The User Interface

* Files, directory, file descriptor, file systems

* File & Directories
— File: logically a container for data
— A hierarchical, tree-structured name space

— Pathname: components 1n the path from the root to
the node, by *“/”

— Special entries: “.” & “..”
- Link: a directory entry for a file.

Figure 8-1. Files are organized in a directory tree.

Directory syscalls

dirp = opendir (char *filename) ;
direntp = readdir (dirp);
rewinddir (dirp) ;
status = closedir(firp) ;
struct dirent {

int_t d_1no;

char d name [NAME MAX +1];

File Attributes

* Kept in the inode (index node)

* File attributes:
— File type
— Number of hard links
— File size
— Device ID
— Inode number
— User and Group Ids of the owner of the file.
— Timestamps
— Permissions and mode flags (suid, sgid, sticky)

File Descriptors

* {d 1s a per-process object.

fd = open (path,

oflag,

fdl |—

mode) ;

file

offset

e

descriptors

" Figure 8-2. A file is opened twice.

—» .

- offset =

open file
objects

ffset
. file open file

/’ -

~ descriptors .. object

Figure 8-3. Descriptor cloned through dup, dup2, or fork. B

File I/O

* Random and sequential access
— Iseek ()

— nread = read(fd, buf, count);
e Scatter-Gather

_ nbytes = Writev(fd, iOV, iOVCIlt);

File Locking

e Read and write are atomic.

* Advisory locks: protect from cooperative
processes, flock() 1n 4BSD; chmod 1n svr3

* Svrd: r/w locks.
* Mandatory locks:kernel

File system

* Mount-on
— A directory 1s covered by the mounted file system.
— mount table & vfs list

* Logical disks

— A linear sequence of fixed sized, randomly
accessible, blocks.

— Partition

Iocal adm usei?s"' bm

Figure 8-5. Mounting one file system onto another. -

Logical Disks

* A logical disk 1s a storage abstraction that the kernel sees

as a linear sequence of fixed sized, randomly accessible
blocks.

* newfs, mkfs, partition

* Advanced Topics:
- Volume

— Disk mirror

— Stripe sets
- RAID

Device 1/0

e Block & character devices
e Character:

struct {
int (*d_open) () ;
int (*d_close) ();
int (*d_read) () ;

int (*d _write) () ;
} cdevsw]|] ;

* Major & minor device number:
— indexes in the device table

Opening a file

int fd = open(char *pathname, int flags,mode t mode);
— pathname: filename (directory, ...)
- flags: read, write, ...
— mode: file access permissions (optional)
— returns

* fd: file descriptor

e _]:1n case of errors

Opening a file

* {d = open(pathname, mode)

Allocate a descriptor

Allocate an open file object

Lookup path name

Check permissions

Check operation

Not exist, O Creat, VOP_CREAT; ENOENT
VOP_OPEN

If O TRUNC, VOP_SETATTR

Initialize

Return the index of the descriptor

Closing a File

* int close(fd)
— 1d: file descriptor

— returns:

e () if successful

e _]1 1in case of errors

- Example

Reading from File

* ssize tread(int fd, void *buf, size t count);
— 1d: file descriptor
— buf: pointer to buffer space
— count: I/O size (in bytes)

— returns:

* number of bytes read

e _] 1n case of error

- Example:

Writing to File

* ssize twrite(int d, const void *buf, size t count);

- {d: file descriptor

— buf: pointer to bufferspace
— count: I/O size

— returns:

* number of bytes written
® _] in case of error

- Example:

File Seek
* off tlIseek(int fildes, off t offs, int whence);

— Positions File Pointer for subsequent I/0
— fd: file descriptor
— offs: offset (1n bytes)

— whence: specifies whetheroffs 1s relative to
, current position or

— returns:

* offset: resulting offset location

e _]:1n case of error

- Example:

File Information

* int fstat(int fd, struct stat *buf);

— Returns information about an (open) file
— fd: file descriptor
— buf: pointer to a struct stat

— returns

e (): if successful
e _1: 1n case of errors
- Example:

File I/0 (1)

* Read(to a user buffer address)

— Fd-> the open file object, verify mode-> vnode-> get the rw-lock->call s5read()
— Offset -> block number & the offset -> uiomove()-> call copyout()
— The page not in memory? page fault->the handler->s5getpage()->call bmap()

- logical to physical, search vnode’s page list, not in? allocates a free page and call the disk
driver to read the file

— Sleep until the I/O completes. Before copy to user data space, verify the user has access
- sSread() returns, unlock, advance the offset, return the number of bytes read

File I/0 (2)

* Write:
— Not immediately to disk
— May increase the file size
— May require the allocation of data blocks

— Read the entire block, write relevant data, write back
all the block

Link, Unlink, Rename

— creates a new (hard) link to file
— unlinks a file (and possibly deletes i1t)

- renames a file, moving 1t between directories (if required)
All return

— 0: 1f successtul

— -1: 1n case of errors

The System V File System(s51s)

* The layout of s5fs partition:

e Directories:

— s5fs directory 1s a special file containing a list of files
and subdirectories.

73].
38|..
9lfilel
Oldeletedfile
110|subdirectory 1
- 65|archana

|

Figure 9-2. s5fs directory structure.

Inodes

e The inode contains administrative
information,or meta data.

— The node list contains all the inodes.
— On-disk 1inode
— In-core inode

Inode Fields

Table 9-1. Fields of struct dinode e

Field Slze (bytes) | | Description R e
di_mode 2 ﬁle type, permissions, etc. - R 4
di_nlinks 2~ | number of hard links to file L h
di_uid 2 owner UID | |
di_gid 2 | owner GID | S
di_size 4 size iffbytes |
di;addr' 39 array of block addresses N
di gen 1 generation number (incremented each time inode is r- 50

- used for a new file)
di_atime 4 time of last access
di_mtime 4 | time file was last modified
di_ctime 4 time inode was last changed (except cha.nges
_d1__a,t1me.or di_mtime) L

e
r
1
r
r
1
r
i
1
r
I
F
r
|
r
1
1
r

-

suid sgid sticky owner

Y e St L L e |

b S O s 4 o Rty i i

\

A

== = ;
kel
suish
=rimp
vsninel
Ssauid

s

wFeri lcodn

GrantToars.

type (4 bits)

u

g

N

NN

- Figure 9-3. Bit-fields of di_mode.

Block array of inode, di addr
S ="

\ disk

inode block array

0
1

2

10lindirect
11idouble indirect ——/

 12{triple indirect

_

Figu_re 9-4. disk block array in _s5fs' inode.

The superblock

* Size 1n blocks of the file system

e Size 1n blocks of the 1node list

* Number of free blocks and 1inodes
* Free block list

* Free mnode list

Free block list

superblock

d

block a |

b ‘ ' T«.

block b {

C

block ¢ l |

0

Figure 9-5. free block list in s5fs.

