and the system
issaid to be incompatible. In the second, compatible case, three possibilities occur, depending on the relative sizes of
r,m,n.

e Whenr = n = m, thesystem isinvertible. Thismeansthat thereis exactly one x that satisfies the system, since
the columns of A span all of R™. Notice that invertibility depends only on A, not on b.

e Whenr» = n and m > n, the system isredundant. There are more equations than unknowns, but since b isin
the range of A thereis alinear combination of the columns (a vector x) that produces b. In other words, the
equations are compatible, and exactly one solution exists. *

e When r < n the system is underdetermined. This means that the null space is nontrivia (i.e., it has dimension
h > 0), and there is a space of dimension h = n — r of vectors x such that Ax = 0. Since b isassumed tobein
the range of A, there are solutionsx to Ax = b, but then for any y € null(4) asox + y isasolution:

Ax=b, Ay=0 = A(x+y)=b
and this generates the oo” = 0™ ~" solutions mentioned above.

Noticethat if » = n then n cannot possibly exceed m, so the first two cases exhaust the possibilitiesfor » = n. Also,
r cannot exceed either m or n. All the cases are summarized in figure 2.3.

Of course, listingall possibilitiesdoes not provide an operational method for determining the type of linear system
for a given pair A, b. Gaussian elimination, and particularly its version caled reduction to echelon formis such a
method, and is summarized in the next section.

2.6 Gaussian Elimination

Gaussian elimination is an important technique for solving linear systems. In addition to always yielding a solution,
no matter whether the system isinvertible or not, it also allows determining the rank of a matrix.

Other solution techniques exist for linear systems. Most notably, iterative methods solve systems in a time that
depends on the accuracy required, while direct methods, like Gaussian elimination, are done in a finite amount of
time that can be bounded given only the size of a matrix. Which method to use depends on the size and structure
(e.g., sparsity) of the matrix, whether more information is required about the matrix of the system, and on numerical
considerations. More on thisin chapter 3.

Consider them x n system

Ax=Dh (2.9

4 Notice that the technical meaning of “redundant” has a stronger meaning than “with more equationsthan unknowns.” Thecaser < n < m is
possible, has more equations () than unknowns (), admits asolutionif b € range(4), but is called “underdetermined” because there are fewer
(r) independent equations than there are unknowns (see next item). Thus, “redundant” means “with exactly one solution and with more equations
than unknowns.”
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b in range(A)
yes no
r=n incompatible
yes no
m=n under determined
yes no
invertible redundant

Figure 2.3: Types of linear systems.

which can be square or rectangular, invertible, incompatible, redundant, or underdetermined. In short, there are no
restrictions on the system. Gaussian elimination replaces the rows of this system by linear combinations of the rows
themselves until A ischanged into amatrix U that isin the so-called echelon form. This means that

o Nonzero rows precede rows with al zeros. The first nonzero entry, if any, of arow, is called a pivot.
¢ Below each pivot isacolumn of zeros.
o Each pivot liesto the right of the pivot in the row above.

The same operations are applied to the rows of A and to those of b, which istransformed to a new vector ¢, so equality
ispreserved and solving the final system yields the same solution as solving the original one.
Once the system is transformed into echelon form, we compute the solution x by backsubstitution, that is, by
solving the transformed system
Ux=c.

2.6.1 Reduction to Echelon Form

The matrix A is reduced to echelon form by a process in m — 1 steps. The first step is applied to U()) = A and
clV) = b. The k-th step isappliedto rows , . .., m of U*) and ¢*) and produces U/ *+1) and c**+1). The last step
produces U™ = [7 and ¢ = c. Initially, the*pivot columnindex” p isset to one. Hereisstep k, where u;; denotes
entry ¢, j of U/ %):

Skip no-pivot columns If u;, iszero for every i = k, ..., m, thenincrement p by 1. If p exceeds n stop?

Row exchange Now p < n and u;, isnonzero for some k < i < m. Let! beonesuch valueof . If | £ k, exchange
rows! and k of /%) and of ¢(¥).

Triangularization The new entry uy, is nonzero, and is called the pivot. For ¢ = k& + 1, ..., m, subtract row & of
U%) multiplied by w, /uy, from row i of U*), and subtract entry k of c*) multiplied by w;, /uy, from entry i
of c(®), Thiszerosall the entriesin the column below the pivot, and preserves the equality of |eft- and right-hand
side.

When thisprocessisfinished, U/ isin echelon form. In particular, if the matrix is square and if all columns have a
pivot, then U is upper-triangular.

5“Stop” means that the entire algorithm is finished.
6 Different ways of selecting [ here lead to different numerical properties of the algorithm. Selecting the largest entry in the column leads to
better round-off properties.
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2.6.2 Backsubstitution

A system
Ux=c (2.10)

inechelon formiseasily solved for x. To seethis, wefirst solvethe system symbolically, leaving undetermined variables
specified by their name, and then transform this solution procedure into one that can be more readily implemented
numerically.

Let » be the index of the last nonzero row of U/. Since thisis the number of independent rows of U, r is the rank
of U. Itisalso therank of A, because A and U admit exactly the same solutionsand are equal insize. If » < m, the
last m — r equations yield a subsystem of the following form:

LTri41 Cri41

LTm Cm

Let us call thisthe residual subsystem. If on the other hand » = m (obviously » cannot exceed m), thereisno residual
subsystem.

If thereisaresidua system (i.e, » < m) and someof ¢.41, . . ., ¢n, @re nonzero, then the equations corresponding
to these nonzero entries are incompatible, because they are of the form 0 = ¢ with ¢; # 0. Since no vector x can
satisfy these equations, the linear system admits no solutions: it isincompatible.

Let us now assume that either thereis no residual system, or if thereisoneit is compatible, thatis, ¢,41 = ... =
em = 0. Then, solutions exist, and they can be determined by backsubstitution, that is, by solving the equations
starting from the last one and replacing the result in the equations higher up.

Backsubstitutionsworks as follows. First, remove the residual system, if any. We are left withan » x n system. In
thissystem, call the variables corresponding to the » columns with pivotsthe basic variables, and call the other n — r
the free variables. Say that the pivot columnsare j, . . ., j.. Then symbolic backsubstitution consists of the following
sequence:

for ¢ =rdowntol

n
1
Ty, = s C; — E U L]
i I=ji+1

Thisis called symbolic backsubstitution because no numerical values are assigned to free variables. Whenever they
appear in the expressions for the basic variables, free variables are specified by name rather than by value. The final
result is a solution with as many free parameters as there are free variables. Since any value given to the free variables
leaves the equality of system (2.10) satisfied, the presence of free variablesleads to an infinity of solutions.

When solving a system in echelon form numerically, however, it is inconvenient to carry around nonnumeric
symbol names (the free variables). Hereisan equivalent solution procedure that makes this unnecessary. The solution
obtained by backsubstitution is an affine function” of the free variables, and can therefore be written in the form

end

X=Vo+x;,Vi+...+25,_ Vo_p (2.11)
wherethe z;, arethefree variables. The vector v, isthe solutionwhen all free variables are zero, and can therefore be
obtained by replacing each free variable by zero during backsubstitution. Similarly, thevectorv; fori=1,... . n—r

can be obtained by solving the homogeneous system
Ux=0

with z;, = 1 and &l other free variables equal to zero. In conclusion, the general solution can be obtained by running
backsubstitution» — » + 1 times, once for the nonhomogeneous system, and n — r times for the homogeneous system,
with suitable values of the free variables. Thisyieldsthe solutionin the form (2.11).

Notice that the vectors v, . . ., v,,_, form abasis for the null space of U/, and therefore of A.

7 An affine function isalinear function plus a constant.
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2.6.3 An Example

An example will clarify both the reduction to echelon form and backsubstitution. Consider the system

Ax=Db

1 3 3 2 1
vW=A=| 2 6 9 5 , cdV=b=15].
-1 -3 3 0 5

Reduction to echelon form transforms A and b as follows. In thefirst step (¢ = 1), there are no no-pivot columns, so
the pivot column index p staysat 1. Throughout this example, we choose a trivial pivot selection rule: we pick the
first nonzero entry at or below row k in the pivot column. For & = 1, this means that u(111) = aj; = 1 isthepivot. In
other words, no row exchange is necessary.® The triangularization step subtracts row 1 multiplied by 2/1 from row 2,
and subtracts row 1 multiplied by -1/1 from row 3. When applied to both 7 (*) and c¢(!) thisyields

1 3 3 2 1
U =100 3 1 o =1|3].
00 6 2 6

Notice that now (k = 2) theentri%ugf,) arezerofori = 2,3, forbothp = 1 and p = 2, so p isset to 3: the second

where

pivot column is column 3, and u(Z? is nonzero, so no row exchange is necessary. In the triangularization step, row 2
multiplied by 6/3 is subtracted from row 3 for both I/ (%) and ¢{?) to yield

1 3 3 2 1
U=U® =100 3 1 ,c=c®=1|3].
00 0 0 0

There isone zero row in the left-hand side, and the rank of U/ and that of A is» = 2, the number of nonzero rows.
The residual system is0 = 0 (compatible), and » < n = 4, so the system is underdetermined, with co”~" = oo?
solutions.

In symbolic backsubstitution, the residual subsystem isfirst deleted. Thisyields the reduced system

RSN

The basic variables are x; and x3, corresponding to the columns with pivots. The other two variables, x» and
x4, are free. Backsubstitution applied first to row 2 and then to row 1 yields the following expressions for the pivot
variables:

1 1 1

T3 = u—zg(cz — Unaly) = 3(3 —x4)=1- §x4
1 1

vy = —(c1 — uiats — 133 — uiaky) = —(1 — 3wa — 33 — 2u4)
Uy 1

= 1—31‘2—(3—1‘4)—21‘4:—2—31‘2—l‘4

so the general solutionis

—2 =32y — x4 -2 -3 -1

_ 9 _ 0 1 0
X= 1_ %1‘4 = 1 + 2 0 + x4 _%
X4 0 0 1

8 Selecting the largest entry in the column at or below row & is afrequent choice, and this would have caused rows 1 and 2 to be switched.
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This same solution can be found by the numerical backsubstitution method as follows. Solving the reduced system
(2.12) with 2 = x4 = 0 by numerical backsubstitutionyields

1
Bo= S(3-1.0)=1

1
ro= 7(1-3.0-3-1-2.0)= -2

S0 that

Then v, isfound by solving the nonzero part (first two rows) of Ux = Owithz, = 1 and 4 = 0 to obtain

1
73 = 2(=1:0)=0
1
zo= 7(=3:1-3.0-2:0)=-3
<0 that
-3
v — 1
=10
0

Finally, solving the nonzero part of Ux = Owithz; = 0 and z4 = 1 leadsto

1 1
= —(-1-1)=-2
s gD =—3
1 1
= Z(=3.0-3-([-=]-2-1)=-1
L1 1( ( 3) )
so that
-1
0
Vo = 1
3
1
and
-2 -3 -1
0 1 0
X = Vg + 22Vy + T4Va = 1 + z2 0 +ra | 1
3
0 0 1
just as before.

As mentioned at the beginning of this section, Gaussian elimination isa direct method, in the sense that the answer
can befoundin anumber of stepsthat depends only on the size of thematrix A. Inthe next chapter, we study adifferent
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method, based on the so-called the Singular Value Decomposition (SV D). Thisis an iterative method, meaning that an
exact solution usually requires an infinite number of steps, and the number of steps necessary to find an approximate
solution depends on the desired number of correct digits.

This state of affairs would seem to favor Gaussian elimination over the SVD. However, the latter yields a much
more complete answer, since it computes bases for all the four spaces mentioned above, as well as a set of quantities,
called the singular values, which provide great insight into the behavior of the linear transformation represented by
the matrix A. Singular values a so allow defining a notion of approximate rank whichis very useful in alarge number
of applications. It also allows finding approximate solutions when the linear system in question is incompatible. In
addition, for reasons that will become apparent in the next chapter, the computation of the SVD is nhumerically well
behaved, much more so than Gaussian elimination. Finally, very efficient algorithmsfor the SVD exist. For instance,
on aregular workstation, one can compute several thousand SVDs of 5 x 5 matrices in one second. More generally,
the number of floating point operations necessary to compute the SVD of an m x n matrix isamn? + bn3 where a, b
are small numbers that depend on the details of the algorithm.
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Chapter 3

The Singular Value Decomposition

In section 2, we saw that a matrix transformsvectorsin its domain into vectors in itsrange (column space), and vectors
inits null space into the zero vector. No nonzero vector is mapped into the left null space, that is, into the orthogonal

complement of the range. In this section, we make this statement more specific by showing how unit vectors' in the
rowspace are transformed by matrices. This describes the action that a matrix has on the magnitudes of vectors as
well. To this end, we first need to introduce the notion of orthogonal matrices, and interpret them geometrically as
transformations between systems of orthonormal coordinates. We do thisin section 3.1. Then, in section 3.2, we use
these new concepts to introduce the al-important concept of the Singular Value Decomposition (SVD). The chapter
concludes with some basic applications and examples.

3.1 Orthogonal Matrices

Consider apoint P inR", with coordinates

P1
p= ‘
Pn
in a Cartesian reference system. For concreteness, you may want to think of the case n = 3, but the following
arguments are general. Given any orthonormal basisv, . . ., v, for R", let
q1
q= :
an
be the vector of coefficients for point P inthe new basis. Thenforany i = 1, ..., n we have

n n
78 78 78
Vip=V; Z%’Vj IZ%W Vi=ai,
j=1 j=1

since thev; are orthonormal. Thisisimportant, and may need emphasis:

If

n
p= Z 45V5
ij=1

IVectors with unit norm.

23
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and the vectors of the basis vy, ..., v, are orthonormal, then the coefficients ¢; are the signed
magnitudes of the projections of p onto the basis vectors:

g =Vip. (3.1
We can write all » instances of equation (3.1) by collecting the vectorsv; into a matrix,
V=[vi - v, ]

S0 that

Also, we can collect the n? equations

oo [ 1 ifi=j
Vi Vi _{ 0 otherwise

into the following matrix equation:
Vv =1 (3.3)

where I isthen x n identity matrix. Sincetheinverse of a square matrix V' is defined as the matrix V=1 such that
Vv =1, (3.4)

comparison with equation (3.3) shows that the inverse of an orthogonal matrix V' exists, and is equal to the transpose
of V:
vl=vT.

Of course, thisargument requires V to be full rank, so that the solution V'~ to equation (3.4) is unique. However,
V iscertainly full rank, because it is made of orthonormal columns.

When V' ism x n with m > n and has orthonormal columns, this result is still valid, since equation (3.3) still
holds. However, equation (3.4) defines what is now called the left inverse of V. Infact, VV—! = I cannot possibly
have a solution when m > n, because the m x m identity matrix has m linearly independent 2 columns, while the
columns of V'V ! are linear combinations of the n columns of V, so V'V ~! can have at most » linearly independent
columns.

For square, full-rank matrices (r = m = n), thedistinctionbetween |eft and right inverse vanishes. Infact, suppose
that there exist matrices B and C' suchthat BV = I and VC = I. Then B = B(V (') = (BV)C = (), so theleft and
the right inverse are the same. We can summarize thisdiscussion as follows:

Theorem 3.1.1 The leftinverse of an orthogonal m x n matrix V- withm > n exists and is equal to the transpose of
V:
viv=vliyv=r.

In particular, if m = n, thematrix V= = V7 isalsotheright inverse of V:

Vesuare = Vv=viv=vvi=vvi=r.

Sometimes, the geometric interpretation of equation (3.2) causes confusion, because two interpretations of it are
possible. In the interpretation given above, the point P remains the same, and the underlying reference frame is
changed from the elementary vectors g; (that is, from the columns of /) to the vectorsv; (that is, to the columns of V).
Alternatively, equation (3.2) can be seen as atransformation, in a fixed reference system, of point 7 with coordinates
p into a different point ¢ with coordinates q. This, however, is relativity, and should not be surprising: If you spin

?Nay, orthonormal.
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clockwise on your feet, or if you stand still and the whole universe spins counterclockwise around you, the result is
the same3
Consistently with either of these geometric interpretations, we have the following result:

Theorem 3.1.2 The norm of a vector x is not changed by multiplication by an orthogonal matrix V':

VX[ = [}

Proof.
IVx||? = xTVIvx =xTx = ||x||* .

We conclude this section with an obvious but useful consequence of orthogonality. In section 2.3 we defined the
projection p of avector b onto another vector ¢ as the point on the line through c that is closest to b. This notion of
projection can be extended from linesto vector spaces by the following definition: The projection p of apointb € R"
onto a subspace C' isthe pointin C that is closest to b.

Also, for unit vectors c, the projection matrix is cc” (theorem 2.3.3), and the vector b — p is orthogonal to c. An
analogous result holds for subspace projection, as the following theorem shows.

Theorem 3.1.3 Let U be an orthogonal matrix. Then the matrix U U7 projects any vector b ontorange(U/). Further-
more, the difference vector between b and its projection p onto range(U/) is orthogonal to range(U):

U'(b—p)=0.

Proof. A pointp inrange(U) isalinear combination of the columns of U:
p=0UX

where x isthe vector of coefficients (as many coefficients as there are columnsin U7). The squared distance between b
andpis
Ib—pl|?>=(b—p)"(b—p) =b"b+pTp—20"p=b"b+x"UTUXx~ 26" Ux.

Because of orthogonality, U7 U/ isthe identity matrix, so
IIb—p||*> =b"b+xTx—2b"Ux.

The derivative of this squared distance with respect to x is the vector

ox — 2U0TD
which is zero iff
x=UTb,
that is, when
p=Ux=UUTb
as promised.

For thisvalue of p the difference vector b — p is orthogonal to range(U), in the sense that
Ul'tb—p)=UT(b-UUTL) =UTb-UTb =0.

3 At least geometrically. One solution may be more efficient than the other in other ways.
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Figure 3.1: The matrix in equation (3.5) maps a circle on the plane into an ellipse in space. The two small boxes are
corresponding points.

3.2 TheSingular Value Decomposition

In these notes, we have often used geometric intuitionto introduce new concepts, and we have then trandated theseinto
algebraic statements. Thisapproach is successful when geometry isless cumbersome than algebra, or when geometric
intuition provides a strong guiding element. The geometric picture underlying the Singular Value Decomposition is
crisp and useful, so we will use geometric intuition again. Here isthe main intuition:

An m x n matrix A of rank » maps the r-dimensiona unit hypersphere in rowspace(A) into an r-
dimensional hyperellipsein range(A).

This statement is stronger than saying that A maps rowspace(A) into range(A), because it also describes what
happens to the magnitudes of the vectors: a hypersphere is stretched or compressed into a hyperellipse, which is a
quadratic hypersurface that generalizes the two-dimensional notion of ellipse to an arbitrary number of dimensions. In
three dimensions, the hyperellipseis an ellipsoid, in one dimension it is a pair of points. In all cases, the hyperellipse
in question is centered at the origin.

For instance, the rank-2 matrix

L[ V3 VB
A== —13 i) (3.5)

transforms the unit circle on the plane into an ellipse embedded in three-dimensional space. Figure 3.1 shows the map
b= Ax.

Two diametrically opposite points on the unit circle are mapped into the two endpoints of the major axis of the
ellipse, and two other diametrically opposite points on the unit circle are mapped into the two endpoints of the minor
axis of the éllipse. The lines through these two pairs of pointson the unit circle are always orthogonal. Thisresult can
be generalized to any m x n matrix.

Simple and fundamental as this geometric fact may be, its proof by geometric means is cumbersome. Instead, we
will proveit agebraically by first introducing the existence of the SV D and then using the latter to prove that matrices
map hyperspheresinto hyperellipses.

Theorem 3.2.1 If Aisareal m x n matrix then there exist orthogonal matrices

U = [ul Um]ERmxm
VvV = [Vl Vn]ERnxn

such that
UTAV =Y = diag(al, .. .,Up) e R
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where p = min(m,n) andoy > ... > o, > 0. Equivalently,
A=UxvT.

Proof.  This proof is adapted from Golub and Van Loan, cited in the introduction to the class notes. Consider all
vectors of theform
b= Ax

for x on the unit hypersphere ||x|| = 1, and consider the scalar function || Ax||. Since x is defined on a compact set, this
scalar function must achieve amaximum value, possibly at more than one point*. Let v; be one of the vectors on the
unit hyperspherein R™ where this maximum is achieved, and let oy u; be the corresponding vector o1 u; = Av; with
[Jui|] = 1, sothat o isthe length of the correspondingb = Av; .

By theorems 2.4.1 and 2.4.2, u; and v; can be extended into orthonormal bases for R™ and R", respectively.
Collect these orthonormal basis vectors into orthogonal matrices U/; and V. Then

o1 wl :|

UlTAvlelz[ 0 A

In fact, the first column of AV} is Avy = o uy, sothefirst entry of U] AV} isul oyu; = o4, and its other entries are
ul o1u; = 0 because of orthonormality.
The matrix Sy turns out to have even more structure than this: the row vector w” is zero. Consider in fact the

length of the vector
1 1 2 T
751[”1]:7[”1“”‘”]. (36)
VoZ+wlw w Vol +wlw Aiw
From the last term, we see that the length of this vector isat least /o7 + w?'w. However, the longest vector we can
obtain by premultiplying a unit vector by matrix S; haslength 0. In fact, if x has unit norm so does V1 x (theorem
3.1.2). Then, thelongest vector of the form AV x has length o (by definition of o1), and again by theorem 3.1.2 the
longest vector of the form Sy x = U AV x hastill length o, Consequently, the vector in (3.6) cannot be longer than
o1, and therefore w must be zero. Thus,

UlTAvlelz[

oy OF
U§A1v2:52:[ 02 Az]
so that .
T T 01 0 O
[égT]UlTAvl[é?/]: 0 o O | .
2 : 0 0 A
This procedure can be repeated until A vanishes (zero rows or zero columns) to obtain

UTAV =%

where UT and V' are orthogonal matrices obtained by multiplying together all the orthogonal matrices used in the
procedure, and

o1 0 0
0 g9 0
Y= . .
0 0 on

4 Actually, at least at two points: if Av; has maximum length, so does —Av .
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By construction, the o;s are arranged in nonincreasing order along the diagonal of X2, and are nonnegative.
Sincematrices U and V' are orthogonal, we can premultiply the matrix product in thetheorem by U and postmultiply
itby V7 to obtain
A=UxvT.

We can now review the geometric picturein figure 3.1 in light of the singular value decomposition. In the process,
we introduce some nomenclature for the three matrices in the SVD. Consider the map in figure 3.1, represented by
equation (3.5), and imagine transforming point x (the small box at x on the unit circle) into its corresponding point
b = Ax (the small box on the ellipse). This transformation can be achieved in three steps (see figure 3.2):

1. Writex in the frame of reference of the two vectors vy, v» on the unit circle that map into the major axes of the
ellipse. There are afew waysto dothis, because axis endpointscomein pairs. Just pick oneway, but order v, v,
so they map into the magjor and the minor axis, in thisorder. Let uscall vy, v, the two right singular vectors of
A. The corresponding axis unit vectors uy , U, on the ellipse are called left singular vectors. If we define

V=[vi vs],

the new coordinates ¢ of x become
¢=VvTx
because V' is orthogonal.

2. Transform £ intoitsimage on a“straight” version of thefinal ellipse. “ Straight” here means that the axes of the
ellipse are aligned with the y; , y» axes. Otherwise, the “straight” ellipse has the same shape as the ellipse in
figure 3.1. If thelengths of the half-axes of the ellipse are o1, o2 (Major axis first), the transformed vector » has
coordinates

n=3%x¢
where

isadiagonal matrix. The real, nonnegative numbers oy, o, are called the singular values of A.

3. Rotate the reference frame in R™ = R® so that the “straight” ellipse becomes the ellipse in figure 3.1. This
rotation brings » along, and mapsit to b. The components of 1 are the signed magnitudes of the projectionsof b
along the unit vectors uy , Us, Uz that identify the axes of the ellipse and the normal to the plane of the ellipse, so

b=Unp

where the orthogonal matrix
U= [ Uy Us Us ]

collects the left singular vectors of A.
We can concatenate these three transformations to obtain
b=UxV"x

or
A=UnvVT

since this construction worksfor any point x on the unit circle. Thisisthe SVD of A.
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Figure 3.2: Decomposition of the mapping in figure 3.1.

The singular value decomposition is “amost unique’. There are two sources of ambiguity. The first isin the
orientation of the singular vectors. One can flip any right singular vector, provided that the corresponding left singular
vector is flipped as well, and till obtain a valid SVD. Singular vectors must be flipped in pairs (a left vector and its
corresponding right vector) because the singular values are required to be nonnegative. Thisis atrivial ambiguity. If
desired, it can be removed by imposing, for instance, that the first nonzero entry of every left singular value be positive.

The second source of ambiguity is deeper. If the matrix A maps a hypersphere into another hypersphere, the axes
of the latter are not defined. For instance, the identity matrix has an infinity of SVDs, al of the form

I=vIrorT

where U is any orthogonal matrix of suitable size. More generally, whenever two or more singular values coincide,
the subspaces identified by the corresponding left and right singular vectors are unique, but any orthonormal basis can

be chosen within, say, the right subspace and yield, together with the corresponding | eft singular vectors, avalid SVD.
Except for these ambiguities, the SVD is unique.

Even in the genera case, the singular values of a matrix A are the lengths of the semi-axes of the hyperellipse £
defined by

E={Ax : ||¥||=1}.
The SVD reveals agreat deal about the structure of a matrix. If we define » by
01> ...20,>041=...=0,
that is, if o, isthe smallest nonzero singular value of A, then

rank(4) = r
null(4) = span{V,y41,...,Vn}
range(A) = span{up,...,u,}.
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The sizes of the matrices in the SVD are asfollows: U ism x m, X ism x n, and V isn x n. Thus, ¥ hasthe
same shape and size as A, whileUU and V" are square. However, if m > n, thebottom (m — n) x n block of X iszero,
so that the last m — n columns of U are multiplied by zero. Similarly, if m < n, therightmost m x (n — m) block
of X is zero, and thismultipliesthe last n — m rowsof V. Thissuggestsa “small,” equivalent version of the SVD. If
p = min(m,n), wecandefinel, = U(:,1:p), L, =X(1:p,1:p),andV, =V (:,1: p), andwrite

A=U v\

where Uy, ism x p, ¥, isp x p,and V}, isn x p.
Moreover, if p — r singular valuesare zero, wecanlet U, = U(:,1:7), X, = X(1:r,1:7),andV, = V(;,1: r),
then we have

"
A= UTETVTT = ZUiUiVZ'T s
i=1

whichisan even smaller, minimal, SVD.
Finally, both the 2-norm and the Frobenius norm

m n
2D Nl

lAllr =
i=1 j=1
e Jax]
X
| All2 = sup
xzo [IXI|
are neatly characterized in terms of the SVD:
|AlF = oi+... 4oy
lAll: = o1

In the next few sections we introduce fundamental results and applications that testify to the importance of the
SVD.

3.3 ThePseaudoinverse

One of the most important applications of the SVD is the solution of linear systemsin theleast squares sense. A linear
system of the form
Ax=Db (3.7)

arising from areal-lifeapplication may or may not admit asolution, that is, a vector x that satisfies this equation exactly.

Often more measurements are available than strictly necessary, because measurements are unreliable. This leads to
more eguations than unknowns (the number m of rowsin A is greater than the number » of columns), and equations
are often mutually incompatible because they come from inexact measurements (incompeatible linear systems were
defined in chapter 2). Even when m < n the equations can be incompatible, because of errors in the measurements
that produce the entries of A. In these cases, it makes more sense to find a vector x that minimizes the norm

|| AX — D]
of the residual vector
r=Ax—>b.

where the double bars henceforth refer to the Euclidean norm. Thus, x cannot exactly satisfy any of the m equations
in the system, but it tries to satisfy all of them as closely as possible, as measured by the sum of the squares of the
discrepancies between left- and right-hand sides of the equations.
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In other circumstances, not enough measurements are available. Then, the linear system (3.7) is underdetermined,
in the sense that it has fewer independent equations than unknowns (its rank » isless than », see again chapter 2).

Incompatibility and underdeterminacy can occur together: the system admits no solution, and the least-squares
solutionis not unique. For instance, the system

1+ =
1+ =

r3 =

has three unknowns, but rank 2, and its first two equations are incompatible: x; + x» cannot be equa to both 1 and
3. A least-squares solution turns out to be x = [1 1 2]7 withresidual r = Ax — b = [I — 1 0], which has norm /2
(admittedly, thisis a rather high residual, but thisis the best we can do for this problem, in the least-squares sense).
However, any other vector of the form

isas good as x. For instance, X' = [0 2 2], obtained for o = 1, yields exactly the same residual as x (check this).

In summary, an exact solution to the system (3.7) may not exist, or may not be unique, as we learned in chapter 2.
An approximate solution, in the least-squares sense, aways exists, but may fail to be unique.

If there are several least-squares solutions, all equally good (or bad), then one of them turns out to be shorter than
al the others, that is, its norm ||x|| is smallest. One can therefore redefine what it means to “solve” alinear system so
that there is always exactly one solution. This minimum norm solutionis the subject of the following theorem, which
both proves uniqueness and provides a recipe for the computation of the solution.

Theorem 3.3.1 The minimum-norm least squares solution to a linear system Ax = b, that is, the shortest vector x
that achieves the

min ||AX — b|| ,
X
isunique, and is given by
x=VxtuTp (3.8)
where
[ 1/04 0 -+ 07
it = 1/o,
0
L 0 0 0 |
isan n x m diagonal matrix.
The matrix
Al =yxty?

is called the pseudoinverse of A.
Proof.  The minimum-norm Least Squares solutionto

Ax=Db

is the shortest vector x that minimizes
|| AX — D]
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that is,
IUZVTx —b| .

This can be written as
|U(ZVTx - UTb)|] (3.9)

because U is an orthogonal matrix, U7 = I. But orthogonal matrices do not change the norm of vectors they are
applied to (theorem 3.1.2), so that the last expression above equals
IZVTx — UTb||
or, withy = VI'xandc = U”b,
12y —cf| -

In order to find the solutionto this minimization problem, let us spell out the last expression. We want to minimize the
norm of the following vector:

n c1
0 . 0
ar Yr cr
0 Yra1 || e
L 0 0] L ¥ L em |
The last m — r differences are of the form
Cri41
0|
Cm
and do not depend on the unknown'y. In other words, there is nothing we can do about those differences:. if some or
al thec; fori = 4+ 1, ..., m are nonzero, we will not be able to zero these differences, and each of them contributes

aresidual |¢;| to the solution. In each of thefirst » differences, on the other hand, the last n — » components of y are
multiplied by zeros, so they have no effect on the solution. Thus, there is freedom in their choice. Since we look for
the minimum-norm solution, that is, for the shortest vector x, we aso want the shortest y, because x and y are related

by an orthogonal transformation. We therefore set y.41 = ... = y, = 0. In summary, the desired y has the following
components:
Y = “ fori= 1,...,r
o
y = 0 fori=r+1,....,n.

When written as a function of the vector c, thisis
y=Y%c.

Notice that thereisno other choice for y, which istherefore unique: minimum residual forcesthe choice of vy, . . ., ¥,
and minimum-norm solution forces the other entries of y. Thus, the minimum-norm, least-squares solution to the
original system is the unique vector

x=Vy=Vtc=vtulp
as promised. The residual, that is, the norm of || Ax — b|| when x is the solution vector, is the norm of £y — ¢, since
thisvector isrelated to Ax — b by an orthogonal transformation (see equation (3.9)). In conclusion, the square of the

residual is m m
A =bl[* =By —cl*= > = > (ub)?

i=r+1 i=r+1
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which isthe projection of the right-hand side vector b onto the complement of the range of A. A

3.4 Least-Squares Solution of a HomogeneousLinear Systems

Theorem 3.3.1 works regardless of the value of the right-hand side vector b. When b = 0, that is, when the system is
homogeneous, the solutionis trivial: the minimum-norm solution to

Ax =0 (3.10)

Xx=0,

which happens to be an exact solution. Of course it is not necessarily the only one (any vector in the null space of A
isalso a solution, by definition), but it is obviously the one with the smallest norm.

Thus, x = 0 isthe minimum-norm solution to any homogeneous linear system. Although correct, thissolutionis
not too interesting. In many applications, what is desired is a nonzero vector x that satisfies the system (3.10) as well
as possible. Without any constraints on x, we would fall back to x = 0 again. For homogeneous linear systems, the
meaning of aleast-squares solution is therefore usually modified, once more, by imposing the constraint

Xl =1

on the solution. Unfortunately, the resulting constrained minimization problem does not necessarily admit a unique
solution. The following theorem provides a recipe for finding this solution, and shows that thereisin general awhole
hypersphere of solutions.

Theorem 3.4.1 Let
A=Uxvy”

bethesingular value decomposition of A. Furthermore, letv,, _x41, . . ., V,, bethek columnsof IV whose corresponding
singular values are equal to the last singular value o, that is, let £ be the largest integer such that

On—k4+1 = ... = 0pn .
Then, all vectors of the form
X=a1Vp_kt1 + ...+ apVp (3.11)
with
ai+.. . tap=1 (3.12)

are unit-normleast squares solutionsto the homogeneous linear system
Ax =0,

that is, they achieve the

n ||AX]| .

mi
IXI[=1

Note: when o, isgreater than zero the most common caseisk = 1, sinceit isvery unlikely that different singular
values have exactly the same numerical value. When A is rank deficient, on the other case, it may often have more
than one singular value equal to zero. In any event, if £ = 1, then the minimum-norm solutionis unique, X = v,,. If
k > 1, the theorem above shows how to express all solutionsas a linear combination of the last £ columns of V.
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Proof.  The reasoningisvery similar to that for the previous theorem. The unit-norm Least Squares solutionto

Ax=0
isthe vector x with ||x|| = 1 that minimizes
14|
that is,
JUsVTy| .

Since orthogonal matrices do not change the norm of vectorsthey are applied to (theorem 3.1.2), thisnormis the same
as
I=VTX|

or, withy = V7x,
1=yl -

Since V' is orthogonal, ||x|| = 1 translatesto |ly|| = 1. We thus look for the unit-norm vector y that minimizes the
norm (squared) of Xy, that is,
oyl + ...+ onyn

Thisis obviously achieved by concentrating all the (unit) mass of y where the os are smallest, that is by letting
Y1 = ... = Yn_p = 0. (3.13)
Fromy = V7 xweobtainx = Vy = y1v; + ...+ y.V,, S0 that equation (3.13) is equivalent to equation (3.11) with

a1 = Yn—k+1, - - -, Ok = Yn, and the unit-norm constraint on y yields equation (3.12). A

Section 3.5 shows a sample use of theorem 3.4.1.
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3.5 SVD LineFitting

The Singular Value Decomposition of a matrix yields a simple method for fitting a line to a set of pointson the plane.

35.1 FittingaLinetoa Set of Points
Letp, = (=;,y:)T beaset of m > 2 pointson the plane, and let

ar+by—c=20

be the equation of aline. If the lefthand side of this equation is multiplied by a nonzero constant, the line does not
change. Thus, we can assume without loss of generality that

Inll=a®+0°=1, (3.14)

where the unit vector n = (a, b)”', orthogonal to the line, is called the line normal.
The distance from thelineto the originiis |¢| (see figure 3.3), and the distance between theline n and a point p; is
equal to

d; = |ax; +by; —¢| = |pIn—¢|. (3.15)

/
/

/
|cf,
blL__/_

/
/
/

|
|
|
|
|
l
a
Figure 3.3: The distance between point p; = (z;, y;)? andline az + by — ¢ = 0 is|az; + by; — c|.

The best-fit line minimizes the sum of the squared distances. Thus, if we let d = (dy,...,dn) and P =
(P1---,Pn)7T, the best-fit line achieves the

min [|d||* = min ||Pn—c1|*. (3.16)
Injj=1 Injj=1

In equation (3.16), 1 is avector of m ones.

3.5.2 TheBest LineFit
Since the third line parameter ¢ does not appear in the constraint (3.14), at the minimum (3.16) we must have

old? _

5. =0 (3.17)

If we define the centroid p of al the pointsp; as

1
p=—prT1
m

bl
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equation (3.17) yields
2
3|I8LH = aﬁ (nT PT — c1") (Pn - 1¢)
c c
= aﬁ (nT PTPn + c*1"1— 2n” PTc1)
c

= 2(me—n"PT1) =0

from which we obtain
c= LampTy ,
m
that is,
c=pin.
By replacing this expression into equation (3.16), we obtain

min [|d||? = min ||Pn—1p"n||* = min ||Qn]?
min A = min | I = in @l

where Q@ = P — 1p” collects the centered coordinates of the m points. We can solve this constrained minimization
problem by theorem 3.4.1. Equivalently, and in order to emphasize the geometric meaning of signular values and
vectors, we can recall that if nison acircle, the shortest vector of the form ¢n is obtained when n is the right singular
vector v, corresponding to the smaller o5 of the two singular values of ). Furthermore, since v, has norm o, the
resdueis

and more specifically the distances d; are given by
d= ooUs

where u, istheleft singular vector corresponding to o». Infact, whenn = v, the SVD
2
Q=Usv" =3 ouv/
=1

yields
2
Qn=Qv, = Z 03UV Vs = Uy
i=1
because v; and v, are orthonormal vectors.
To summarize, to fit a line (a, b, ¢) to a set of m points p, collected in the m x 2 matrix P = (p; ..., p,,)7,
proceed as follows:

1. compute the centroid of the points (1 isavector of m ones):

1
p=—PT1
m

2. form the matrix of centered coordinates:
Q=P—1p"

3. computethe SVD of Q:
Q=Uuxv?T



3.5. SVD LINEFITTING 37

4, theline normal isthe second column of the 2 x 2 matrix V:

n=(ab’ =vy,
5. thethird coefficient of thelineis
c=pFn
6. theresidue of thefitis
min ||d|| = o2
Injj=1

The following mat | ab code implements the line fitting method.

function [I, residue] = linefit(P)

% check input matrix sizes

[mn] = size(P);

if n"=2, error("matrix P nust be mx 2'), end
if m< 2, error(’'Need at least two points’), end
one = ones(m 1);

% centroid of all the points

p=(P * one) / m

% matri x of centered coordinates

Q=P- one * p;

[USigma V] = svd(Q;

%the line normal is the second colum of V

n=\V_:, 2);
% assenble the three line coefficients into a colunn vector
I =[n; p * n];

% the snall est singular value of Q
% measures the residual fitting error
resi due = Signma(2, 2);

A useful exercise isto think how this procedure, or something close to it, can be adapted to fit a set of data points
in R™ with an affine subspace of given dimension n. An affine subspace is alinear subspace plus a point, just like an
arbitrary lineis aline through the origin plus a point. Here “plus’ means thefollowing. Let 7 be alinear space. Then
an affine space has the form

A=p+L={ala=p+landleL}.

Hint: minimizing the distance between a point and a subspace is equivalent to maximizing the norm of the projection
of the point onto the subspace. The fitting problem (including fitting a line to a set of points) can be cast either as a
maximization or a minimization problem.
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Chapter 4

Function Optimization

There are three main reasons why most problems in robotics, vision, and arguably every other science or endeavor
take on the form of optimization problems. Oneisthat the desired goal may not be achievable, and so we try to get as
close as possible to it. The second reason is that there may be more ways to achieve the goal, and so we can choose
one by assigning a quality to all the solutions and selecting the best one. The third reason is that we may not know
how to solve the system of equationsf(x) = 0, so instead we minimize the norm ||f(x)||, which is a scalar function of
the unknown vector x.

We have encountered the first two situations when talking about linear systems. The case inwhich alinear system
admits exactly one exact solutionis simple but rare. More often, the system at hand is either incompatible (some say
overconstrained) or, at the opposite end, underdetermined. In fact, some problems are both, in a sense. While these
problems admit no exact solution, they often admit a multitude of approximate solutions. In addition, many problems
lead to nonlinear equations.

Consider, for instance, the problem of Structure From Motion (SFM) in computer vision. Nonlinear equations
describe how pointsin the world project onto the images taken by cameras at given positionsin space. Structure from
motion goes the other way around, and attempts to solve these equations: image points are given, and one wants to
determine where the pointsin the world and the cameras are. Because image points come from noisy measurements,
they are not exact, and the resulting system is usually incompatible. SFM is then cast as an optimization problem.
On the other hand, the exact system (the one with perfect coefficients) is often close to being underdetermined. For
instance, the images may be insufficient to recover a certain shape under a certain motion. Then, an additional criterion
must be added to define what a“good” solutionis. In these cases, the noisy system admits no exact solutions, but has
many approximate ones.

The term “optimization” is meant to subsume both minimization and maximization. However, maximizing the
scalar function f(x) isthe same as minimizing — f(X), so we consider optimization and minimization to be essentially
synonyms. Usually, oneisafter global minima. However, global minimaare hard tofind, since they involve auniversal
quantifier: x* is a global minimum of f if for every other x we have f(x) > f(x*). Global minization techniques
like simulated annealing have been proposed, but their convergence properties depend very strongly on the problem at
hand. Inthis chapter, we consider local minimization: we pick a starting point xo, and we descend in the landscape of
F(x) until we cannot go down any further. The bottom of the valley isalocal minimum.

Local minimization is appropriate if we know how to pick an X, that is close to x*. This occurs frequently in
feedback systems. In these systems, we start at a local (or even a global) minimum. The system then evolves and
escapes from the minimum. As soon as this occurs, a control signal is generated to bring the system back to the
minimum. Because of thisimmediate reaction, the old minimum can often be used as a starting point x; when looking
for the new minimum, that is, when computing the required control signal. More formally, we reach the correct
minimum x* as long astheinitial point x; isin thebasin of attraction of x*, defined as the largest neighborhood of x*
inwhich f(x) is convex.

Good references for the discussionin this chapter are Matrix Computations, Practical Optimization, and Numerical
Recipesin C, al of which are listed with full citationsin section 1.4.

39
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4.1 Local Minimization and Steegpest Descent

Suppose that we want to find alocal minimum for the scalar function f of the vector variable x, starting from an initial
point x,. Pickingan appropriate X, iscrucial, but also very problem-dependent. We start from X, , and we go downhill.
At every step of the way, we must make the following decisions:

o Whether to stop.

¢ Inwhat direction to proceed.

e How long a step to take.

In fact, most minimization algorithms have the following structure:

k=0
whilex; isnot aminimum
compute step direction p,, with||p,|| =1
compute step size oy,
Xi41 = Xk + apPg
k=k+1
end.

Different algorithms differ in how each of these instructionsis performed.

It isintuitively clear that the choice of the step size «y, isimportant. Too small a step leads to slow convergence,
or even to lack of convergence altogether. Too large a step causes overshooting, that is, leaping past the solution. The
most disastrous consequence of this is that we may leave the basin of attraction, or that we oscillate back and forth
with increasing amplitudes, leading to instability. Even when oscillations decrease, they can slow down convergence
considerably.

What isless obviousis that the best direction of descent is not necessarily, and in fact is quite rarely, the direction
of steepest descent, as we now show. Consider a simple but important case,

fx)=c+a'x+ %XTQX (4.1

where @ is asymmetric, positive definite matrix. Positive definite means that for every nonzero x the quantity x” Qx
is positive. In this case, the graph of f(x) — c isaplane a’'x plusa paraboloid.

Of coursg, if f were this simple, no descent methods would be necessary. In fact the minimum of f can be found
by setting its gradient to zero:

af
= = 0
X a—+ X
so that the minimum x* is the solutionto the linear system
Qx=-a. (4.2

Since @ is positive definite, it is aso invertible (why?), and the solution x* is unique. However, understanding the
behavior of minimization algorithmsin this simple case is crucia in order to establish the convergence properties of
these algorithms for more general functions. In fact, all smooth functions can be approximated by paraboloidsin a
sufficiently small neighborhood of any point.

Let usthereforeassume that we minimize f as givenin equation (4.1), and that at every step we choose thedirection
of steepest descent. In order to simplify the mathematics, we observe that if we let

D2

() = 2 (x—x) " Qx ~x")

then we have

70 = 0 — e+ T QX = F(0) - F(x°) @3



4.1. LOCAL MINIMIZATION AND STEEPEST DESCENT

sothat ¢ and f differ only by a constant. In fact,

1 1 1 1
E(X) = §(XTQX—|—X*TQX* —2xT'Qx*) = 5xTQx—i- al'x + §X*TQX* = f(X) —c+ §X*TQX*

and from equation (4.2) we obtain

1 1 1
f(x*)y=c+alx + §X*TQX* =—c— x*TQx* + §X*TQX* —c— §X*TQX* .
Since é issimpler, we consider that we are minimizing é rather than f. In addition, we can let
y =X— X* 3

that is, we can shift the origin of the domain to x*, and study the function

1
e(y) = §yTQy

41

instead of f or ¢, without loss of generality. We will transform everything back to f and x once we are done. Of

course, by construction, the new minimum is at
y"=0

where e reaches a value of zero:
e(y')=e(0)=0.
However, we let our steepest descent algorithm find this minimum by starting from the initial point

Yo = Xo — X*.

At every iteration &, the algorithm chooses the direction of steepest descent, which isin the direction

Ok
P =~ 7
" lgell
oppositeto the gradient of e evaluated at v, :
de
9 = 9(Yx) = v = QY
Yly=y,

We select for the algorithm the most favorable step size, that is, the one that takes usfrom y,, to the lowest pointin

the direction of p,. Thiscan be found by differentiating the function

1
e(yr +apy) = §(Yk +ap) QY + apy)
with respect to «, and setting the derivative to zero to obtain the optimal step « ;.. We have

De(Yy + apy)

o = (Y + ap,) " Qpy,

and setting thisto zero yields

9% O

9/ Qg,

o — QYR _ Gy Pk Py
k: — =

pf Qpy, pf Qpy, prQp,

Thus, the basic step of our steepest descent can be written as follows:

= llgll = (19l

gg Ok
o Qg,

Yirr =Y + 116l P

(4.4)
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that is,
9% O
g% Q9
How much closer did this step bring us to the solutiony* = 0? In other words, how much smaller is e(y, 1),
relative to the value e(y, ) at the previous step? The answer is, often not much, as we shall now prove. The
arguments and proofs below are adapted from D. G. Luenberger, Introductionto Linear and Nonlinear Programming,
Addison-Wesley, 1973.
From the definition of ¢ and from equation (4.5) we obtain

Yeq1 = Y — O - (4.5)

e(Ye) — e(Yir1) . YEQY, — yg+1ka+1
e(Yy) YL QY
iy T T
Qv — (v — glogan) @ (vi— o)
yLQy,
T T 2
2gtas 9 i — (ghas) 9o
YL QY

201 0.9 QYi — (91 9:)”
Vi QY 95 QY

Since @ isinvertiblewe have

9 =QY, = Y.=Q7'g,

and
QY =0, Q7'g,
so that
e(Yi) — (Y1) _ (95 9)*
e(Yy) 9 Q7'0, 9 Qg
This can be rewritten as follows by rearranging terms:
78 2
) = (1= g ) et )

so if we can bound the expression in parentheses we have a bound on the rate of convergence of steepest descent. To
thisend, we introduce the following resullt.

Lemma4.1.1 (Kantorovich inequality) Let ) bea positive definite, symmetric, n x n matrix. For any vector y there
holds
0 ) R s T
yrQlyyTQy = (o1 +04)?
where o, and o, are, respectively, the largest and smallest singular values of Q).

Proof. Let
Q=UuxU"T

be the singular value decomposition of the symmetric (hence V' = U) matrix ). Because () is positive definite, al its
singular values are strictly positive, since the smallest of them satisfies

on = min Y7 >0
||y||=1y oy
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by the definition of positive definiteness. If we let

z=UTy
we have n
0 y'uTuy) __ @YY bio _ ¢(o) @7
yrQ-tyyrQy  yrux-twlyytusuTy — Z'v-1zz'¥z Y7 6i/oi (o) '
where the coefficients )
Z.
0; = ——
||zl
add up to one. If welet
g = Z@ZUZ ; (48)
=1

then the numerator ¢(o) in (4.7) is1/0. Of course, there are many ways to choose the coefficients ¢; to obtain a
particular value of . However, each of the singular values o; can be obtained by letting #; = 1 and &l other ¢; to
zero. Thus, thevalues 1/o; for j = 1,...,n are al onthe curve 1/o. The denominator (o) in (4.7) is a convex
combination of pointson thiscurve. Since 1 /¢ isa convex function of &, the values of the denominator () of (4.7)
must be in the shaded area in figure 4.1. This area is delimited from above by the straight line that connects point
(c1,1/01) withpoint (o, 1/0,), that is, by the line with ordinate

Ao) =(o1+ 05 —0)/(0104) .

(p,Lp,)\“

Figure 4.1: Kantorovich inequality.

For the same vector of coefficients §;, the values of ¢(c), ¢/(c), and A(c) are on the vertical line corresponding to
the value of o given by (4.8). Thus an appropriate boundis
() . /o

— > 1 — = .
(0) = 019090, AN(0) _ 01800, (01 + 0n — 0)/(0100)
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The minimum isachieved at o = (01 + 0,,)/2, yielding the desired result. A

Thanks to thislemma, we can state the main result on the convergence of the method of steepest descent.

Theorem 4.1.2 Let

1
f(x)=c+alx+ §XTQX

be a quadratic function of x, with @ symmetric and positive definite. For any x,, the method of steepest descent

9t 9
X = Xg — 49
b= X 0T g, Ok (4.9)
where
9 = 9(Xe) = o =a+Qxg
X=X
converges to the unique minimum point
X*=-Q 'a

of f. Furthermore, at every step k there holds

01 — Op

01+ 0y

F(e41) — FX7) < ( ) (%) — £°))

where oy and o, are, respectively, the largest and smallest singular value of Q.

Proof. From the definitions

1

y=x—x* and e(y)= §yTQy (4.10)

we immediately obtain the expression for steepest descent in terms of f and Xx. By equations (4.3) and (4.6) and the
Kantorovich inequality we obtain

S (e’ Y, _ oo
Foreen) = 106) = ) = (1= grgodi ety < (1= 02 el (40
= (2;2) (F(xe) = F() (412)

Since the ratio in the last term is smaller than one, it followsimmediately that f(xx) — f(x*) — 0 and hence, since
the minimum of f isunique, that x;, — x*. A

The ratio «(Q)) = o1/, is caled the condition number of 2. The larger the condition number, the closer the
fraction (o1 — ¢,) /(o1 + o) iSto unity, and the slower convergence. It is easily seen why this happens in the case
in which x is a two-dimensional vector, as in figure 4.2, which shows the trgjectory x; superimposed on a set of
isocontours of f(x).

There is one good, but very precarious case, namely, when the starting point X, is at one apex (tip of either axis)
of an isocontour ellipse. In that case, one iteration will lead to the minimum x*. In al other cases, the line in the
direction p,, of steepest descent, which is orthogonal to the isocontour at X, will not pass through x*. The minimum
of f along that lineistangent to some other, lower isocontour. The next step is orthogonal to the latter isocontour (that
is, parallel to the gradient). Thus, at every step the steepest descent trajectory is forced to make a ninety-degree turn.
If isocontourswere circles (o, = o,,) centered at x*, then the first turn would make the new direction point to x*, and
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o

Figure 4.2: Trgjectory of steepest descent.

minimization would get there in just one more step. This case, in which x(Q) = 1, is consistent with our analysis,
because then

01— 0Op

o1 +o,
The more elongated the isocontours, that is, the greater the condition number « (@), the farther away aline orthogonal
to an isocontour passes from x*, and the more steps are required for convergence.

For generd (that is, non-quadratic) f, the analysis above applies once x; gets close enough to the minimum, so
that f iswell approximated by a paraboloid. In thiscase, @ isthe matrix of second derivatives of f with respect to x,
and iscalled the Hessian of f. In summary, steepest descent isgood for functionsthat have awell conditioned Hessian
near the minimum, but can become arbitrarily slow for poorly conditioned Hessians.

To characterize the speed of convergence of different minimization algorithms, we introduce the notion of the order
of convergence. Thisisdefined as the largest value of ¢ for which the

_ *
P e = X7
k—oo ||Xg — X*||2

isfinite. If 5 isthislimit, then close to the solution (that is, for large values of k) we have
Xk 41 = X7[| & BlIxe — X7

for a minimization method of order ¢. In other words, the distance of x; from x* isreduced by the ¢-th power at every
step, so the higher the order of convergence, the better. Theorem 4.1.2 impliesthat steepest descent has at best alinear
order of convergence. In fact, the residuals | f(x;) — f(x*)| in the values of the function being minimized converge
linearly. Since the gradient of f approaches zero when x; tendsto x*, the arguments x; to f can converge to X* even
more slowly.

To compl ete the steepest descent algorithm we need to specify how to check whether a minimum has been reached.
One criterion is to check whether the value of f(x;) has significantly decreased from f(xx_1). Another is to check
whether x;, is significantly different from x;_;. Close to the minimum, the derivatives of f are close to zero, so
|f(Xi) — f(Xr—1)| may be very small but ||x;, — Xx_1|| may still be relatively large. Thus, the check on x; is more
stringent, and therefore preferable in most cases. Infact, usually oneisinterested in the value of x*, rather than in that
of f(x*). In summary, the steepest descent algorithm can be stopped when

||Xk — Xk_1|| < €
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where the positive constant ¢ is provided by the user.

In our analysis of steepest descent, we used the Hessian @) in order to compute the optimal step size « (see equation
(4.4)). We used () because it was available, but its computation during steepest descent wouldin general be overkill. In
fact, only gradient information is necessary to find p,, and aline search in the direction of p,, can be used to determine
the step size a;,. In contrast, the Hessian of f(X) requires computing (g) second derivatives if x is an n-dimensional
vector.

Using line search to find «j guarantees that a minimum in the direction p,, is actually reached even when the
parabolic approximation is inadequate. Here ishow line search works.

Let

h(o) = F(Xi + ap) (4.13)

be the scalar function of one variable that is obtained by restricting the function f to the line through the current point
Xi and inthedirection of p,. Line search first determines two points «, ¢ that bracket the desired minimum ay, in the
sense that ¢ < oy, < ¢, and then picks a point between a and ¢, say, b = (a + ¢)/2. The only difficulty here isto
find c. Infact, we can set « = 0, corresponding through equation (4.13) to the starting point x;. A point ¢ that ison
the opposite side of the minimum with respect to « can be found by increasing « through values o« = a, as, . . . until
«; isgreater than a;—1. Then, if we can assume that & is convex between oy and «;, we can set ¢ = «;. Infact, the
derivative of  at « is negative, so the functionisinitially decreasing, but it isincreasing between «;_; and «; = ¢, S0
the minimum must be somewhere between « and ¢. Of course, if we cannot assume convexity, we may find the wrong
minimum, but there is no genera -purpose fix to this problem.

Line search now proceeds by shrinking the bracketingtriple (a, b, ¢) until ¢ — a issmaller than the desired accuracy
in determining o, Shrinking works as follows:

ifo—a>ec—9b
u=(a+b)/2
it f(u) > f(b)
(a,b,¢) = (u,b,c)
otherwise
(a,b,¢) = (a,u,b)
end
otherwise
u=(b+¢)/2
it £(u) > £(b)
(a,b,¢) = (a,b,u)
otherwise
(a,b,¢) = (b,u,c)
end
end.

It is easy to see that in each case the bracketing triple (a, b, ¢) preserves the property that f(b) < f(a) and
f(b) < f(e), and therefore the minimum is somewhere between « and ¢. In addition, at every step the interval (a, ¢)
shrinksto 3/4 of its previous size, so line search will find the minimum in a number of stepsthat islogarithmicinthe
desired accuracy.

4.2 Newton’sMethod

If afunction can be well approximated by a paraboloid in the region in which minimizationis performed, the analysis
in the previous section suggests a straight-forward fix to the slow convergence of steepest descent. In fact, equation
(4.2) tells us how to jump in one step from the starting point x to the minimum x*. Of course, when f(x) is not
exactly aparaboloid, the new value x; will be different from x*. Consequently, iterations are needed, but convergence
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can be expected to be faster. Thisistheidea of Newton’s method, which we now summarize. Let

1
F(Xk + AX) &~ f(xi) + gF Ax + §AXTQkAXk (4.14)

be the first terms of the Taylor series expansion of f about the current point x; , where

of
9 = 9(Xk) =
X X=X,
and
orf ... _9%
ox? Ox10x,
9% f !
Qr = Q(Xx) = = = : :
OXOXT |y _
X_Xk 62f 62f
dr, 0T, dx? X=X

are the gradient and Hessian of f evaluated at the current point x;. Notice that even when f is a paraboloid, the
gradient g,, is different from a as used in equation (4.1). Infact, a and (¢ are the coefficients of the Taylor expansion
of f around pointx = 0, whileg, and ), are the coefficients of the Taylor expansion of f around the current point
Xk . Inother words, gradient and Hessian are constantly reevaluated in Newton's method.

To the extent that approximation (4.14) is valid, we can set the derivatives of f(x; + Ax) with respect to Ax to
zero, and obtain, analogously to equation (4.2), the linear system

QrAX = -0 , (4.15)

whosesolution Ax;, = a4 p,, yieldsatthesametimethestepdirectionp,, = AX /||AXx|| andthestepsizeay, = ||Axg||.
The direction is of course undefined once the algorithm has reached a minimum, that is, when oy, = 0.

A minimization algorithmin which the step direction p,, and size o, are defined in this manner is called Newton's
method. The corresponding p;, is termed the Newton direction, and the step defined by equation (4.15) is the Newton
step.

The greater speed of Newton's method over steepest descent isborne out by analysis: while steepest descent has a
linear order of convergence, Newton's method is quadratic. Infact, let

y(x) = x—Q(x)'g(x)
be the place reached by a Newton step starting at x (see equation (4.15)), and suppose that at the minimum x* the
Hessian )(x*) isnonsingular. Then
y(X*) =x
because g(x*) = 0, and
Xe41 — X = Y(Xe) = X" = y(X) —y(X7) .
From the mean-value theorem, we have

1] 82 )
Yl = x|

_|_ - —_—
2 | OxOXT |y _x

s =T = Iy ~y0 ) < | [ 52 s

where X is some point on the line between x* and x;. Sincey(x*) = x*, thefirst derivatives of y at x* are zero, so that
the first term in the right-hand side above vanishes, and

(X1 — X7 < e f|xr — x|

where ¢ depends on third-order derivatives of f near x*. Thus, the convergence rate of Newton’s method is of order at
least two.

For a quadratic function, as in equation (4.1), steepest descent takes many steps to converge, while Newton's
method reaches the minimum in one step. However, this single iteration in Newton's method is more expensive,
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because it requires both the gradient g, and the Hessian ), to be evaluated, for a total of n + (g) derivatives. In
addition, the Hessian must be inverted, or, at least, system (4.15) must be solved. For very large problems, in which
the dimension » of x isthousands or more, storing and manipulating a Hessian can be prohibitive. In contrast, steepest
descent requires the gradient g;, for selecting the step direction p,,, and a line search in the direction p,, to find the
step size. The method of conjugate gradients, discussed in the next section, is motivated by the desire to accelerate
convergence with respect to the steepest descent method, but without paying the storage cost of Newton's method.

4.3 Conjugate Gradients

Newton's method converges faster (quadratically) than steepest descent (linear convergence rate) because it uses more
information about the function f being minimized. Steepest descent locally approximates the function with planes,
because it only uses gradient information. All it can do is to go downhill. Newton’'s method approximates f with
paraboloids, and then jumps at every iteration to the lowest point of the current approximation. The bottom lineis that
fast convergence requires work that is equivalent to evaluating the Hessian of f.

Prima facie, the method of conjugate gradients discussed in this section seems to violate this principle: it achieves
fast, superlinear convergence, similarly to Newton's method, but it only requires gradient information. This paradox,
however, is only apparent. Conjugate gradients works by taking »n steps for each of the steps in Newton’s method.
It effectively solves the linear system (4.2) of Newton's method, but it does so by a sequence of n one-dimensional
minimizations, each requiring one gradient computation and one line search.

Overall, the work done by conjugate gradientsis equivalent to that done by Newton’s method. However, system
(4.2) is never constructed explicitly, and the matrix () is never stored. Thisis very important in cases where X has
thousands or even millions of components. These high-dimensional problems arise typically from the discretization
of partia differential equations. Say for instance that we want to compute the motion of pointsin an image as a
conseguence of cameramotion. Partial differential equationsrelate image intensitiesover space and timeto themotion
of the underlying image features. At every pixel in the image, this motion, called the motion field, is represented by
a vector whose magnitude and direction describe the velocity of the image feature at that pixel. Thus, if an image
has, say, a quarter of a million pixels, there are n = 500, 000 unknown motion field values. Storing and inverting a
500,000 x 500,000 Hessian is out of the question. In cases like these, conjugate gradients saves the day.

The conjugate gradients method described in these notes is the so-called Polak-Ribiere variation. It will be
introduced in three steps. First, it will be developed for the simple case of minimizing a quadratic function with
positive-definite and known Hessian. This quadratic function f(x) was introduced in equation (4.1). We know that in
this case minimizing f(x) is equivalent to solving the linear system (4.2). Rather than an iterative method, conjugate
gradientsis a direct method for the quadratic case. This means that the number of iterationsisfixed. Specifically, the
method converges to the solution in n steps, where n is the number of components of x. Because of the equivalence
with alinear system, conjugate gradients for the quadratic case can also be seen as an aternative method for solving a
linear system, although the version presented here will only work if the matrix of the system is symmetric and positive
definite.

Second, the assumption that the Hessian () in expression (4.1) isknown will be removed. Asdiscussed above, this
isthe main reason for using conjugate gradients.

Third, the conjugate gradients method will be extended to general functions f(x). In this case, the method is no
longer direct, but iterative, and the cost of finding the minimum depends on the desired accuracy. This occurs because
the Hessian of f isnolonger aconstant, asit wasin the quadratic case. Asa consequence, acertain property that holds
in the quadratic case is now valid only approximately. In spite of this, the convergence rate of conjugate gradientsis
superlinear, somewhere between Newton’s method and steepest descent. Finding tight boundsfor the convergence rate
of conjugate gradientsis hard, and we will omit this proof. We rely instead on the intuition that conjugate gradients
solves system (4.2), and that the quadratic approximation becomes more and more valid as the algorithm converges
to the minimum. If the function f startsto behave like a quadratic function early, that is, if f is nearly quadraticin a
large neighborhood of the minimum, convergence is fast, as it requires close to the » steps that are necessary in the
quadratic case, and each of the stepsis simple. This combination of fast convergence, modest storage requirements,
and low computational cost per iteration explains the popularity of conjugate gradients methods for the optimization
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of functions of alarge number of variables.

4.3.1 TheQuadratic Case

Suppose that we want to minimize the quadratic function
1
f(x)=c+a'x+ §XTQX (4.16)

where @) is a symmetric, positive definite matrix, and x has n components. As we saw in our discussion of steepest
descent, the minimum x* is the solution to the linear system

Qx=-a. (4.17)

We know how to solve such a system. However, al the methods we have seen so far involve explicit manipulation
of the matrix ¢). We now consider an alternative solution method that does not need @, but only the quantity

g, = Q% +a

that is, thegradient of f(x), evaluated at » different pointsxy, . . ., X,. We will see that the conjugate gradients method
requires n gradient evaluationsand » line searches in lieu of each n x n matrix inversionin Newton’s method.

Formal proofs can be found in Elijah Polak, Optimization— Algorithms and consistent approximations, Springer,
NY, 1997. The arguments offered below appeal to intuition.

Consider thecase n = 3, inwhich thevariablex in f(x) isathree-dimensional vector. Then the quadratic function
f(x) is constant over ellipsoids, called isosurfaces, centered at the minimum x*. How can we start from a point X,
on one of these ellipsoidsand reach x* by afinite sequence of one-dimensional searches? In connection with steepest
descent, we noticed that for poorly conditioned Hessians orthogonal directions lead to many small steps, that is, to
dlow convergence.

When the ellipsoids are spheres, on the other hand, this works much better. The first step takes from X, to x;, and
the line between X, and x; istangent to an isosurface at x;. The next step is in the direction of the gradient, so that
the new direction p, is orthogonal to the previous direction p,. Thiswould then take usto x* right away. Suppose
however that we cannot afford to compute this specia direction p, orthogonal to p,, but that we can only compute
some direction p, orthogonal to p, (thereisan n — 1-dimensional space of such directions!). It iseasy to seethat in
that case n stepswill take usto x*. Infact, since isosurfaces are spheres, each line minimization isindependent of the
others: Thefirst step yields the minimum in the space spanned by p,,, the second step then yields the minimum in the
space spanned by p, and p,, and so forth. After n steps we must be done, since p, . . ., p,,_; Span thewhole space.

In summary, any set of orthogonal directions, with a line search in each direction, will lead to the minimum for
spherical isosurfaces. Given an arbitrary set of ellipsoidal isosurfaces, there is a one-to-one mapping with a spherical
system: if Q = UXUT isthe SVD of the symmetric, positive definite matrix @, then we can write

1 1
5 @x=oyly

where
y=x20Tx . (4.18)

Consequently, there must be a condition for the original problem (in terms of Q) that is equivalent to orthogonality for
the spherical problem. If two directions g, and q; are orthogonal in the spherical context, that is, if

g/ g; =0,
what does thistranslate into in terms of the directionsp, and p; for the ellipsoidal problem? We have

_ y1/2T
qi,j_E/U Pi s
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so that orthogonality for g, ; becomes
pfUn/ st 2yTp. = 0

or
P/ Qp; =0. (4.19)

This condition is called ()-conjugacy, or Q-orthogonality: if equation (4.19) holds, then p; and p; are said to be
()-conjugate or ()-orthogonal to each other. We will henceforth simply say “conjugate” for brevity.

In summary, if we can find n directionsp,, . . ., p, _; that are mutualy conjugate, and if we do line minimization
along each direction p,,, we reach the minimum in at most n steps. Of course, we cannot use the transformation
(4.18) in the algorithm, because ¥ and especially U7 are too large. So now we need to find a method for generating
n conjugate directionswithout using either @) or its SVD. We do thisin two steps. First, we find conjugate directions
whose definitions do involve . Then, in the next subsection, we rewrite these expressions without ().

Here isthe procedure, due to Hestenes and Stiefel (Methods of conjugate gradients for solving linear systems, J.
Res. Bureau Nationa Standards, section B, Vol 49, pp. 409-436, 1952), which also incorporates the steps from x, to
Xn:

9 = 9(Xo)

Po = —G

fork=0...,n—1
ap = arg ming>o f(Xk + apy)
Xi41 = Xk + apPg
Oy1 = O(Xkt1)

k lQ k
= gprplz
Prti = —Ory1 + 76Ps
end
where of
O = 9(Xx) = X x.
isthe gradient of f at xy.

Itissimple to see that p;, and p,,, ; are conjugate. In fact,

ngpk+1 = ng(_ng +Y:Py)
G+ 1@Ps
Pi QP

= —ngng + gg+1ka =0.

= —pLQYy . + L Qp,

It is somewhat more cumbersome to show that p;, and p,,, fori = 0, ..., k are also conjugate. This can be done by
induction. The proof is based on the observation that the vectors p,, are found by a generalization of Gram-Schmidt
(theorem 2.4.2) to produce conjugate rather than orthogonal vectors. Details can be found in Polak’s book mentioned
earlier.

4.3.2 RemovingtheHessian

The agorithm shown in the previous subsection is a correct conjugate gradients algorithm. However, it is computa
tionally inadequate because the expression for -, contains the Hessian (), which istoo large. We now show that ~x
can be rewrittenin terms of the gradient values g, and g, ; only. To thisend, we notice that

Oki1 = O +ar@py ,
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or
QP = Gky1 — G -
Infact,
g(x) = a+ Qx
so that

Okp1 = O(Xk+1) = O(Xs + aPy) = a+ Q(Xk + axPy) = G + vk QPy -

We can therefore write . . ,
051 @Pk 1k @Pr Gey1(Geg1 — O)

"}/ o o )
T pIQp. T PEaw@pr PE(Grar —Ok)

bl

and @) has disappeared.
Thisexpression for v, can be further smplified by noticing that

pggk+1 =0

because the line along p,, istangent to an isosurface at .11, whilethe gradient g, , , is orthogonal to the isosurface at
X +1. Similarly,
Pr_19, =0.

Then, the denominator of ~; becomes

Pr (Gegs — 96) = —Pr O, = (G — Ye—1Pe_1) G = U5 Oy -

In conclusion, we obtain the Polak-Ribiére formula

_ gg+1(gk+1 - O)
97

4.3.3 Extensionto General Functions

We now know how to minimizethe quadratic function (4.16) in » steps, without ever constructingthe Hessian explicitly.
When the function f(x) is arbitrary, the same algorithm can be used.

However, n iterations will not suffice. In fact, the Hessian, which was constant for the quadratic case, now is a
function of x;. Strictly speaking, we then lose conjugacy, since p, and p,,, are associated to different Hessians.
However, as the algorithm approaches the minimum x*, the quadratic approximation becomes more and more valid,
and afew cycles of n iterations each will achieve convergence.
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Chapter 5

Eigenvalues and Eigenvectors

Given alinear transformation
b= Ax,

the singular value decomposition A = UXV7 of A transforms the domain of the transformation via the matrix 17
and itsrange viathe matrix U7 so that the transformed system is diagonal. Infact, the equationb = UX V7' x can be
written as follows

UTb=xvTx,

that is,
c=2Xxy

where
y=VTx ad c=U%b,

and where ¥ isdiagonal. Thisisafundamental transformation to use whenever the domain and the range of A are
separate spaces. Often, however, domain and range are intimately related to one another even independently of the
transformation A. The most important example is perhaps that of a system of linear differential equations, of theform

X = AX
where A isn x n. For thisequation, the fact that A issquareisnot acoincidence. Infact, x isassumed to be afunction
of somereal scalar variablet (often time), and x is the derivative of x with respect to¢:
i
Cdt

In other words, there is an intimate, pre-existing relation between x and x, and one cannot change coordinates for x
without also changing those for x accordingly. In fact, if V' isan orthogonal matrix and we define

y=V7'x,
then the definition of x forces us to transform x by V7 aswell:
dVTx _ pdx _
dt dt
In brief, the SVD does nothing useful for systems of linear differential equations, because it diagonalizes A by two

different transformations, one for the domain and one for the range, while we need a single transformation. 1dedlly,
we would liketo find an orthogonal matrix .S and adiagonal matrix A such that

vTx.

A= SAST (5.1)

53
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s0 that if we define
y = STx

we can write the equivalent but diagonal differential system
y = Ay .

Thisisnow much easier to handle, because it is a system of n independent, scalar differential equations, which can be
solved separately. The solutions can then be recombined through

X=25Yy.

We will see al of thisin greater detail soon.

Unfortunately, writing A in the form (5.1) is not aways possible. This stands to reason, because now we are
imposing stronger constraints on the terms of the decomposition. It is like doing an SVD but with the additional
congtraint /' = V. If werefer back to figure 3.1, now the circle and the ellipse livein the same space, and the constraint
U = V implies that the vectors v; on the circle that map into the axes o;u; of the ellipse are paralel to the axes
themselves. Thiswill only occur for very special matrices.

In order to make a decompositionlike (5.1) possible, we weaken the constraintsin several ways.

o the elements of S and A are allowed to be complex, rather than real;
o the elements on the diagonal of A are alowed to be negative; in fact, they can be even non-redl;
o Sisrequired to be only invertible, rather than orthogonal.

To distinguish invertible from orthogonal matrices we use the symbol @ for invertible and S for orthogonal. In some
cases, it will be possible to diagonalize A by orthogonal transformations S and S7. Finally, for complex matrices we
generalize the notion of transpose by introducing the Hermitian operator: The matrix Q¥ (pronounced Q@ Hermitian”)
is defined to be the complex conjugate of the transpose of Q. If @) happensto bereal, conjugate transposition becomes
simply transposition, so the Hermitian is a generalization of the transpose. A matrix .S is said to be unitary if

SHS =SsH =7,

so unitary generalizes orthogonal for complex matrices. Unitary matrices merely rotate or flip vectors, in the sense
that they do not alter the vectors' norms. For complex vectors, the norm sguared is defined as

[Ix)1* = x"x
andif S isunitary we have
ISx]|? = x7 SH 5% = xFx = ||x||* .
Furthermore, if x; and x, are mutually orthogonal, in the sense that
xxy, =0,
then Sx; and Sx, are orthogonal as well:
X SH Sxy = xfTxy = 0.

In contrast, a nonunitary transformation ¢ can change the norms of vectors, as well as the inner products between
vectors. A matrix that is equal to its Hermitian is called a Hermitian matrix.
In summary, in order to diagonalize a square matrix A from a system of linear differential equationswe generally
look for a decomposition of A of theform
A=QAQ™! (5.2
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where ( and A are complex, @ isinvertible, and A isdiagonal. For some special matrices, thismay specialize to
A= SASH

with unitary S.
Whenever two matrices A and B, diagonal or not, are related by

A=QBQ™,

they are said to be similar to each other, and the transformation of B into A (and vice versd) is called a similarity
transformation.
The equation A = QAQ " can be rewritten as follows:

AQ = QA
or separately for every column of @) as follows:
Ag; = Aiq; (5.3)
where
Q=[a9 - q,] and A=diag(Ai,...,\).

Thus, the columns of g, of ¢ and the diagonal entries ; of A are solutionsof the eigenvalue/eigenvector equation
AX = AX, (5.9

which is how eigenvalues and eigenvectors are usually introduced. In contrast, we have derived this equation from the
requirement of diagonalizing a matrix by a similarity transformation. The columns of ¢ are called eigenvectors, and
the diagonal entries of A are called eigenvalues.

-15r

Figure5.1: Effect of the transformation (5.5) on a sample of pointson the unit circle. The dashed linesare vectors that
do not change direction under the transformation.

That real eigenvectors and eigenvalues do not always exist can be clarified by considering the eigenvalue problem
from a geometrical point of view inthen = 2 case. Aswe know, an invertible linear transformation transforms the
unit circleinto an ellipse. Each point on the unit circle istransformed into some point on the ellipse. Figure 5.1 shows
the effect of the transformation represented by the matrix

A= [ 263 4/2@ ] (5.5)
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for a sample of points on the unit circle. Notice that there are many transformations that map the unit circle into the
same elipse. Infact, thecirclein figure 5.1 can be rotated, pulling the solid lines along. Each rotation yields another
matrix A, but the resulting ellipse is unchanged. In other words, the curve-to-curve transformation from circle to
ellipseis unique, but the point-to-point transformation is not. Matrices represent point-to-point transformations.

The eigenvalue problem amounts to finding axes g, , g, that are mapped into themselves by the original transfor-
mation A (see equation (5.3)). Infigure 5.1, the two eigenvectors are shown as dashed lines. Notice that they do not
correspond to the axes of the ellipse, and that they are not orthogonal. Equation (5.4) is homogeneousin X, So x can
be assumed to be a unit vector without loss of generality.

Given that the directions of theinput vectors are generally changed by the transformation A, as evident from figure
5.1, it is not obvious whether the eigenvalue problem admits a solution at all. We will see that the answer depends
on the matrix A, and that a rather diverse array of situations may arise. In some cases, the eigenvalues and their
eigenvectors exist, but they are complex. The geometric intuition is hidden, and the problem is best treated as an
algebraic one. In other cases, al eigenvalues exist, perhaps all real, but not enough eigenvectors can be found, and the
matrix A cannot be diagonalized. In particularly good cases, there are n real, orthonormal eigenvectors. In bad cases,
we have to give up the idea of diagonalizing A, and we can only triangularizeit. This turnsout to be good enough for
solving linear differential systems, just as triangularization was sufficient for solving linear algebraic systems.

5.1 Computing Eigenvalues and Eigenvectors Algebraically

Let us rewrite the eigenval ue equation
AX = AX

as follows:
(A=XDx=0. (5.6)

This is a homogeneous, square system of equations, which admits nontrivial solutions iff the matrix A — A7 is
rank-deficient. A square matrix B isrank-deficient iff its determinant,

(b if Bislx 1
8= { S i i) aberios

is zero. In this expression, B;; is the algebraic complement of entry &;;, defined as the (n — 1) x (n — 1) matrix
obtained by removing row ¢ and column j from B.

Volumes have been written about the properties of the determinant. For our purposes, it is sufficient to recall the
following properties from linear algebra:

o det(B) = det(BT);
o det([ by -+ b, ])=0iffby,..., b, arelinearly dependent;
o det([ by bj -~ bj - b, ])=—det([by --- b;j -+ by - b, ]);

det(BC) = det(B) det(C).
Thus, for system (5.6) to admit nontrivial solutions, we need
det(A—XI)=0. (5.7)

From the definition of determinant, it follows, by very simple induction, that the left-hand side of equation (5.7)
is a polynomial of degree n in A, and that the coefficient of \* is 1. Therefore, equation (5.7), which is called the
characteristic equation of A, has n complex solutions, in the sense that

det(A— AT) = (=1)"(A = A1) ... (A= An)

where some of the \; may coincide. In other words, an n x n matrix has at most » distinct eigenvalues. The case of
exactly n distinct eigenvaluesis of particular interest, because of the following results.
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Theorem 5.1.1 Eigenvectorsxy, ..., X corresponding to distinct eigenvalues A1, . . ., A are linearly independent.

Proof. Supposethat ¢1X; + ...+ cx X = 0 wherethex; are eigenvectors of amatrix A. We need to show that then
1 =...= ¢ = 0. Bymultiplying by A we obtain

c1AXy + ...+ g AX =0
and because Xy, . . ., X are eigenvectors corresponding to eigenvalues 4, . . ., Ag, we have
CAAXL .ot e AeXe =0 (58)

However, from
X1+ ...+ epXe =0

we aso have
CLARX] + . e Xy =0

and subtracting this equation from eguation (5.8) we have
(M — )Xo+ .o F 1 (Ao — Ap)Xe—1 = 0.

Thus, we have reduced the summation to one containing £ — 1 terms. Since all \; are distinct, the differences in
parentheses are al nonzero, and we can replace each x by x; = (A; — Ax)X;, which is still an eigenvector of A:

C1X/1—|—...—|—C;€_1X;c =0.
We can repeat this procedure until only one term remains, and thisforces ¢; = 0, so that
CcoXog 4+ ...+ X =0

This entire argument can be repeated for the last equation, therefore forcing ¢, = 0, and so forth.
In summary, theequation ¢1 Xy + . . .+ ¢ X = 0 impliesthat ¢y = ... = ¢ = 0, that is, that the vectorsx, . . ., X
are linearly independent. A

For Hermitian matrices (and therefore for real symmetric matrices as well), the situationis even better.
Theorem 5.1.2 A Hermitian matrix hasreal eigenvalues.
Proof. A matrix A isHermitianiff A = A7, Let A and x be an eigenvalue of A and a corresponding eigenvector:
AXx = AX. (5.9

By taking the Hermitian we obtain
xHAH = \x

Since A = A" | the last equation can be rewritten as follows:
xT A= xf (5.10)
If we multiply equation (5.9) from the left by x and equation (5.10) from the right by x, we obtain
xHFAx = MxHx
xBAx = XxHx

which impliesthat
MxHx = A xHx
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Since x is an eigenvector, the scalar x x is nonzero, so that we have
A= X

as promised. A

Corollary 5.1.3 Areal and symmetric matrix hasreal eigenvalues.

Proof. A rea and symmetric matrix is Hermitian. A

Theorem 5.1.4 Eigenvectors corresponding to distinct eigenval ues of a Hermitian matrix are mutually orthogonal.
Proof. Let A and p betwo distinct eigenvalues of A, and let x and y be corresponding eigenvectors:

AX = XX
Ay = py = yTA=py"

because A = A and from theorem 5.1.2 ;1 = p*. If we multiply these two equations by y*! from the left and x from
the right, respectively, we obtain

yEAx = AyHx
yTAx = pyfx,
which implies
Ay x = pyHx
or
(A —pwyx=0.
Since the two eigenval ues are distinct, A — y is nonzero, and we must have y x = 0. A

Corollary 5.1.5 Ann x n Hermitian matrix with n distinct eigenvalues admits » orthonormal eigenvectors.

Proof.  From theorem 5.1.4, the eigenvectors of an n x n Hermitian matrix with n distinct eigenvalues are all
mutually orthogonal. Since the eigenvalue equation Ax = Ax is homogeneous in X, the vector x can be normalized
without violating the equation. Conseguently, the eigenvectors can be made to be orthonormal . A

In summary, any square matrix with n distinct eigenvalues can be diagonalized by a similarity transformation, and
any sguare Hermitian matrix with n distinct eigenvalues can be diagonalized by a unitary similarity transformation.

Notice that the converse is not true: a matrix can have coincident eigenvalues and still admit » independent, and
even orthonormal, eigenvectors. For instance, the n x n identity matrix has n equal eigenvalues but » orthonormal
eigenvectors (which can be chosen ininfinitely many ways).

The examples in section 5.2 show that when some eigenval ues coincide, rather diverse situationscan arise concern-
ing the eigenvectors. First, however, we point out a simple but fundamental fact about the eigenvalues of a triangular
matrix.

Theorem 5.1.6 The determinant of a triangular matrix is the product of the elements on its diagonal .
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Proof.  Thisfollowsimmediately from the definition of determinant. Without loss of generality, we can assume a
triangular matrix B to be upper-triangular, for otherwise we can repeat the argument for the transpose, which because
of the properties above has the same eigenvalues. Then, the only possibly nonzero b;;, of the matrix B isb;1, and the
summation in the definition of determinant given above reduces to a singleterm:

_ b11 if Bisl x 1
det(B) o { by det(BH) otherwise

By repesating the argument for B1; and so forth until we are left with a single scalar, we obtain

det(B) :bll bnn .

A
Corollary 5.1.7 The eigenvalues of a triangular matrix are the elements on its diagonal.
Proof.  The eigenvalues of amatrix A are the solutions of the equation
det(A—AI)=0.
If Aistriangular,sois B = A — A, and from the previous theorem we obtain
det(A—=Al) = (a11 — A) ... (@nn — A)
whichisequal to zero for
A=ai,...,dnpn -
A

Note that diagonal matrices are triangular, so this result holdsfor diagonal matrices as well.

5.2 Good and Bad Matrices

Solving differential equations becomes much easier when matrices have a full set of orthonormal eigenvectors. For
instance, the matrix

0 1

SHESE!

Matrices with » orthonormal eigenvectors are called normal. Normal matrices are good news, because then the
n X n system of differential equations

A= [ 2.0 ] (5.11)

has eigenvalues 2 and 1 and eigenvectors

X = AX

has solution
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where S = [s, - - - s,] are the eigenvectors, )\; are the eigenvalues, and the vector ¢ of constants ¢; is
c = S7x(0) .
More compactly,

x(t) =S SHx(0) .

Fortunately these matrices occur frequently in practice. However, not all matrices are as good as these. First, there
may still be a complete set of n eigenvectors, but they may not be orthonormal. An example of such amatrix is

2 -1
0 1
which has eigenvalues 2 and 1 and nonorthogonal eigenvectors

-3 =211

Q> = 7 1
Thisisconceptually only a slight problem, because the unitary matrix S is replaced by an invertible matrix @), and the
solution becomes

X(t) =@ Q™'X(0) .

eAnt

Computationally thisis more expensive, because a computation of a Hermitian is replaced by a matrix inversion.

However, things can be worse yet, and a full set of eigenvectors may fail to exist, as we now show.

A necessary conditionfor an n x n matrix to be defective, that is, to have fewer than »n eigenvectors, isthat it have
repeated eigenvalues. In fact, we have seen (theorem 5.1.1) that a matrix with distinct eigenvalues (zero or nonzero
does not matter) has a full set of eigenvectors (perhaps nonorthogonal, but independent). The simplest example of a
defective matrix is

0 1
0 o]

which has double eigenvalue 0 and only eigenvector [10]7, while
31
0 3

has double eigenvalue 3 and only eigenvector [1 0]7', so zero eigenvalues are not the problem.
However, repeated eigenval ues are not a sufficient condition for defectiveness, as the identity matrix proves.

How bad can a matrix be? Hereis amatrix that is singular, has fewer than n eigenvectors, and the eigenvectorsit
has are not orthogonal. It belongs to the scum of all matrices:

0 2 -1
A=([0 2 1 .
0 0 2

Its eigenvalues are 0, because the matrix is singular, and 2, repeated twice. A has to have a repeated eigenvalueif itis
to be defective. Itstwo eigenvectors are

| |
L el
0 2 |

corresponding to eigenvalues 0 and 2 in this order, and there isno q;. Furthermore, g, and g, are not orthogonal to
each other.
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5.3 Computing Eigenvalues and EigenvectorsNumerically

The examples above have shown that not every n x n matrix admits n independent eigenvectors, so some matrices
cannot be diagonalized by similarity transformations. Fortunately, these matrices can be triangularized by similarity
transformations, as we now show. Wewill show later on that thisallows solving systems of linear differential equations
regardless of the structure of the system’s matrix of coefficients.

It isimportant to notice that if a matrix A istriangularized by similarity transformations,

T=Q74Q,

then the eigenvalues of the triangular matrix 1" are equal to those of the original matrix A. Infact, if

AX = AX,
then
QTQ 'x=Xx,
that is,
Ty = Ay
where
y=Q'x,

so0 A isalso an eigenvalue for 7'. The eigenvectors, however, are changed according to the last equation.
The Schur decomposition does even better, since it triangularizes any square matrix A by a unitary (possibly
complex) transformation:
T=SHAS .

Thistransformation is equivalent to factoring A into the product
A=STSH

and thisproduct is called the Schur decompositionof A. Numerically stable and efficient al gorithmsexist for the Schur
decomposition. In this note, we will not study these algorithms, but only show that all square matrices admit a Schur
decomposition.

5.3.1 Rotationsintothe z; Axis

Animportant preliminary fact concernsvector rotations. Let e; bethefirst column of theidentity matrix. Itisintuitively
obviousthat any nonzero real vector x can be rotated into a vector parallel to e;. Formally, take any orthogonal matrix
S whose first columnis

o= X
CTIXI
Since sf'x = xTx/||x|| = ||x||, and since al the other s; are orthogonal to s;, we have
& x ||6(||
STX: X = =
g S ;

which isparallel toe; asdesired. It may be less obvious that a complex vector x can be transformed into areal vector
parallel to e; by aunitary transformation. But the trick is the same: let

X

S = —.
Il
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Now s; may be complex. We have §'x = x*x/||x|| = [|x||, and
[1X]
o Slix "
SHy = X = = . )
o §ix ;

just about like before. We are now ready to triangularize an arbitrary square matrix A.

5.3.2 The Schur Decomposition

The Schur decomposition theorem is the cornerstone of eigenvalue computations. It states that any square matrix can
be triangularized by unitary transformations. The diagonal elements of a triangular matrix are its eigenvalues, and
unitary transformations preserve eigenvalues. Conseguently, if the Schur decomposition of a matrix can be computed,
its eigenvalues can be determined. Moreover, as we will see later, a system of linear differential equations can be
solved regardless of the structure of the matrix of its coefficients.

Lemmab.3.1 If Aisann x n matrixand A and x are an eigenvalue of A and its corresponding eigenvector,

AX = AX (5.12)
then there is a transformation
T=U"AU
where U isaunitary, n x n matrix, such that
A
0
T= .| C
0

Proof. LetU beaunitary transformation that transformsthe (possibly complex) eigenvector x of A intoareal vector
onthe z; axis:

where r isthe nonzero norm of x. By substitutingthisinto (5.12) and rearranging we have

T T
0 0
AU | . = \U
| 0 ] 0
M N
0 0
U AU | . = A
_0_ _0_
F F
0 0
Ut AU | . = A
_0_ _0_
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1 A

0 0
T =

0 0

The last left-hand side is the first column of 7, and the corresponding right-hand side is of the form required by the
lemma. A

Theorem 5.3.2 (Schur) If Aisany n x n matrix then there exists a unitary n x » matrix S such that
SHAS =T

where 7" istriangular. Furthermore, .S can be chosen so that the eigenvalues A; of A appear in any order along the
diagonal of T'.

Proof. By induction. The theorem obviously holdsfor n = 1:
1A1=1.

Suppose it holdsfor all matrices of order n — 1. Then from the lemma there existsa unitary U such that

A

UHAU = 0 C

0
where X isany eigenvalue of A. Partition C' into arow vector and an (n — 1) x (n — 1) matrix G

H

C= [ " ] .

By the inductive hypothesis, there is a unitary matrix 1 such that VV # GV isa Schur decompositionof . Let

Clearly, S isaunitary matrix, and S AS isupper-triangular. Since the elements on the diagonal of atriangular matrix
are the eigenvalues, S¥ AS is the Schur decomposition of A. Because we can pick any eigenvalue as ), the order of
eigenvalues can be chosen arbitrarily. A

This theorem does not say how to compute the Schur decomposition, only that it exists. Fortunately, thereis a
stable and efficient a gorithm to compute the Schur decomposition. This is the preferred way to compute eigenvalues
numerically.
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5.4 Eigenvalues/Vectorsand Singular Values/VVectors

In this section we prove a few additional important properties of eigenvalues and eigenvectors. In the process, we also
establish alink between singular values/vectors and eigenval ues/vectors. Whilethislink isvery important, it is useful
to remember that eigenvalues/vectors and singular values/vectors are conceptually and factually very distinct entities
(recall figure 5.1).

First, a general relation between determinant and e genval ues.

Theorem 5.4.1 The determinant of a matrix isequal to the product of its eigenvalues.

Proof.  The proof is very ssimple, given the Schur decomposition. In fact, we know that the eigenvalues of a matrix
A are equal to those of the triangular matrix in the Schur decomposition of A. Furthermore, we know from theorem
5.1.6 that the determinant of atriangular matrix isthe product of the elements onitsdiagonal. If werecall that aunitary
matrix has determinant 1 or -1, that the determinants of S and S are the same, and that the determinant of a product
of matricesisequal to the product of the determinants, the proof is complete. A

We saw that an n x n Hermitian matrix with n distinct eigenvalues admits » orthonormal eigenvectors (corollary
5.1.5). The assumption of distinct eigenvalues made the proof simple, but is otherwise unnecessary. In fact, now that
we have the Schur decomposition, we can state the following stronger result.

Theorem 5.4.2 (Spectral theorem) Every Hermitian matrix can be diagonalized by a unitary matrix, and every real
symmetric matrix can be diagonalized by an orthogonal matrix:

A=A = A=5A5"
Areal, A= AT = A=SAST Srea .

In either case, A isreal and diagonal.

Proof.  We aready know that Hermitian matrices (and therefore real and symmetric ones) have rea eigenvalues
(theorem 5.1.2), so A isred. Let now
A=STSH

be the Schur decomposition of A. Since A isHermitian, sois7'. Infact, 7' = S¥ AS, and
TH = (SHASH = SHAHS = SHAS =T .

But the only way that 7" can be both triangular and Hermitian is for it to be diagonal, because 0* = 0. Thus, the
Schur decomposition of aHermitian matrix isin fact adiagonalization, and thisis thefirst equation of the theorem (the
diagonal of a Hermitian matrix must be real).

Let now A berea and symmetric. All that isleft to proveisthat then itseigenvectors arereal. But eigenvectorsare
the solution of the homogeneous system (5.6), which is both real and rank-deficient, and therefore admits nontrivial
real solutions. Thus, S isred, and S = ST A

In other words, a Hermitian matrix, real or not, with distinct eigenvalues or not, has rea eigenvalues and n
orthonormal eigenvectors. If in addition the matrix isreal, so are its eigenvectors.

We recall that areal matrix A such that for every nonzero x we have x” Ax > 0 is said to be positive definite. It is
positive semidefinite if for every nonzero x we have x Ax > 0. Notice that a positive definite matrix is also positive
semidefinite. Positive definite or semidefinite matrices arise in the solution of overconstrained linear systems, because
AT A is positive semidefinite for every A (lemma 5.4.5). They also occur in geometry through the equation of an
ellipsoid,

xFQx =1
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in which @ is positive definite. In physics, positive definite matrices are associated to quadratic forms x” Qx that
represent energies or second-order moments of mass or force distributions. Their physical meaning makes them
positive definite, or at least positive semidefinite (for instance, energies cannot be negative). The following result
relates eigenvalues/vectors with singular values/vectors for positive semidefinite matrices.

Theorem 5.4.3 The eigenvalues of a real, symmetric, positive semidefinite matrix A are equal to its singular values.
The eigenvectors of A are alsoits singular vectors, both left and right.

Proof.  From the previous theorem, A = SAST, where both A and S are real. Furthermore, the entriesin A are
nonnegative. In fact, from
As = As;

we obtain
sTAsi=s/Asi=AsTs; = As|] = A

If A is positive semidefinite, then x* Ax > 0 for any nonzero x, and in particular 7 As; > 0, so that A > 0.
But
A= SAST

with nonnegative diagonal entries in A is the singular value decomposition A = UXV 7T of A with ¥ = A and
U =V = 5. Recdl that the eigenvalues in the Schur decomposition can be arranged in any desired order aong the
diagonal. A

Theorem 5.4.4 Areal, symmetric matrix is positive semidefinite iff all its eigenvalues are nonnegative. It is positive
definite iff all its eigenvalues are positive.

Proof. Theorem 5.4.3 implies one of the two directions: If A isreal, symmetric, and positive semidefinite, then its
eigenvalues are nonnegative. If the proof of that theorem isrepeated with the strict inequality, we also obtain that if A
isreal, symmetric, and positive definite, then its eigenval ues are positive.

Cornversely, we show that if all eigenvalues A of areal and symmetric matrix A are positive (nonnegative) then A
is positive definite (semidefinite). To thisend, let x be any nonzero vector. Since real and symmetric matrices have n

orthonormal eigenvectors (theorem 5.4.2), we can use these eigenvectors g, . . ., S, as an orthonormal basis for R,
and write
X=c1S1+...+¢cxSh
with
e =X's .
But then

xT Ax P A(e1S1 + .. 4 enSy) =X (c1AS) + ..+ cnAS,)
XE(ehist 4 ..o+ endnSy) = Xl sy + .. 4 epdaxEs,

= M2+ .+ A2 >0(r >0)

because the \; are positive (nonnegative) and not all ¢; can be zero. Since x” Ax > 0 (or > 0) for every nonzero x, A
is positive definite (semidefinite). A

Theorem 5.4.3 establishes one connection between eigenval ues/vectors and singular values/vectors. for symmetric,
positive definite matrices, the concepts coincide. Thisresult can be used to introducealess direct link, but for arbitrary
matrices.

Lemmabs.4.5 AT A ispositive semidefinite.
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Proof.  For any nonzero x we can writex” AT Ax = || Ax||? > 0. A

Theorem 5.4.6 The eigenvalues of A” A with m > n are the squares of the singular values of A; the eigenvectors of
AT A aretheright singular vectorsof A. Smilarly, for m < n, theeigenvaluesof AA” are the squares of the singular
values of A, and the eigenvectorsof AA” are the left singular vectors of A.

Proof. Ifm>nandA =UXVT istheSVD of A, we have
ATA=vUTusyvT = ve?yT

which isin the required format to be a (diagonal) Schur decomposition with S = U/ and 7' = A = £2. Similarly, for
m < n,

AAT = uxvtyysu? = uxtu?
isa Schur decompositionwith S = V and T = A = X2, A

We have seen that important classes of matrices admit a full set of orthonormal eigenvectors. The theorem below
characterizes the class of all matrices with this property, that is, the class of al normal matrices. To prove the theorem,
we first need alemma.

Lemma5.4.7 If for ann x n matrix B we have BBH = BH B, thenfor every i = 1, ..., n,thenormof the i-th row
of B equalsthe norm of its i-th column.

Proof. From BB" = BY B we deduce
|1Bx||? = x” B Bx = x* BB x = || B¥ x|)? . (5.13)

If x = &, the i-th column of the n x n identity matrix, Be; isthe i-th column of B, and B¥ g; is the i-th column of
BH ' which isthe conjugate of the i-th row of B. Since conjugation does not change the norm of a vector, the equality
(5.13) impliesthat the ¢-th column of B has the same norm as the ¢-th row of B. A

Theorem 5.4.8 Ann x n matrixisnormal if an only if it commutes with its Hermitian:

AAH — AH 4

Proof. Let A = ST'SH bethe Schur decomposition of A. Then,
AAT = sTsHSTHSH — sTTHSH  and AP A=STHSHSTSH = sSTHTSH |

Because S isinvertible (even unitary), we have AAH = AH Aifand only if T7H = THT.

However, atriangular matrix 7" for which 77" = TH T must be diagonal. In fact, from the lemma, the norm of
the i-th row of 7" is equal to the norm of itsi-th column. Let 7 = 1. Then, the first column of 7" has norm |¢1|. The
first row has first entry ¢,1, so the only way that its norm can be |¢11] is for al other entriesin the first row to be zero.
We now proceed through ¢ = 2, . . ., n, and reason similarly to conclude that 7" must be diagonal .

The converse isalso obviously true: if T"isdiagonal, then 77 = THT. Thus, AA" = A” Aif and onlyif T'is
diagonal, that is, if and only if A can be diagonalized by a unitary similarity transformation. Thisisthe definition of a
normal matrix. A
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Corollary 5.4.9 A triangular, normal matrix must be diagonal.

Proof.  We proved thisin the proof of theorem 5.4.8. A

Checking that A# A = AA® is much easier than computing eigenvectors, so theorem 5.4.8 is a very useful
characterization of norma matrices. Notice that Hermitian (and therefore also real symmetric) matrices commute
trivially with their Hermitians, but so do, for instance, unitary (and therefore also real orthogonal) matrices:

U =Ry =71

Thus, Hermitian, real symmetric, unitary, and orthogonal matrices are all normal.
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Chapter 6

Ordinary Differential Systems

In this chapter we use the theory developed in chapter 5 in order to solve systems of first-order linear differential
equationswith constant coefficients. These systems have the following form:

X = Ax+Db(1) (6.1)
X(0) = Xo (6.2)

wherex = x(t) isan n-dimensional vector function of timet, the dot denotes differentiation, the coefficients a;; inthe
n x n matrix A are constant, and the vector function b(¢) is a function of time. The equation (6.2), in which x, isa
known vector, defines theinitial value of the solution.

First, we show that scalar differential equations of order greater than one can be reduced to systems of first-order
differential equations. Then, in section 6.2, we recall ageneral result for the solution of first-order differential systems
from the elementary theory of differential equations. In section 6.3, we make this result more specific by showing
that the solution to a homogeneous system is a linear combination of exponentials multiplied by polynomialsin ¢.
This result is based on the Schur decomposition introduced in chapter 5, which is numerically preferable to the more
commonly used Jordan canonical form. Finally, in sections 6.4 and 6.5, we set up and solve a particular differential
system as an illustrative example.

6.1 Scalar Differential Equations of Order Higher than One
Thefirst-order system (6.1) subsumes also the case of ascalar differential equation of order n, possibly greater than 1,

dny dn—ly dy B

dt—ﬂ—FCn_lW—F...—FClE—FCQy—b(t). (63)
In fact, such an equation can be reduced to a first-order system of the form (6.1) by introducing the n-dimensional
vector

Yy
sl d_y
dt
X = = )
Ly dn—.ly
dtn=1
With this definition, we have
di
dti/ = 2 fori=0,...,n—1
d’y  dzy
dtn T dt

69
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and x satisfies the additional n — 1 equations
dl‘i

dt
fori = 1,...,n— 1. If we writethe original system (6.3) together with the n — 1 differential equations (6.4), we
obtain the first-order system

(6.4)

Titl =

X = Ax+ b(?)
where
0 1 0 0
0 1 0
A= :
0 0 0 1
—Cp —C1 —C2 —Cp—1
isthe so-called companion matrix of (6.3) and
0
0
b(t) = |
0

6.2 General Solution of aLinear Differential System

We know from the general theory of differential equationsthat a general solution of system (6.1) with initial condition
(6.2) isgiven by
X(t) = Xn(t) + %, (t)

where X, (t) isthe solution of the homogeneous system

x = AX
X(0) = X
and x, (t) isa particular solution of
X = Ax+b(?)
x(0) = 0.

The two sol ution components x;, and x,, can be written by means of the matrix exponential, introduced inthefollowing.
For the scalar exponential ¢** we can write a Taylor series expansion

At A2 Mt
At _ E
7=0

Usually', in calculus classes, the exponential isintroduced by other means, and the Taylor series expansion above is
proven as a property.
For matrices, the exponential ¢# of amatrix Z € R"*" isinstead defined by the infinite series expansion

z Z? Z3
zZ _E
7=0

! Not always. In some treatments, the exponential is defined through its Taylor series.
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Here I isthe n x n identity matrix, and the general term 77 /! is simply the matrix Z raised to the jth power divided
by the scalar j!. It turnsout that thisinfinite sum converges (to an n x n matrix which we writeas e#) for every matrix
7. Substituting 7 = At gives

eAt:1+%+A;f2+A§f3 ...:ZA;!”. (6.5)
j=0
Differentiating both sides of (6.5) gives
dett A A
di 1! 2!
= A(I—i—%—l—A:z )
deAt
= A
Thus, for any vector w, the functionx,, (t) = e4'w satisfies the homogeneous differential system
Xp, = AXp, .
By using theinitial values (6.2) we obtainv = X, and
Xn(t) = e*'x(0) (6.6)

isasolutionto the differential system (6.1) withb(¢) = O and initial values (6.2). It can be shown that thissolutionis
unique.

Fromthe elementary theory of differential equations, weal so know that aparticular solutionto the nonhomogeneous
(b(t) # 0) equation (6.1) is given by

Thisis easily verified, since by differentiating this expression for x,, we obtain
t
Xp = AeAt / e~ A b(s)ds + et e A (1) = Ax, + b(1)
0

S0 X,, satisfies equation (6.1).
In summary, we have the following result.

The solution to

X = AX+ b(?) (6.7)
withiinitial value
X(0) = Xg (6.8
is
X(t) = Xp(t) + Xp(2) (6.9)
where
Xn (1) = eA'x(0) (6.10)
and .
X, (1) = / A=) b(s) ds . (6.11)
0

Since we now have aformulafor the general solutionto alinear differential system, we seem to have al we need.
However, we do not know how to compute the matrix exponential. The naive solution to use the definition (6.5)
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requires too many terms for a good approximation. As we have done for the SVD and the Schur decomposition, we
will only point out that several methods exist for computing a matrix exponential, but we will not discuss how thisis
done?. In afundamental paper on the subject, Nineteen dubious ways to compute the exponential of a matrix (SIAM
Review, vol. 20, no. 4, pp. 801-36), Cleve Moler and Charles Van Loan discuss alarge number of different methods,
pointing out that no one of them is appropriate for al situations. A full discussion of this matter is beyond the scope
of these notes.

When the matrix A is constant, as we currently assume, we can be much more specific about the structure of the
solution (6.9) of system (6.7), and particularly so about the solution X, (¢) to the homogeneous part. Specificaly,
the matrix exponential (6.10) can be written as a linear combination, with constant vector coefficients, of scalar
exponentials multiplied by polynomials. In the general theory of linear differential systems, this is shown via the
Jordan canonical form. However, in the paper cited above, Moler and Van Loan point out that the Jordan form cannot
be computed reliably, and small perturbations in the data can change the results dramatically. Fortunately, a similar
result can be found through the Schur decomposition introduced in chapter 5. The next section shows how to do this.

6.3 Structureof the Solution

For the homogeneous case b(t) = O, consider the first order system of linear differential equations

X = Ax (6.12)
X(0) = Xo. (6.13)

Two cases arise: either A admits n distinct eigenvalues, or isdoes not. In chapter 5, we have seen that if (but not only
if) A has n distinct eigenvalues then it has » linearly independent eigenvectors (theorem 5.1.1), and we have shown
how to find x; (¢) by solving an eigenvalue problem. In section 6.3.1, we briefly review this solution. Then, in section
6.3.2, we show how to compute the homogeneous solution x (¢) in the extreme case of an n x n matrix A with n
coincident eigenvalues.

To be sure, we have seen that matrices with coincident eigenvalues can still have afull set of linearly independent
eigenvectors (see for instance the identity matrix). However, the solution procedure we introduce in section 6.3.2 for
the case of n coincident eigenvalues can be applied regardless to how many linearly independent eigenvectors exist.
If the matrix has a full complement of eigenvectors, the solution obtained in section 6.3.2 is the same as would be
obtained with the method of section 6.3.1.

Once these two extreme cases (nondefective matrix or al-coincident eigenvalues) have been handled, we show a
genera procedure in section 6.3.3 for solving a homogeneous or nonhomogeneous differential system for any, square,
constant matrix A, defective or not. This procedure is based on backsubstitution, and produces a result analogous to
that obtained via Jordan decomposition for the homogeneous part x;, (¢) of the solution. However, sinceit is based on
the numerically sound Schur decomposition, the method of section 6.3.3 issuperior inpractice. For anonhomogeneous
system, the procedure can be carried out analytically if thefunctionsin theright-hand side vector b(¢) can beintegrated.

6.3.1 A isNot Defective

In chapter 5 we saw how to find the homogeneous part X (¢) of the solution when A has a full set of » linearly
independent eigenvectors. Thisresult is briefly reviewed in this section for convenience.?
If A isnot defective, then it has n linearly independent eigenvectors q4, . . ., q,, with corresponding eigenvalues
AL, .. An. Let
Q=[a - a.].

This square matrix isinvertible because its columns are linearly independent. Since Ag; = A;q;, we have

AQ = QA, (6.14)

?InMatlab, expn{ A) isthe matrix exponential of A.
3 Parts of this subsection and of the following one are based on notes written by Scott Cohen.
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where A = diag(\y, .. ., A\, ) iIsasquare diagonal matrix with the eigenvalues of A onits diagonal. Multiplying both
sides of (6.14) by @~ on theright, we obtain

A=QAQ™ . (6.15)
Then, system (6.12) can be rewritten as follows:
X = AX
X = QAQ 'x
Q7'x = AQ7'x
y = Ay, (6.16)

wherey = @~ 'x. The last equation (6.16) represents » uncoupled, homogeneous, differential equations y; = X;¥;.
The solutionis
yh (t) = eAty(O)a

where
M = diag(e?t, ... e,

Using therelation x = Qy, and the consequent relationy(0) = @ ~'x(0), we see that the solution to the homogeneous
system (6.12) is
X (1) = QM Q"x(0).

If Aisnormal, that is, if it has n orthonormal eigenvectors ¢4, . .. q,, then @ is replaced by the Hermitian matrix
S=[s - s, ], Q "isreplaced by S¥, and the solutionto (6.12) becomes

x5 (t) = SeMSHx(0).

6.3.2 A Hasn Coincident Eigenvalues
When A = QAQ ™!, we derived that the solution to (6.12) isx, (t) = Qe**Q~'x(0). Comparing with (6.6), it should
be the case that

eQ(At)Q_l — Q@AtQ_l.

Thisfollowseasily from the definition of ¢Z and the fact that (Q(A¢)Q 1) = Q(At)?Q~1. Similarly, if A = SASH,
where S is Hermitian, then the solutionto (6.12) isxy () = Set S x(0), and

eS(At)SH — GeMtgH

How can we computethe matrix exponential in the extreme case inwhich A hasn coincident eigenvalues, regardless
of the number of itslinearly independent eigenvectors? In any case, A admits a Schur decomposition

A= STSH

(theorem 5.3.2). Werecall that .S isa unitary matrix and 7" isupper triangular with the eigenvalues of A onitsdiagonal.
Thuswe can write T" as
T=A+N,

where A isdiagonal and N isstrictly upper triangular. The solution (6.6) in this case becomes
X (t) = ST x(0) = SeTtSHx(0) = SeA+Nt 5H x(0).

Thus we can compute (6.6) if we can compute ¢t = ¢A+Nt  This turns out to be almost as easy as computing e
when the diagonal matrix A isamultiple of the identity matrix:

A=AXT1
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that is, when all the eigenvalues of A coincide. Infact, in thiscase, At and N¢ commute:
AMNt=AIt Nt = M Nt = Nt At = Nt A1t = NtAt.
It can be shown that if two matrices 7, and 7, commute, that isif
VAV A VAR

then
621+Z2 — 621622 — 622621 )

Thus, in our case, we can write
6At+Nt — 6AteNt .

We already know how to compute e, so it remains to show how to compute eVt. The fact that Nt is strictly upper
triangular makes the computation of this matrix exponential much simpler than for ageneral matrix 7.

Suppose, for example, that N is4 x 4. Then N has three nonzero superdiagonals, N? has two nonzero superdiag-
onals, N3 has one nonzero superdiagonal, and N* is the zero matrix:

1
oo oo oo oo
OO OO OO O ¥
OO OO O O ¥ ¥
O ¥ ¥ ¥

L

T
oo oo oo oo
oo oo oo oo
OO OO OO O ¥
OO OO O O ¥ ¥

o O O *

In general, for astrictly upper triangular n x n matrix, we have N7 = 0 for al j > n (i.e., N isnilpotent of order n).
Therefore,

NIt NIt
Nt _ —
€= Z gt Z 4!

7=0 7=0

issimply afinite sum, and the exponential reduces to amatrix polynomial.

In summary, the general solution to the homogeneous differential system (6.12) with initial value (6.13) when the
n X n matrix A hasn coincident eigenvaluesis given by

J4d
Xi(t) = Sty NV gy, (6.17)

where
isthe Schur decomposition of A,

isamultiple of the identity matrix containing the coincident eigenvalues of A on itsdiagonal, and N isstrictly upper
triangular.
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6.3.3 The General Case
We are now ready to solve the linear differential system

X = Ax+b(?) (6.18)
X(0) = Xo (6.19)

in the general case of a constant matrix A, defective or not, with arbitrary b(¢). Infact, let A = ST S be the Schur
decomposition of A4, and consider the transformed system

y(t) = Ty(t) + c(t) (6.20)
where
y(t) = S¥x(t) and c(t) = STb(t) . (6.22)
The triangular matrix 7" can always be written in the following form:
Ty o o T
0 Toy -+ T
T = . . .
0 - 0 Tk
wherethediagonal blocksT;; fori = 1, ... kareof sizen; x n; (possibly 1 x 1) and contain all-coincident eigenval ues.
The remaining nonzero blocks 7;; with ¢ < j can be inturn bundled into matrices
Ri=| Ty - Tig |

that contain everything to the right of the corresponding 7;;. The vector c(t) can be partitioned correspondingly as
follows

F o) T
ct) = :
L Ce(t) |
where ¢; has n; entries, and the same can be done for
BACH
y(t) = :
BRAUE
and for theinitial values
y1(0)
y(0) = :
Y5 (0)

The triangular system (6.20) can then be solved by backsubstitution as follows:

fori = kdownto1l

ifi <k

di(t) = Ry (1)
else

d;(t) = 0 (an nj-dimensional vector of zeros)
end

Ti; = A\i I + N; (diagonal and strictly upper-triangular part of 7;;)
ni—1 N7t _s n;— Nlj —s5)7
Yilt) = At ey (0) + fy (X gt B (i) + difs)) ds
end.
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In this procedure, the expression for y; (¢) isadirect application of equations (6.9), (6.10), (6.11), and (6.17) with
S = I. Inthegenera case, the applicability of this routine depends on whether the integral in the expression for y; (¢)
can be computed analytically. Thisiscertainly the case when b(t) isa constant vector b, because then theintegrand is
alinear combination of exponentials multiplied by polynomialsint — s, which can be integrated by parts.

The solution x(t) for the original system (6.18) isthen

X(t) = Sy(t) .
Asanillustration, we consider a very small example, the 2 x 2 homogeneous, triangular case,
(7 t11 1o Y1
. = . 6.22
[ Y2 ] [ 0 a2 ] [ Y2 ] (622)

Whent;; = t25 = A, weobtan
1 &9t
v =[5 o).
In scalar form, this becomes
yi(t) = (y1(0) + t12y2(0) 1) M
Yo (t) = y2(0) M )

and it is easy to verify that this solution satisfies the differential system (6.22).

Whent;, = A1 # a2 = A2, wecould solve the system by finding the eigenvectors of 7', since we know that in this
case two linearly independent eigenvectors exist (theorem 5.1.1). Instead, we apply the backsubstitution procedure
introduced in this section. The second equation of the system,

y2(t) = taoyn

has solution
y2(t) = y2(0) erat
We then have
di(t) = tiay2(t) = t12y2(0) e**
and

t
yi(t) = yl(o)ew+/ M=), (s) ds
0

t
= un (0)6>\1t + tlzyz(O) 6>\1t/ 6_>\156>\2s ds
0
t

= y1(0)eM! + 11292 (0) Mt er2—A1)s g

= y (O)eAlt + tlzyz(o) eAlt(e(AQ—)\l)t _ 1)

Ao — M
i

— y1(0)6>\1t + 12y2(0) (6>\2t i eAlt)
Ao — M

Exercise: verify that thissolution satisfies both the differential equation (6.22) and theinitial valueequationy(0) = y .
Thus, the solutionsto system (6.22) for ¢1; = t25 and for t1; # 42 have different forms. While y»(¢) isthe same
in both cases, we have

y1(t) = y1(0) N + t1aya(0) teM ity = tay

t 0 .
Y1 (t) =1 (0)6>\1t =+ 12y2( ) (6>\2t — 6>\1t) if 111 ;é 199 .
Ay — A
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1 N
= rest position
***** v of mass 1
© a
rest position
of mass 2

Figure 6.1: A system of masses and springs. In the absence of external forces, the two masses would assume the
positionsindicated by the dashed lines.

This would seem to present numerical difficultieswhen ¢1; =~ ¢32, because the solution would suddenly switch
from oneform to the other as the difference between ¢;; and ¢, changes from about zero to exactly zero or viceversa.

This, however, is not a problem. In fact,

At N
lim —— =1
Mo A A c o

(3}

and the transition between the two cases is smooth.

6.4 A Concrete Example

In this section we set up and solve a more concrete example of a system of differential equations. The initial system
has two second-order equations, and is transformed into a first-order system with four equations. The 4 x 4 matrix of
the resulting system has an interesting structure, which allows finding eigenval ues and eigenvectors analytically with a
littletrick. The point of thissectionisto show how to transform the complex formal solution of the differential system,
computed with any of the methods described above, into areal solutionin aform appropriate to the problem at hand.

Consider the mechanical systeminfigure 6.1. Suppose that we want to study the evolution of the system over time.
Since forces are proportional to accelerations, because of Newton’slaw, and since accel erations are second derivatives
of position, the new equations are differential. Because differentiation occurs only with respect to one variable, time,
these are ordinary differential equations, as opposed to partial.

In the following we write the differential equations that describe this system. Two linear differential equations of
the second order* result. We will then transform these into four linear differential equations of the first order.

By Hooke's law, the three springs exert forces that are proportional to the springs’ elongations:

f1 = v

fz = Cz(vz - U1)

4 Recall that the order of adifferential equation is the highest degree of derivative that appearsin it.
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f3 = —C3V3

where the ¢; are the positive spring constants (in newtons per meter).
The accelerations of masses 1 and 2 (springs are assumed to be massless) are proportional to their accelerations,
according to Newton's second law:

mity = —fi+fo=—c1v1+ca(va —v1) = —(c1 + c2)vr + cavo
moty = —fo+ fa = —ca(ve —v1) — e3vy = cavy — (ea + ¢3)vs
or, inmatrix form,
V = Bv (6.23)
where
citeo [
_ | W N my
v_[vz] and B_[ % _%

We also assume that initial conditions
v(0) and v(0) (6.24)

are given, which specify positions and vel ocities of the two masses at timet = 0.

To solve the second-order system (6.23), we will first transform it to a system of four first-order equations. As
shown in the introduction to this chapter, thetrick isto introduce variables to denote the first-order derivatives of v, so
that second-order derivatives of v are first-order derivatives of the new variables. For uniformity, we define four new
variables

U v1
U v
u=| 2 |=1.72 (6.25)
Us U1
Uyg U2

S0 that

uz = 01 and U4:i)2a

el

We can now gather these four first-order differential equationsinto a single system as follows:

while the original system (6.23) becomes

u= Au (6.26)
where
0 0 1 0
A= 0 0 0 1
B 0 0
0 0

Likewise, theinitial conditions(6.24) are replaced by the (known) vector

In the next section we solve equation (6.26).
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6.5 Solution of the Example

Not all matrices have afull set of linearly independent eigenvectors. With the system of springsin figure 6.1, however,
we are lucky. The eigenvalues of A are solutionsto the equation

AX = AX, (6.27)
where we recall that
0 1 Rl
A_[B 0] and B = % _%]

Here, the zerosin A are 2 x 2 matrices of zeros, and I isthe 2 x 2 identity matrix. If we partition the vector x intoiits
upper and lower halvesy and z, )
X = [ y

w=[ o] l2)=14

so that the eigenvalue equation (6.27) can be written as the following pair of equations:

we can write

z = Ay (6.28)
By = Az,

which yields
By =py with pu=\%.

In other words, the eigenvalues of A are the square roots of the eigenvalues of B: if we denote the two eigenval ues of
B as u; and o, thenthe eigenvalues of A are

AL = Vv H1 Az = —V H1 Az = V2 A = NV H2 -

The eigenvalues ;1 and u» of B are the solutions of

+ co+ ¢ c2
det(B—yI):(M—l—ﬂ) (#4—#)— 2 =  +2ap+B=0

my 2 mimsa

where

€12 + c1c3 + cac3

mimsa

c1+¢2  Cca+tc3
_|_
my ma

)andﬁ:

N | —

are positive constants that depend on the elastic properties of the springs and on the masses. We then obtain
pi2=—azxy,

where

2
y = /az_ﬁ:\/%<61+62 62-1-63) n C%

mi B mso mimsa .
The constant  is real because the radicand is nonnegative. We also have that o < +, so that the two solutions; » are
real and negative, and the four eigenvalues of A,
A = a4y, A=—vV—a+7, (6.29)
Az = —a—7v, A=—-/—-a—7 (6.30)
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come in nonreal, complex-conjugate pairs. Thisisto be expected, since our system of springs obviously exhibits an
oscillatory behavior.

Also the eigenvectors of A can be derived from those of B. In fact, from equation (6.28) we see that if y isan
eigenvector of B corresponding to eigenvalue 1+ = A?, then there are two corresponding eigenvectors for A of theform

- [ 2y ] | (6.31)

The four eigenvectors of B are the solutions of
(B=(—azxy))y=0. (6.32)

Since +(—« =+ v) are eigenvalues of B, the determinant of thisequationis zero, and the two scalar equationsin (6.32)
must be linearly dependent. The first equation reads

_(Cﬁ_cz_ai,y) it =0
mi mi
and is obviously satisfied by any vector of the form

y:k|: CI+C2TZIO[:E"}/ :|

where k is an arbitrary constant. For £ # 0, y denotes the two eigenvectors of B, and from equation (6.31) the four
eigenvectors of A are proportional to the four columns of the following matrix:

a :—11/\% a le\g a le\g a II/\Z
c c c o 6.33
N A Az As sl Ay €39
A(a+A]) A2 (a+A5) As(a+A3) Asfa+Af)
where
-+t
==

The genera solution to the first-order differential system (6.26) is then given by equation (6.17). Since we just found
four distinct elgenvectors, however, we can write more simply

u(t) = Qe Q™ 'u(0) (6.34)
where
A 0 0 0
_ 0 X 0 O
A= 0 0 X3 O
0 0 0 M

In these expressions, the values of A; are given in equations (6.30), and () isin equation (6.33).

Finally, the solution to the original, second-order system (6.23) can be obtained from eguation (6.25) by noticing
that v is equal to thefirst two components of u.

This completesthe solution of our system of differential equations. However, it may beuseful to add some algebraic
manipulation in order to show that the solution isindeed oscillatory. Aswe seein the following, the masses' motions
can be described by the superposition of two sinusoids whose frequencies depend on the physical constants involved
(masses and spring constants). The amplitudes and phases of the sinusoids, on the other hand, depend on the initial
conditions.

To simplify our manipulation, we note that

u(t) = QeMw



6.5. SOLUTION OF THE EXAMPLE 81

where we defined
w=Q 'u(0). (6.35)

We now leave the constants in w unspecified, and derive the general solution v(¢) for the original, second-order
problem. Numerical values for the constants can be found from theinitial conditionsu(0) by equation (6.35). We have

V(t) = Q(1:2,:)eMw,
where Q(1 : 2, :) denotes the first two rows of @). Since
Ay = =\ and Ay = —A3

(see equations (6.30)), we have
Q:2,)=[a a G a;]
where we defined

"o [ %T_zrﬁ ] ad 9 = [ %T_EFA% ] '
Thus, we can write
V(t) = ay (ke + kae™) 4 Gy (kae™* + kae™ ")
Since the Asare imaginary but v(t) isreal, the k; must come in complex-conjugate pairs:
fi=hsoand ks =g (6.30)

In fact, we have
V(0) = dy (k1 + k2) + dy (ks + ka)

and from the derivative
V(t) = qlAl (]fl(i‘)\lt — k’ze_)\lt) + q2A3 (k’36>\3t — k’46_>\3t)

we obtain
V(0) = ayAi (k1 — k2) + Ay As(ks — ka) -

Since the vectors g; are independent (assuming that the mass ¢, iS nonzero), this means that
k1 + ko isred k1 — ko is purely imaginary
ks + ka4 isred ks — ka4 ispurely imaginary ,
from which equations (6.36) follow.
Finally, by using the relation ' '
eIt eI
= cos e ,
and simple trigonometry we obtain
V(t) = g, A1 cos(wit + ¢1) + Qy Az cos(wat + ¢2)

where
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and

1+ ¢z c2 + c3
a=——= |, b=

my ma

Notice that these two frequencies depend only on the configuration of the system, and not on theinitial conditions.
The amplitudes A; and phases ¢;, on the other hand, depend on the constants ; as follows:

Arv =kl As = ks
¢1 = arctany(Im(ky), Re(k)) $2 = arctany(Im(ks), Re(ks))

where Re, Im denote the real and imaginary part and where the two-argument function arctans is defined as follows
for (2, y) # (0,0)

arctan() ifz >0
7+ arctan(¥) ifx <0
arctana(y, x) = = ife—0andy > 0

=

-z ifr=0andy <0

[5V)

and isundefined for (x, y) = (0, 0). Thisfunction returnsthe arctangent of i/« (notice the order of the arguments) in
the proper quadrant, and extends the function by continuity along the y axis.

The two constants £; and k3 can be found from the given initial conditionsv(0) and v(0) from equations (6.35)
and (6.25).



Chapter 7

Stochastic State Estimation

Perhaps the most important part of studying a problem in robotics or vision, as well as in most other sciences, is to
determine a good mode! for the phenomena and events that are involved. For instance, studying manipulation requires
defining modelsfor how arobot arm can move and for how it interactswith theworld. Analyzingimage motionimplies
defining modelsfor how points move in space and how this motion projects onto theimage. When motionisinvolved,
asisvery often the case, modelstake on frequently the form of dynamic systems. A dynamic system isamathematical
description of aquantity that evolves over time. The theory of dynamic systemsisboth rich and fascinating. Although
inthischapter we will barely scratch its surface, we will consider one of itsmost popular and useful aspects, the theory
of state estimation, in the particular form of Kalman filtering. To this purpose, an informal definition of a dynamic
system is given in the next section. The definition isthen illustrated by setting up the dynamic system equations for a
simple but realistic application, that of modeling the trajectory of an enemy mortar shell. In sections 7.3 through 7.5,
we will develop the theory of the Kalman filter, and in section 7.6 we will see that the shell can be shot down before
it hitsus. Asdiscussed in section 7.7, Kalman filtering has intimate connections with the theory of algebraic linear
systems we have developed in chapters 2 and 3.

7.1 Dynamic Systems

In its most general meaning, the term system refers to some physical entity on which some action is performed by
means of an input u. The system reacts to thisinput and produces an output y (see figure 7.1).

A dynamic system is a system whose phenomena occur over time. One often says that a system evolves over time.
Simple examples of a dynamic system are the following:

o An electric circuit, whose input is the current in a given branch and whose output is a voltage across a pair of
nodes.

o A chemica reactor, whose inputs are the external temperature, the temperature of the gas being supplied, and
the supply rate of the gas. The output can be the temperature of the reaction product.

¢ A mass suspended from a spring. The input is the force applied to the mass and the output is the position of the
mass.

u S y

input system output

Figure7.1: A general system.

83
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In al these examples, what is input and what is output is a choice that depends on the application. Also, al the
guantities in the examples vary continuously with time. In other cases, as for instance for switching networks and
computers, it is more natural to consider time as a discrete variable. If time varies continuoudly, the system is said to
be continuous; if time varies discretely, the system is said to be discrete.

711 State

Given a dynamic system, continuous or discrete, the modeling problem is to somehow correlate inputs (causes) with
outputs (effects). The examples above suggest that the output at time ¢ cannot be determined in general by the value
assumed by the input quantity at the same point in time. Rather, the output is the result of the entire history of the
system. An effort of abstraction istherefore required, which |eads to postulating a new quantity, called the state, which
summarizes information about the past and the present of the system. Specifically, the value x(¢) taken by the state at
time ¢ must be sufficient to determine the output at the same point in time. Also, knowledge of both (1) and up, ),
that is, of the state at time ¢, and the input over the interval ¢; <t < t,, must alow computing the state (and hence
the output) at timet-. For the mass attached to a spring, for instance, the state could be the position and vel ocity of the
mass. In fact, the laws of classical mechanics allow computing the new position and velocity of the mass at time ¢,
given its position and velocity at time¢; and theforces applied over theinterval [t1,¢5). Furthermore, in thisexample,
the output y of the system happens to coincide with one of the two state variables, and is therefore always deducible
from the | atter.

Thus, in a dynamic system the input affects the state, and the output is a function of the state. For a discrete
system, the way that the input changes the state at time instant number % into the new state at timeinstant £ + 1 can
be represented by a simple equation:

Xk+1 = f(Xg, Ux, k)

where f issome function that represents the change, and uy, istheinput at time k. Similarly, the relation between state
and output can be expressed by another function:

Vi = h(Xg, k) .

A discrete dynamic system is completely described by these two equations and an initial state x,. In genera, all
guantities are vectors.

For continuous systems, time does not come in quanta, so one cannot compute X, 41 as a function of X, ug, and
k, but rather compute x(¢2) as afunctional ¢ of x(¢,) and the entireinput u over theinterval [¢,¢2):

X(tz) = ¢)(X(t1), U('),tl,tz)

where u(-) represents the entire function u, not just one of its values. A description of the system in terms of
functions, rather than functional s, can be given inthe case of aregular system, for which thefunctional ¢ iscontinuous,
differentiable, and with continuousfirst derivative. In that case, one can show that there exists a function f such that
the state X(¢) of the system satisfies the differential equation

where the dot denotes differentiation with respect to time. The relation from state to output, on the other hand, is
essentially the same as for the discrete case:

y(t) = h(x(1),1) .
Specifying theinitial state x, completes the definition of a continuous dynamic system.

7.1.2 Uncertainty

The systems defined in the previous section are called deterministic, since the evolution is exactly determined once
the initia state x at time 0 is known. Determinism implies that both the evolution function f and the output function
h are known exactly. Thisis, however, an unredlistic state of affairs. In practice, the laws that govern a given physical
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system are known up to some uncertainty. In fact, the equations themselves are simple abstractions of a complex
reality. The coefficients that appear in the equations are known only approximately, and can change over time as a
result of temperature changes, component wear, and so forth. A more realistic model then allows for some inherent,
unresolvable uncertainty in both f and h. Thisuncertainty can be represented as noise that perturbs the equations we
have presented so far. A discrete system then takes on the following form:

f(xkaukak)—i—nk
h(Xkak) +€k

Xk +1
Yk

and for a continuous system

X(t) = Jx(),u(®),t) +n(t)
yt) = hx(®), 1) +£0@) -

Without loss of generality, the noise distributions can be assumed to have zero mean, for otherwise the mean can be
incorporated into the deterministic part, that is, in either f or . The mean may not be known, but thisis a different
story: in general the parameters that enter into the definitionsof f and 2 must be estimated by some method, and the
mean perturbations are no different.

A common assumption, which is sometimes valid and always simplifies the mathematics, is that » and ¢ are
zero-mean Gaussian random variables with known covariance matrices Q and R, respectively.

7.1.3 Linearity

The mathematics becomes particularly simple when both the evolution function f and the output function & are linear.
Then, the system equations become

Xgp1 = IpXp + GrUp + np
Ve = HiXe+&
for the discrete case, and
X(t) = FOx()+ Gu(t) +n(t)

y() = HOx() +£@)

for the continuous one. It isuseful to specify the sizes of the matricesinvolved. We assume that theinput u is a vector
inR?, thestatex isin’R™, and the output y isin R™. Then, the state propagation matrix ' isn x n, theinput matrix
G isn x p, and the output matrix H ism x n. The covariance matrix ) of the system noise  isn x n, and the
covariance matrix of the output noiseé ism x m.

7.2 An Example: the Mortar Shell

In this section, the example of the mortar shell will be discussed in order to see some of the technical issues involved
in setting up the equations of a dynamic system. In particular, we consider discretization issues because the physical
system isitself continuous, but we choose to model it as a discrete system for easier implementation on a computer.

In sections 7.3 through 7.5, we consider the state estimation problem: given observations of the output y over an
interval of time, we want to determine the state x of the system. Thisisavery important task. For instance, in the case
of the mortar shell, the state is the (initially unknown) position and velocity of the shell, while the output is a set of
observations made by a tracking system. Estimating the state then leads to enough knowledge about the shell to allow
driving an antiaircraft gun to shoot the shell down in mid-flight.

You spotted an enemy mortar installation about thirty kilometers away, on a hill that looks about 0.5 kilometers
higher than your own position. You want to track incoming projectiles with a Kalman filter so you can aim your guns
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accurately. You do not know theinitial velocity of the projectiles, so you just guess some values: 0.6 kilometers/second
for the horizontal component, 0.1 kilometers/second for the vertical component. Thus, your estimate of theinitial state
of the projectileis
—0.6

30

0.1

0.5

>
Nowe QL K

where d isthe horizontal coordinate, = isthe vertical, you areat (0, 0), and dots denote derivatives with respect to time.
From your high-school physics, you remember that the laws of motion for a ballistic trajectory are the following:

d(t)y = d(0)+d(0)t (7.1)
z(t) = 2(0)+ 2(0)t — %gt2 (7.2)

where g is the gravitational acceleration, equal to 9.8 x 10~ kilometers per second squared. Since you do not trust
your physics much, and you have little time to get ready, you decide to ignore air drag. Because of this, you introduce
a state update covariance matrix ¢ = 0.114, where I, isthe 4 x 4 identity matrix.

All you have to track the shellsis a camera pointed at the mortar that will rotate so as to keep the projectile at the
center of the image, where you see a blob that increases in size as the projectile gets closer. Thus, the aiming angle of
the camera gives you elevation information about the projectil€’s position, and the size of the blob tells you something
about the distance, given that you know the actual size of the projectiles used and all the camera parameters. The
projectile’'selevationis

z
e= 10003 (7.3)
when the projectileisat (d, z). Similarly, the size of the blobin pixelsis
1000
= —. 7.4
i Vd? 4 22 (7.4

You do not have very precise estimates of the noise that corrupts e and s, SO you guess measurement covariances
R. = Rs; = 1000, which you put along the diagonal of a2 x 2 diagonal measurement covariance matrix R.

7.2.1 The Dynamic System Equation

Equations (7.1) and (7.2) are continuous. Since you are taking measurements every d¢ = 0.2 seconds, you want to
discretize these equations. For the z component, equation (7.2) yields

z(t+dt)—z(t) = z(0) +2(0)(t +dt) — %g(t +dt)* — |2(0) + 2(0)t — %gtz

= (2(0) — gyt — Jg(d)’

()it — Sod)?

since z(0) — gt = 2(t).
Consequently, if t 4+ dt istimeinstant £ + 1 and ¢ istime instant %, you have

. 1
Zk+1 = 2k + Zpdl — ig(dt)2 . (7.5)
The reasoning for the horizontal component d is the same, except that there is no acceleration:

diqr = dy + dpdt . (7.6)
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Equations (7.5) and (7.6) can be rewritten as a single system update equation
X1 = Fx, + Gu

where .
dy
dy

2k

X =
Zg

is the state, the 4 x 4 matrix I depends on dt, the control scalar « is equal to —g, and the 4 x 1 control matrix GG
depends on d¢. The two matrices I and G are as follows:

1 0 0 0 0

dt 1 0 0 0
F=19 0 1 0 G=| @

0 0 dt 1 —dt?

7.2.2 The Measurement Equation

The two nonlinear equations (7.3) and (7.4) express the available measurements as a function of the true values of the
projectile coordinates d and z. We want to replace these equationswith linear approximations. To thisend, we develop
both equations as Taylor series around the current estimate and truncate them after the linear term. From the elevation
equation (7.3), we have
z »%k Z— ék »%k o
e = 1000= =~ 1000 | — + ——— — —(d —d ,
* d de | d (d=d)

so that after simplifying we can redefine the measurement to be the discrepancy from the estimated value:

¢l = er — 100075 2 1000( 5 — gy 7.7
& = €k i (dk di) (7.7)

We can proceed similarly for equation (7.4):

100001000 1000ds 10002 )
ICEERN e Ty T et
dp + 2, k k k k

Sk

and after simplifying:

g . (7.8)

) 2000 .
(df +22)32 (d} +20)312

8, = 8 — ——=~ —1000

Vd2 22

The two measurements ¢, and s;, just defined can be collected into a single measurement vector

e
yk_|:8;€:|a

and the two approximate measurement equations (7.7) and (7.8) can be written in the matrix form

Vi = HiXg (7.9)
where the measurement matrix H; depends on the current state estimate Xy :
_ Cik 7 0 _ 2k 7
Hy = —1000 (&+32) (4+2})

i L
a dx
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As the shell approaches us, we frantically start studying state estimation, and in particular Kalman filtering, in the
hope to build a system that |ets us shoot down the shell beforeit hitsus. The next few sections will be read under this
impending threat.

Knowing the model for the mortar shell amounts to knowing the laws by which the object moves and those that
relate the position of the projectile to our observations. So what else is there left to do? From the observations, we
would like to know where the mortar shell is right now, and perhaps predict where it will be in a few seconds, so we
can direct an antiaircraft gun to shoot down the target. In other words, we want to know Xy, the state of the dynamic
system. Clearly, knowing X, instead is equivalent, at least when the dynamics of the system are known exactly (the
system noise 7, is zero). Infact, from X, we can simulate the system up until time ¢, thereby determining x; as well.
Most importantly, we do not want to have all the observations before we shoot: we would be dead by then. A scheme
that refines an initial estimation of the state as new observations are acquired is called a recursive’ state estimation
system. The Kalman filter is one of the most versatile schemes for recursive state estimations. The original paper
by Kalman (R. E. Kalman, “A new approach to linear filtering and prediction problems,” Transactions of the ASME
Journal Basic Engineering, 82:34-45, 1960) is still one of the most readabl e treatments of this subject from the point
of view of stochastic estimation.

Even without noise, a single observation y,, may not be sufficient to determine the state x; (in the example, one
observation happens to be sufficient). Thisis a very interesting aspect of state estimation. It isrealy the ensemble
of al observations that et one estimate the state, and yet observations are processed one at a time, as they become
available. A classical example of thissituationin computer visionisthe reconstruction of three-dimensional shapefrom
a sequence of images. A single image is two-dimensional, so by itself it conveys no three-dimensional information.
Kalman filtersexist that recover shape informationfrom asequence of images. SeeforinstanceL. Matthies, T. Kanade,
and R. Szeliski, “ Kalman filter-based algorithmsfor estimating depth from image sequences,” International Journal of
Computer Vision, 3(3):209-236, September 1989; and T.J. Broida, S. Chandrashekhar, and R. Chellappa, “ Recursive
3-D motion estimation from a monocular image sequence,” |EEE Transactions on Aerospace and Electronic Systems,
26(4):639-656, July 1990.

Here, we introduce the Kalman filter from the simpler point of view of least squares estimation, since we have
developed all the necessary toolsin the first part of this course. The next section defines the state estimation problem
for a discrete dynamic system in more detail. Then, section 7.4 defines the essential notions of estimation theory
that are necessary to understand the quantitative aspects of Kalman filtering. Section 7.5 devel ops the equation of the
Kaman filter, and section 7.6 reconsiders the example of the mortar shell. Finally, section 7.7 establishes a connection
between the Kalman filter and the solution of a linear system.

7.3 State Estimation

In this section, the estimation problem is defined in some more detail. Given a discrete dynamic system

Xpt1 = FeXe + GrUg + ng (7.10)
Vi = HiXe+& (7.12)
where the system noise r;, and the measurement noise &, are Gaussian variables,
me ~ N(0,Qr)
&~ N(0,Ry),

as well as a (possibly completely wrong) estimate X, of the initial state and an initial covariance matrix P, of the
estimate X, the Kalman filter computes the optimal estimate Xy, at time k given the measurementsy,, ..., y,. The
filter also computes an estimate P ;. of the covariance of X, given those measurements. In these expressions, the hat
means that the quantity is an estimate. Also, thefirst % in the subscript refers to which variable is being estimated, the
second to which measurements are being used for the estimate. Thus, in general, X;; is the estimate of the value that
X assumes at time ¢ given thefirst j + 1 measurementsyy, . . ., Y.

1 The term “recursive” in the systems theory literature correspondsloosely to “incremental” or “iterative” in computer science.
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Figure 7.2: The update stage of the Kalman filter changes the estimate of the current system state x, to make the
prediction of the measurement closer to the actual measurement y,.. Propagation then accountsfor the evolution of the
system state, as well as the consequent growing uncertainty.

7.3.1 Update

The covariance matrix P, must be computed in order to keep the Kalman filter running, in the following sense. At
time &, just before the new measurement y,, comes in, we have an estimate x|, —; of the state vector x,, based on the
previous measurements y,, . . ., Y, _,. Now we face the problem of incorporating the new measurement y, into our
estimate, that is, of transforming Xy —1 into X . If X;|,—1 were exact, we could compute the new measurement y,
without even looking at it, through the measurement equation (7.11). Even if X, isnot exact, the estimate

Vi1 = HeXes—1
isstill our best bet. Now y, becomes available, and we can consider the residue

Mo =Ye = Yepe—1 = Yi — HrXep-1 -
If thisresidue is nonzero, we probably need to correct our estimate of the state x;,, so that the new prediction
Yipr = HiXen
of the measurement value is closer to the old prediction
Vi1 = HeXes—1

we made just before the new measurement y,, was available.

The question however is, by how much should we correct our estimate of the state? We do not want to makey, |,
coincide withy,. That would mean that we trust the new measurement completely, but that we do not trust our state
estimate X, at al, even if the latter was obtained through a large number of previous measurements. Thus, we
need some criterion for comparing the quality of the new measurement y,, with that of our old estimate Xy, of the
state. The uncertainty about the former is Ry, the covariance of the observation error. The uncertainty about the state
just before the new measurement y, becomes available is P, ;. The update stage of the Kalman filter uses R, and
Py -1 toweigh past evidence (X . —1) and new observations (y,,). This stage isrepresented graphically inthe middle
of figure 7.2. At the same time, also the uncertainty measure ;| must be updated, so that it becomes available for
the next step. Because a new measurement has been read, this uncertainty becomes usualy smaller: B, < Pyjr—1.

The idea is that as time goes by the uncertainty on the state decreases, while that about the measurements may
remain the same. Then, measurements count less and less as the estimate approaches itstrue value.
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7.3.2 Propagation

Just after arrival of the measurement y,., both state estimate and state covariance matrix have been updated as described
above. But between time k£ and time % + 1 both state and covariance may change. The state changes according to the
system equation (7.10), so our estimate X 41| Of X, 41 givenyy, .. .,Yy, shouldreflect thischange as well. Similarly,
because of the system noise 7, our uncertainty about this estimate may be somewhat greater than one time epoch ago.
The system equation (7.10) essentialy “dead reckons’ the new state from the old, and inaccuracies in our model of
how this happens lead to greater uncertainty. Thisincrease in uncertainty depends on the system noise covariance s .
Thus, both state estimate and covariance must be propagated to the new time k& + 1 to yield the new state estimate
Xy 4+1|x and the new covariance P, ). Boththese changes are shown onthe rightin figure 7.2.

In summary, just as the state vector x; represents all the information necessary to describe the evolution of a
deterministic system, the covariance matrix I, contains all the necessary information about the probabilistic part of
the system, that is, about how both the system noise 7;, and the measurement noise & corrupt the quality of the state

Hopefully, this intuitive introduction to Kalman filtering gives you an idea of what the filter does, and what
informationit needs to keep working. To turn these concepts into a quantitative algorithm we need some preliminaries
on optimal estimation, which are discussed in the next section. The Kalman filter itself is derived in section 7.5.

7.4 BLUE Estimators

In what sense does the Kalman filter use covariance information to produce better estimates of the state? As we will
se later, the Kalman filter computes the Best Linear Unbiased Estimate (BLUE) of the state. In this section, we see
what this means, starting with the definition of alinear estimation problem, and then considering the attributes “ best”
and “unbiased” in turn.

741 Linear Estimation

Given a quantity y (the observation) that is a known function of another (deterministic but unknown) quantity x (the
state) plus some amount of noise,

the estimation problem amounts to finding a function
x=L(y)

such that x isas close as possibleto x. The function £ iscalled an estimator, and itsvalue x given the observationsy is
called an estimate. Inverting afunction isan example of estimation. If the function 4 isinvertible and the noise term
n iszero, then £ istheinverse of ~, no matter how the phrase “as close as possible” isinterpreted. Infact, inthat case
X isequal to x, and any distance between X and x must be zero. In particular, solving asquare, nonsingular system

y = HX (7.13)
is, in this somewhat trivial sense, a problem of estimation. The optimal estimator is then represented by the matrix
L=H"

and the optimal estimateis
X=1Ly.

A lesstrivial example occurs, for alinear observation function, when the matrix A has more rows than columns, so
that the system (7.13) isoverconstrained. Inthiscase, thereisusually noinverseto H, and again one must say inwhat
sense X is required to be “as close as possible” to x. For linear systems, we have so far considered the criterion that
prefersaparticular x if it makes the Euclidean norm of thevector y — Hx assmall as possible. Thisisthe (unweighted)
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least squares criterion. Insection 7.4.2, we will see that in avery precise sense ordinary |least squares solve a particular
type of estimation problem, namely, the estimation problem for the observation equation (7.12) with A alinear function
and n Gaussian zero-mean noise with the indentity matrix for covariance.

An estimator is said to be linear if the function £ is linear. Notice that the observation function /4 can still be
nonlinear. If £ isrequiredto belinear but A is not, we will probably have an estimator that produces a worse estimate
than a nonlinear one. However, it still makes sense to look for the best possible linear estimator. The best estimator
for alinear observation function happens to be a linear estimator.

742 Best

In order to define what is meant by a “best” estimator, one needs to define a measure of goodness of an estimate. In
the least squares approach to solving a linear system like (7.13), this distance is defined as the Euclidean norm of the
residue vector

y— HX

between the |eft and the right-hand sides of equation (7.13), evaluated at the solution X. Replacing (7.13) by a “noisy
equation”,
y=Hx+n (7.14)

does not change the nature of the problem. Even equation (7.13) has no exact solutionwhen there are more independent
equations than unknowns, so requiring equality is hopeless. What the least squares approach is really saying is that
even at the solution x there is some residue

n=y-— HX (7.15)

and wewouldliketo makethat residue as small as possiblein the sense of the Euclidean norm. Thus, an overconstrained
system of the form (7.13) and its “noisy” version (7.14) are really the same problem. In fact, (7.14) is the correct
version, if the equality sign isto be taken literally.

The noise term, however, can be used to generalize the problem. In fact, the Euclidean norm of the residue (7.15)
treatsal components (all equationsin (7.14)) equally. In other words, each equation countsthe same when computing
the norm of the residue. However, different equations can have noise terms of different variance. This amounts to
saying that we have reasonsto prefer the quality of some equationsover othersor, alternatively, that we want to enforce
different equations to different degrees. From the point of view of least squares, this can be enforced by some scaling
of the entries of n or, even, by some linear transformation of them:

n—Wn

so instead of minimizing ||n||? = n?'n (the square is of course irrelevant when it comes to minimization), we now
minimize
IWn|)? =n"R™'n

where
R'=wTw

isasymmetric, nonnegative-definite matrix. Thisminimization problem, called weighted least squares, isonly slightly
different from its unweighted version. In fact, we have

Wn=W(y— HX)=Wy— WHX

so we are simply solving the system
Wy =WHX

inthe traditional, “unweighted” sense. We know the solution from normal equations:

X=(WHY"WH)*\(WH)"Wy = (H"R'H)"'H'R 'y .
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Interestingly, this same solution is obtained from a compl etely different criterion of goodness of a solution X. This
criterionis a probabilistic one. We consider this different approach because it will let us show that the Kalman filter is
optimal in avery useful sense.

The new criterion is the so-called minimum-covariance criterion. The estimate X of x is some function of the
measurementsy, whichinturnare corrupted by noise. Thus, x isafunction of arandom vector (noise), and istherefore
a random vector itself. Intuitively, if we estimate the same quantity many times, from measurements corrupted by
different noise samples from the same distribution, we obtain different estimates. In this sense, the estimates are
random.

It makes therefore sense to measure the quality of an estimator by requiring that its variance be as small as possible:
the fluctuations of the estimate x with respect to the true (unknown) value x from one estimation experiment to the
next should be as small as possible. Formally, we want to choose a linear estimator . such that the estimatesx = Ly
it produces minimize the following covariance matrix:

P = E[(x—x)(x — %)7] .

Minimizing a matrix, however, requires a notion of “size” for matrices: how large is P? Fortunately, most
interesting matrix norms are equivalent, in the sense that given two different definitions || P||; and || P||2 of matrix
norm there exist two positive scalars «, /3 such that

allPll < [1Pfla < BIP -

Thus, we can pick any norm welike. In fact, in the derivationsthat follow, we only use properties shared by all norms,
so which norm we actually useisirrelevant. Some matrix norms were mentioned in section 3.2.

7.4.3 Unbiased

In additionto requiring our estimator to be linear and with minimum covariance, we also want it to be unbiased, inthe
sense that if repeat the same estimation experiment many times we neither consistently overestimate nor consistently
underestimate x. Mathematically, thistranslates into the following requirement:

Ex-=Xx]=0 and FE[X = FE[X].

744 TheBLUE
We now address the problem of finding the Best Linear Unbiased Estimator (BLUE)

X=1y
of x given that y depends on x according to the model (7.13), which is repeated here for convenience:
y=HXx+n. (7.16)
First, we give a necessary and sufficient condition for 7. to be unbiased.
Lemma7.4.1 Let ninequation (7.16) be zero mean. Then the linear estimator L isunbiased if an only if
LH =1,
the identity matrix.
Proof.

Ex—X] = E[X—Ly]= FE[x— L(Hx+n)]
= FE[(I-LH)X]— FE[Ln]=(I - HL)E[X]
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since E[Ln] = L E[n] and £[n] = 0. For thisto hold for all x weneed I — LH = 0. A

And now the main result.
Theorem 7.4.2 The Best Linear Unbiased Estimator (BLUE)
X=1y
for the measurement model
y=HX4+n
where the noise vector n has zero mean and covariance R is given by
L=(H"R'H)'HTR™!
and the covariance of the estimate X is
P=FE[x-x)(x-x)"]=(H'R"'H)"". (7.17)
Proof.  We can write
P = E[x-x)x-x)T]= E[x~Ly)(x - Ly)"]
= E[(x—LHx—ILn)(x— LHx— In)T) = E[((I = LH)x — Ln)((I — LH)x — Ln)7]
= B’ LT = LEPnT) LT = LRLT
because L isunbiased, sothat LH = 1.
To show that
Lo=(H'R'H)"'"HT"R™! (7.18)
isthe best choice, let . be any (other) linear unbiased estimator. We can trivialy write
L=1Lo+ (L— L)
and
P = LRLT =[Lo+ (L — Lo)]R[Lo + (L — Lo)]¥
= LoRLY + (L — Lo)RLY + LoR(L — Lo)* + (L — Lo)R(L — Lo)" .
From (7.18) we obtain
RLY = RRO'H(HTRH)™ = H(HTRH)™!
so that
(L—Lo)RLY = (L — Lo)H(H"R™'H)™' = (LH — LoH)(H"R™'H)™*.
But 7 and I, areunbiased, so LH = LyH = I, and
(L — Lo)RLE = 0.
Theterm Lo R(L — Lg)? isthe transpose of this, so it is zero aswell. In conclusion,
P = LoRLY + (L — Lo)R(L — Lo)T
the sum of two positive definite or at least semidefinite matrices. For such matrices, the norm of the sum is grester or
equal to either norm, so this expression is minimized when the second term vanishes, that is, when L = L.

This proves that the estimator given by (7.18) isthe best, that is, that it has minimum covariance. To prove that the
covariance P of X is given by equation (7.17), we simply substitute ., for L in P = LRL™:

P = LoRLY =(H'R'H)'H'R'RR'H(HTR™'H)~!
(H'R'H) *"H'RHHTR I = (HT R H) ™!
as promised. A
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7.5 TheKaman Filter: Derivation

We now have al the components necessary to write the equations for the Kalman filter. To summarize, given alinear
measurement equation
y=HX4+n

where n is a Gaussian random vector with zero mean and covariance matrix R,
n~ AN(0,R),

the best linear unbiased estimate X of x is
x=PHTR 1y

where the matrix
PEE[x—x)(x—x)T]= (HTR™'H)™!

isthe covariance of the estimation error.
Given a dynamic system with system and measurement equations

Xpt1 = FeXe + GrUg + ng (7.19)
Ve = HiXe+&
where the system noise 7, and the measurement noise &, are Gaussian random vectors,
o~ N(0,Q)
& ~ N(0,Ry),

as well as the best, linear, unbiased estimate X, of the initial state with an error covariance matrix Py, the Kalman
filter computes the best, linear, unbiased estimate X, at time & given the measurements y,, ..., y,. Thefilter also
computes the covariance P, of the error X, — Xz given those measurements. Computation occurs according to the
phases of update and propagation illustrated in figure 7.2. We now apply the results from optimal estimation to the
problem of updating and propagating the state estimates and their error covariances.

7.5.1 Update

Attime k, two pieces of dataare available. Oneisthe estimatex, |, —, of the state X given measurements up to but not
includingy,. This estimate comes with its covariance matrix Fy,—. Another way of saying thisis that the estimate
Xy —1 differsfrom the true state x;, by an error term e, whose covariance is Py, —1:

X1 = Xp + € (7.20)

with
Elepel] = Py -

The other piece of datais the new measurement v, itself, which isrelated to the state x;, by the equation
Yi = HeXe + &k (7.22)

with error covariance
ElééF) = Ry .

We can summarize this available information by grouping equations 7.20 and 7.21 into one, and packaging the error
covariances into asingle, block-diagonal matrix. Thus, we have

y=HX; +n
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| Xee-1 = I ] _ [ € ]
y |: yk :| ) |:Hk ) n Nk )

and where n has covariance

where

_ | Prg=1 O
e[ 0]

As we know, the solution to this classical estimation problemis

Xep = PupHTR'y
Pay = (HTR'H)™L.

This pair of equations represents the update stage of the Kalman filter. These expressions are somewhat wasteful,
because the matrices H and R contain many zeros. For thisreason, these two update equations are now rewrittenin a
more efficient and more familiar form. We have

-1 T p—1
Py = H RTH
Pl 0 I
— T HT k|k—1
| k][ 0 R;lHHk]
= Pk—lg_lJerTR,;lHk
and

Xew = PepHTR™Yy

_ _ Ko —
= P | Poio, HIRS } [ Jlk—1 ]
Y
_ -1 G T p—1
= Pk|k(Pk|k_1Xk|k—1+Hk R Yr)
= Pk|k((Pk_|;1 — HkTRllek))A(Mk_l + H?Rglyk)
= Xyho1 + Pope i Ry (Y — HiXjpo1) -
Inthelast ling, the difference
A ~
N = Y — HeXglp-1
isthe residue between the actual measurement y, and its best estimate based on Xy, —, and the matrix
Ky, 2 Py HT RS
isusually referred to asthe Kalman gain matrix, because it specifies the amount by which the residue must be multiplied

(or amplified) to obtain the correction term that transformsthe old estimate Xy, -, of the tate x;, intoits new estimate

7.5.2 Propagation

Propagation is even simpler. Since the new stateis related to the old through the system equation 7.19, and the noise
term n;, is zero mean, unbiasedness requires

Xpt1k = FrXppp + Grl
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which isthe state estimate propagation equation of the Kalman filter. The error covariance matrix is easily propagated
thanks to the linearity of the expectation operator:

Popae = ElSggs = Xetr1) Kegape — X 41) 7]
E{(Fr (X — %) = 1) (B (e — X)) — 1) ]
= FeB[(%pe — %) (e — %) T1FL + Bl ]
= IWPupFl +Qn

where the system noise 7, and the previous estimation error X, — X were assumed to be uncorrelated.
7.5.3 Kalman Filter Equations
In summary, the Kalman filter evolves an initial estimate and an initial error covariance matrix,

Xo|-1 2% and Pyj—1 2p,

both assumed to be given, by the update equations

Xilp = Xip—1 + K (Y — HiXpjr-1)
| T p-1
Pk|k - Pk|k—1+Hk Ry~ Hy

where the Kalman gain is defined as
Ky = Py Hy By

and by the propagation equations

Xeg1k =  FeXpp + GrUg
Peyip = FuPopFE + Q-

7.6 Resultsof theMortar Shell Experiment

In section 7.2, the dynamic system equations for a mortar shell were set up. Matlab routines available through the
class Web page implement a Kalman filter (with naive numerics) to estimate the state of that system from simulated
observations. Figure 7.3 shows the true and estimated trajectories. Notice that coincidence of the trajectories does not
imply that the state estimate is up-to-date. For thisit is aso necessary that any given point of the trgjectory is reached
by the estimate at the same time instant. Figure 7.4 shows that the distance between estimated and true target position
does indeed converge to zero, and this occurs in time for the shell to be shot down. Figure 7.5 shows the 2-norm of the
covariance matrix over time. Notice that the covariance goes to zero only asymptotically.

7.7 Linear Systemsand the Kalman Filter

In order to connect the theory of state estimation with what we have learned so far about linear systems, we now show
that estimating the initial state x, from thefirst £ + 1 measurements, that is, obtaining X, anountsto solving alinear
system of equations with suitable weightsfor its rows.

The basic recurrence equations (7.10) and (7.11) can be expanded as follows:

Ve = HiXp+E& = Hp(Foo1Xe—1 + Gro1Up—1 + 1) + &k
= HpFr_1Xe—1+ HeGroUg—1 + Hypneo1 + &
= HpFi_1(Fy—oXp—2+ Gr_oUk_o + Ni—2) + HyGr_1Uk—1 + Henp—1 + &
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true (dashed) and estimated (solid) missile trajectory
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Figure 7.3: The true and estimated trajectories get closer to one another. Trgjectories start on the right.

distance between true and estimated missile position vs. time
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Figure 7.4: The estimate actually closes in towards the target.
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norm of the state covariance matrix vs time
T T T

40

0 ."": 16 1‘5 2‘0 2‘5 30
Figure 7.5: After an initial increase in uncertainty, the norm of the state covariance matrix converges to zero. Upwards
segments correspond to state propagation, downwards ones to state update.

= HpFy 1 Fy_oXy_2+ Hi(Fr_1Gr—_2Up—2 + Gr_1Up_1) +
He(Fro1mi—2+ ni—1) + &k

= HyF,_1...FoXo+ Hk(Fk—l L Goug 4.+ Gk_luk_l) +
Hy(Froqr. . Fino+ ..o+ m5-1) + &

or in amore compact form,

k
Vi = Hy®(k = 1,0)%0 + Hy > _ (k= 1,5)Gj_1uj_1 + v (7.22)
j:l
where
N Fl...Fj fOI’lZ_]
@(1,])_{ 1 forl < j
and theterm
k
v = szq)(k’ — 1,j)7]j_1 +€k
j:l
isnoise.

The key thing to notice about this somewhat intimidating expressionisthat for any % itisalinear systeminx, the
initial state of the system. We can write one system like the one in equation (7.22) for every valueof £ =0, ..., K,
where K isthe last time instant considered, and we obtain a large system of the form

zg = ¥gXo + 0x + Nk (7.23)
where
Yo
Ik =
Yk
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0
HiFoug
\IJK == .
HK<I>(K— 1,0)
- s
HqFoGo
Or = :
HK(<I>(I<7—1,1)u0—|—...—|—GK_1uK_1)
-
Ng =
L VK

Without knowing anything about the statistics of the noise vector n x in equation (7.23), the best we can dois to
solve the system
Zg = VgXo + Qg

in the sense of least squares, to obtain an estimate of X, from the measurementsy,, . .., Yx:
Xojx = Wl (2K — )

where 1. is the pseudoinverse of W . We know that if W has full rank, the result with the pseudoinverse is the
same as we would obtain by solving the normal equations, so that

Ulo= (W wg)- el

The least square solution to system (7.23) minimizes the residue between the |eft and the right-hand side under the
assumption that all equations are to be treated the same way. Thisis equivalent to assuming that all the noise termsin
nx are equally important. However, we know the covariance matrices of al these noise terms, so we ought to be able
to do better, and weigh each equation to keep these covariances into account. Intuitively, asmall covariance means that
we believe in that measurement, and therefore in that equation, which should conseguently be weighed more heavily
than others. The quantitative embodiment of thisintuitiveideais at the core of the Kalman filter.

In summary, the Kalman filter for alinear system has been shown to be equivalent to alinear equation solver, under
the assumption that the noise that affects each of the equations has the same probability distribution, that is, that all the
noise termsin ng in egquation 7.23 are equally important. However, the Kalman filter differs from alinear solver in
the following important respects:

1. Thenoisetermsinng inequation 7.23 are not equally important. M easurements come with covariance matrices,
and the Kalman filter makes optimal use of thisinformationfor a proper weighting of each of the scalar equations
in (7.23). Better information ought to yield more accurate results, and thisis in fact the case.

2. The system (7.23) isnot solved all at once. Rather, aninitial solutionisrefined over time as hew measurements
become available. The final solution can be proven to be exactly equal to solving system (7.23) al at once.
However, having better and better approximations to the solution as new data come in is much preferablein a
dynamic setting, where one cannot in general wait for all the datato be collected. In some applications, data my
never stop arriving.

3. A solutionfor the estimate X, of the current state is given, and not only for the estimate X, of theinitial state.
As time goes by, knowledge of the initial state may obsolesce and become less and less useful. The Kalman
filter computes up-to-date information about the current state.



