Inter Process Communication (IPC)

Contents

* Introduction
e Universal IPC Facilities
* System V IPC

Introduction

* The purposes of IPC:

— Data transfer
— Sharing data
— Event notification
— Resource sharing

— Process control

Signal Generation & Handling

* Signal:

— A way to call a procedure when some events occur.
* (Generation:

— when the event occurs.
* Delivery:

— when the process recognizes the signal’s arrival (handling)

Signal Generation & Handling

* Pending: between generated and delivered.
* System V: 15 signals
* 4BSD/SVR4 : 31 signals

* Signal numbers: different in different system or
VErsions

Signal Handling

* Default actions: each signal has one.
— Abort: Terminate the process after generating a core dump.
— Exit: Terminate the process without generating a core dump.
— Ignore: Ignores the signal.
— Stop: Suspend the process.
— Continue: Resume the process, if suspended

* Detault actions may be overridden by signal handlers

Signal Handling

* |ssig() (Kernel call) : check for signals
— Before returning to user mode from a system call or interrupt.
— Just before blocking on an interruptible event
— Immediately after waking up from an interruptible event

* psig(): dispatch the signal
* sendsig(): invoke the user-defined handler

Signal Handling

Signal
delivered

Execute normal code 4 Resume normal code

|
|
|
|
| Signal handler runs
|

Signal Generation

* Signal sources:
— Exceptions
— Other processes
— Terminal interrupts
— Job control
— Quotas
— Notifications
— Alarms

Typical Scenarios

e AC (Citrl-c)
* Exceptions:
- Trap
— 1ss1g(): when return to user mode.

* Pending signals
— processed one by one.

Sleep and signals

* Interruptible sleep:
— waiting for an event with indefinite time.

e Uninterruptible sleep:
— 1s waiting for a short term event such as disk I/O
* Pending the signal

* Recognizing it until returning to user mode or blocking on an
event

e 1f (issig()) psigl();

Unreliable Signals

* Signal handlers are not persistent and do not mask
recurring instances of the same signal (SVR2)

e Race conditions: two *C.
* Performance: SIG_DFL, SIG _IGN,

— Kernel does not know the content of u_signal [] ;

— Awake, check, and perhaps go back to sleep again (waste of
time).

Reinstalling a signal handler

void sigint_handler (int sig)

{
signal (SIGINT, sigint_handler) ;

}

main ()

{
signal (SIGINT, sigint handler) ;

Unreliable Signals

#include <stdio.h>
#include <sys/types.h>
#include <signal.h>

int cnt=0;
void handler (int siqg)
{
cnt++;
printf ("In the handler...\n");
signal (SIGINT, handler) ;
}
main ()
{
signal (SIGINT, handler) ;
while (1) {
printf ("In main\n") ;
sleep (1) ;
}

Reliable Signals

* Primary features:
— Persistent handlers: need not to be reinstalled.

— Masking: A signal can be temporrtily masked (will be
delivered later)

— Sleeping processes: let the signal disposition info
visible to the kernel (kept in the proc)

— Unblock and wait: sigpause()-automatically unmasks
a signal and blocks the process.

The SVR3 implementation

int sig received = 0;
void handler (int sig)

{

sig_received++;

}

main ()

{
sigset (SIGQUIT, handler) ;

/* sighold (SIGQUIT); */

while (sig_received ==0) sigpause (SIGINT) ;

Universal IPC Facilities

* Signals
e Kill

* Sigpause
o N\(C
— Expensive
— Limited: only 31 signals.

— Signals are not enough.

Pipes

* A unidirectional, FIFO, unstructured data stream
of fixed maximum size.

int pipe (1nt * filedes)

GG Q

[\

>
> Data [
>

@ Data flow through a pipe.

Pipes

 Write to filedes [1]

e Read from filedes[0]

* Write to a pipe could block for large 1/0 sizes

Named Pipes

* Aka 'FIFO's
* Identified by their access point (filename)

int mkfifo(char *path, mode t mode) ;

* Can be opened/read/written as normal files

Named Pipes

* A named pipe cannot be opened for both reading
and writing.

* Read and write operations to a named pipe are
blocking,by default.

* Seek operations (Iseek) cannot be performed on
named pipes

System V IPC

* Common Elements
— Key: resource 1D

— Creator: Ids
— Owner: Ids

— Permissions: r/w/x for owner/group/others

Semaphores

* Special variable called a semaphore 1s used for
“signaling”

* If a process 1s waiting for a “signal”, 1t 1s
suspended until that “signal” 1s sent

* “Wait” and “‘signal” operations cannot be
interrupted (e.g. they are atomic)

* Queue 1s used to hold processes waiting on the
semaphore

P/V Operations

e P(wait):
- s=s-1;

— 1f (s<0) block();

* V(signal):

- s=s+1;
- If (s>=0) wake();

Producer/Consumer Problem

* One or more producers are generating data and
placing these 1n a buffer

— A single consumer is taking items out of the buffer one
at time

— Only one producer or consumer may access the buffer
at any one time

— Three semaphores are used:

e Amount of items in the buffer
e Number of free entries in the buffer
* Right to use the buffer

Producer Function - Pseudocode

#define SIZE 100

semaphore s=1

semaphore n=0

semaphore e= SIZE

void producer (void)

{

while (TRUE) {

produce_item() ;
wait (e) ;
walit (s) ;
enter_item() ;
signal (s) ;
signal (n) ;

Consumer Function

volid consumer (void)
{
while (TRUE) {
wait (n) ;
walit (s) ;
remove item() ;
signal (s) ;

signal (e) ;

Semaphore

* int semget(key_t key, int count, int flag);
— Returns the 1d. of semaphore set (count elements)
associated with key.

- key :

* [PC_PRIVATE
- flag :

* [PC_CREAT, ...

* Access permissions

Semaphore

* int semop(int semid, struct sembuf *sops,
unsigned nsops);

— performs operations on selected members of the
semaphore set indicated by semid. Each of the nsops
elements 1n the array pointed to by SOpS specifies an
operation to be performed on a semaphore by a

— Operations are performed atomically and only if they
can all be simultaneously performed

Semaphore

struct sembuf {
unsigned short sem_num;
short sem_op;
short sem_{lg;

Semaphore

* unsigned short sem_num
— semaphore number (in set semid)
* short sem_{lg

- [PC_NOWAIT
* Don't block, but returns -1 and set &rno to EAGAIN
- [PC_UNDO

* undo operation(s) when process exits

Semaphore

* short sem_op

— when >0

* Add sem_op to the value; eventually wake up suspended
processes

— when ==
* Block until value == 0 (unless IPC_NOWAIT)
— when <0

* Block (unless IPC_NOWAIT) until the value becomes
greater than or equal to the absolute value of sem_op, then
subtract sem_op from that value

Semaphore

* 1nt semctl(int semid, int snum, int cmd, ...);

— Performs the control operation specified by cmd on
the semaphore set identified by semid, or on the snum-
th semaphore

- IPC_SETVAL/IPC_GETVAL
* Set, Get value of semaphore

- IPC_RMID

* Remove semaphore set

Deadl.ock

Client/server with shared memory

. |
client «——» Shared memory server

I

kernel

Shared Memory

* A portion of physical memory that 1s share by
multiple processes.

Process A

0x30000

0x50000

Process B

Shared memory

region

0x50000

0x70000

Shared Memory API

* int shmget(key_t key, size_t size , int flag);
— returns the identifier of the shared memory segment
associated with key

- key
* [IPC_PRIVATE, ...
- Sze
* size of shared area
- flag
* [PC_CREATE, permissions, ..

Shared Memory

* Segments are:

— inherited after fork()
— detached, not destroyed, after exec() or exit()

Shared Memory API

* void *shmat(int shmid, void * shmaddr, int
shmflag);

— attaches the shared memory segment identified by
shmid to the address space of the calling process

— shmaddr
e Usually NULL, otherwise address requested for segment
- shimflag

e SHM_RDONLY, SHM_RND, ...
* Does not modify the brk

Shared Memory API

* 1nt shmdt(void *shmaddr);

— Detaches the shared memory segment at shmaddr from
address space of calling process.

Shared Memory API

* 1nt shmctl(int shmid, int cmd, struct shmid_ds
*buf);

— performs operation indicated by cmd on shared
memory segment identified by shmid

- cmd
e IPC_RMID, ...
— buf

* address of struct to hold information about segment

Shared Memory API

* Shared memory segments must be explicitly
removed (IPC_RMID)

* The segment 1s marked as removed, but it will be
destroyed when the last process call shmdt()

Ftok

* [PC key can be correlated to a file name
* key_t ftok(char *pathname, int ndx)

— builds a key based on pathname and ndx

Security

* If a process holds the key, 1t might access the
resource.

Message Queue

msgqid = msgget(key, flag)

msgsnd(msgqid, msgp, size, flag)

struct msqid_ds {
struct ipc_perm msg_perm;
struct msg* msg_first;
struct msg* msg_last;
unshort msg_cbytes;
unshort msg_qgbytes;
unshort msg_qgnum;

}

count =msgrcv(msgqid, msgp, size, msgtype, flag)

An example of a msq

msqid_ds
msqid
Y MSQ_Perm. | _wiiok —F—>Link » NULL
msg_first; _—] Type=300
msg_last; Length=3
msg_cbytes;
msg_gbytes; bata
msg_qnum;

Message Queue

receivers [struct

id_ds
E}‘ msgqid_ /P

msg|__Imsg|___’msg

J senders

Sockets

* A socket 1s an endpoint of communication.

* An in-use socket it usually bound with an
address; the nature of the address depends on the
communication domain of the socket.

- e.g. 161.25.19.8: 1625 refers to port 1625 on host
161.25.19.8

Sockets

host X
(146.86.5.20)

socket
(146.86.5.2/1625)

web server

(161.25.19.8)

socket
(161.25.19.8/80)

Sockets

 Communication consists between a pair of
sockets.

* A characteristic property of a domain is that
processes communication in the same domain use
the same address format.

Sockets

* A single socket can communicate 1in only one
domain

* Commonly implemented domains:

- UNIX (AF_UNIX)
— Internet (AF_INET)
— XEROX Network Service (NS) (AF_NS)

Socket Types

* Stream

— Reliable, duplex, sequenced data streams.
— Supported in Internet domain by the TCP protocol.

— In UNIX domain, pipes are implemented as a pair of
communicating stream sockets.

Socket Types

* Sequenced packet

— Provide similar data streams, except that record
boundaries are provided.

— Used in XEROX AF_NS protocol.

Socket Types

* Datagram:
— Transter messages of variable size in either direction.
— Supported 1n Internet domain by UDP protocol

* Rehably delivered message:

— Transfer messages that are guaranteed to arrive.

— Almost unsupported.

Socket Types

e Raw:

— allow direct access by processes to the protocols that
support the other socket types.

- E.g., 1n the Internet domain, it is possible to reach
TCP, IP beneath that, or a deeper Ethernet protocol.

— Usetul for developing new protocols.

Socket System Calls

* The socket() call creates a socket
* A name is bound to a socket by bind()

* The connect() system call is used to initiate a
connection

Socket System Calls

* A server process usually calls:

— socket() to create a socket
— bind() to bind the address of its service to that socket.

— listen() to tell the kernel that it is ready to accept
connections from clients.

— accept() to accept individual connections.

- (eventually) fork() a new process after the accept

Socket System Calls (Cont.)
e close()

— terminates a connection and destroys the associated
socket

e salect()

— multiplex data transfers on several file descriptors and
/or socket descriptors

