
An Extensible SAT-solver[extended version 1.2℄Niklas E�en, Niklas S�orenssonChalmers University of Tehnology, Swedenfeen,nikg�s.halmers.seAbstrat. In this artile, we present a small, omplete, and eÆientSAT-solver in the style of onit-driven learning, as exempli�ed by
CHAFF. We aim to give suÆient details about implementation to enablethe reader to onstrut his or her own solver in a very short time. Thiswill allow users of SAT-solvers to make domain spei� extensions oradaptions of urrent state-of-the-art SAT-tehniques, to meet the needsof a partiular appliation area. The presented solver is designed withthis in mind, and inludes among other things a mehanism for addingarbitrary boolean onstraints. It also supports solving a series of relatedSAT-problems eÆiently by an inremental SAT-interfae.1 IntrodutionThe use of SAT-solvers in various appliations is on the marh. As insight on howto eÆiently enode problems into SAT is inreasing, a growing number of prob-lem domains are suessfully being takled by SAT-solvers. This is partiularlytrue for the eletroni design automation (EDA) industry [BCCFZ99,Lar92℄.The suess is further magni�ed by urrent state-of-the-art solvers being ex-tended and adapted to meet the spei� harateristis of these problem domains[ARMS02,ES03℄.However, modifying an existing solver, even with a thorough understandingof both the problem domain and of modern SAT-tehniques, an beome a timeonsuming and bewildering journey into the mysterious inner workings of a ten-thousand-line software pakage. Likewise, writing a solver from srath an alsobe a daunting task, as there are numerous pitfalls hidden in the intriate detailsof a orret and eÆient solver. The problem is that although the tehniquesused in a modern SAT-solver are well doumented, the details neessary for animplementation have not been adequately presented before.In the fall of 2002, the authors implemented the solvers SATZOO and SAT-

NIK. In order to suÆiently understand the implementation triks needed for amodern SAT-solver, it was neessary to onsult the soure-ode of previous im-plementations.1 We �nd that the material ontained therein an be made moreaessible, whih is desirable for the SAT-ommunity. Thus, the prinipal goal ofthis artile is to bridge the gap between existing desriptions of SAT-tehniquesand their atual implementation.We will do this by presenting the ode of a minimal SAT-solver MINISAT,based on the ideas for onit-driven baktraking [MS96℄, together with wathedliterals and dynami variable ordering [MZ01℄. The original C++ soure ode1
LIMMAT at http://www.inf.ethz.h/personal/biere/projets/limmat/
ZCHAFF at http://www.ee.prineton.edu/~haff/zhaff



(downloadable from http://www.s.halmers.se/~een) for MINISAT is under600 lines (not ounting omments), and is the result of rethinking and simplifyingthe designs of SATZOO and SATNIK without sari�ing eÆieny. We will presentall the relevant parts of the ode in a manner that should be aessible to anyoneaquainted with either C++ or Java.The presented ode inludes an inremental SAT-interfae, whih allows fora series of related problems to be solved with potentially huge eÆieny gains[ES03℄. We also generalize the expressiveness of the SAT-problem formulationby providing a mehanism for arbitrary onstraints over boolean variables to bede�ned. Paragraphs disussing implementation alternatives are marked \[Dis-ussion℄" and an be skipped on a �rst reading.From the doumentation in this paper we hope it is possible for you toimplement a fresh SAT-solver in your favorite language, or to grab the C++version of MINISAT from the net and start modifying it to inlude new andinteresting ideas.2 Appliation Programming InterfaeWe start by presenting MINISAT's external interfae, with whih a user appli-ation an speify and solve SAT-problems. A basi knowledge about SAT isassumed (see for instane [MS96℄). The types var , lit , and Ve for variables,literals, and vetors respetively are explained in detail in setion 4.lass Solver { Publi interfaevar newVar ()bool addClause (Vehliti literals)bool add: : : (: : :)bool simplifyDB ()bool solve (Vehliti assumptions)Vehbooli model { If found, this vetor has the model.The \add : : :" method should be understood as a plae-holder for additionalonstraints implemented in an extension of MINISAT.For a standard SAT-problem, the interfae is used in the following way: Vari-ables are introdued by alling newVar(). From these variables, lauses are builtand added by addClause(). Trivial onits, suh as two unit lauses fxg and fxgbeing added, an be deteted by addClause(), in whih ase it returns False.From this point on, the solver state is unde�ned and must not be used further.If no suh trivial onit is deteted during the lause insertion phase, solve()is alled with an empty list of assumptions. It returns False if the problem isunsatis�able, and True if it is satis�able, in whih ase the model an be readfrom the publi vetor \model".The simplifyDB() method an be used before alling solve() to simplify theset of problem onstraints (often alled the onstraint database). In our imple-mentation, simplifyDB() will �rst propagate all unit information, then removeall satis�ed onstraints. As for addClause(), the simpli�er an sometimes detet a2



onit, in whih ase False is returned and the solver state is, again, unde�nedand must not be used further.If the solver returns satis�able, new onstraints an be added repeatedly tothe existing database and solve() run again. However, more interesting sequenesof SAT-problems an be solved by the use of unit assumptions. When passinga non-empty list of assumptions to solve(), the solver temporarily assumes theliterals to be true. After �nding a model or a ontradition, these assumptionsare undone, and the solver is returned to a usable state, even when solve() returnFalse, whih now should be interpreted as unsatis�able under assumptions.For this to work, alling simplifyDB() before solve() is no longer optional.It is the mehanism for deteting onits independent of the assumptions {referred to as a top-level onit from now on { whih puts the solver in anunde�ned state. We wish to remark that the ability to pass unit assumptions tosolve() is more powerful than it might appear at �rst. For an example of its use,see [ES03℄.An alternative interfae would be for solve() to return one of three values: [Disussion℄satis�able, unsatis�able, or unsatis�able under assumptions. This is indeed a lesserror-prone interfae as there is no longer a pre-ondition on the use of solve().The urrent interfae, however, represents the smallest modi�ation of a non-inremental SAT-solver. The early non-inremental version of SATZOO was madeompliant to the above interfae by adding just 5 lines of ode.3 Overview of the SAT-solverThis artile will treat the popular style of SAT-solvers based on the DPLL algo-rithm [DLL62℄, baktraking by onit analysis and lause reording (also re-ferred to as learning) [MS96℄, and boolean onstraint propagation (BCP) usingwathed literals [MZ01℄.2 We will refer to this style of solver as a onit-drivenSAT-solver.The omponents of suh a solver, and indeed a more general onstraint solver,an be oneptually divided into three ategories:� Representation. Somehow the SAT-instane must be represented by inter-nal data strutures, as must any derived information.� Inferene. Brute fore searh is seldom good enough on its own. A solveralso needs some mehanism for omputing and propagating the diret im-pliations of the urrent state of information.� Searh. Inferene is almost always ombined with searh to make the solveromplete. The searh an be viewed as another way of deriving information.A standard onit-driven SAT-solver an represent lauses (with two literals ormore) and assignments. Although the assignments an be viewed as unit-lauses,they are treated speially in many ways, and are best viewed as a separate typeof information.The only inferene mehanism used by a standard solver is unit propagation.As soon as a lause beomes unit under the urrent assignment (all literals exept2 This inludes SAT-solvers suh as: ZCHAFF, LIMMAT, BERKMIN.3



one are false), the remaining unbound literal is set to true, possibly makingmore lauses unit. The proess is ontinued until no more information an bepropagated.The searh proedure of a modern solver is the most omplex part. Heuris-tially, variables are piked and assigned values (assumptions are made), untilthe propagation detets a onit (all literals of a lause have beome false).At that point, a so alled onit lause is onstruted and added to the SATproblem. Assumptions are then aneled by baktraking until the onit lausebeomes unit, from whih point this unit lause is propagated and the searhproess ontinues.
MINISAT is extensible with arbitrary boolean onstraints. This will a�et therepresentation, whih must be able to store these onstraints; the inferene,whih must be able to derive unit information from these onstraints; and thesearh, whih must be able to analyze and generate onit lauses from theonstraints. The mehanism we suggest for managing general onstraints is verylightweight, and by making the dependenies between the SAT-algorithm andthe onstraints implementation expliit, we feel it rather adds to the larity ofthe solver than obsures it.Propagation. The propagation proedure of MINISAT is largely inspired bythat of CHAFF [MZ01℄. For eah literal, a list of onstraints is kept. These arethe onstraints that may propagate unit information (variable assignments) ifthe literal beomes True. For lauses, no unit information an be propagateduntil all literals exept one have beome False. Two unbound literals p and q ofthe lause are therefore seleted, and referenes to the lause are added to thelists of p and q respetively. The literals are said to be wathed and the lists ofonstraints are referred to as wather lists. As soon as a wathed literal beomesTrue, the onstraint is invoked to see if information may be propagated, or toselet new unbound literals to be wathed.A feature of the wather system for lauses is that on baktraking, no adjust-ment to the wather lists need to be done. Baktraking is therefore very heap.However, for other onstraint types, this is not neessarily a good approah.
MINISAT therefore supports the optional use of undo lists for those onstraints;storing what onstraints need to be updated when a variable beomes unboundby baktraking.Learning. The learning proedure of MINISAT follows the ideas of Marques-Silva and Sakallah in [MS96℄. The proess starts when a onstraint beomesoniting (impossible to satisfy) under the urrent assignment. The onitingonstraint is then asked for a set of variable assignments that make it ontradi-tory. For a lause, this would be all the literals of the lause (whih are Falseunder a onit). Eah of the variable assignments returned must be either anassumption of the searh proedure, or the result of some propagation of a on-straint. The propagating onstraints are in turn asked for the set of variableassignments that fored the propagation to our, ontinuing the analysis bak-wards. The proedure is repeated until some termination ondition is ful�lled,resulting in a set of variable assignments that implies the onit. A lause pro-hibiting that partiular assignment is added to the lause database. This learnt4



lause must always, by onstrution, be implied by the original problem on-straints.Learnt lauses serve two purposes: they drive the baktraking (as we shallsee) and they speed up future onits by \ahing" the reason for the onit.Eah lause will prevent only a onstant number of inferenes, but as the reordedlauses start to build on eah other and partiipate in the unit propagation, theaumulated e�et of learning an be massive. However, as the set of learntlauses inrease, propagation is slowed down. Therefore, the number of learntlauses is periodially redued, keeping only the lauses that seem useful by someheuristi.Searh. The searh proedure of a onit-driven SAT-solver is somewhat im-pliit. Although a reursive de�nition of the proedure might be more elegant,it is typially desribed (and implemented) iteratively. The proedure will startby seleting an unassigned variable x (alled the deision variable) and assumea value for it, say True. The onsequenes of x=True will then be propa-gated, possibly resulting in more variable assignments. All variables assigned asa onsequene of x is said to be from the same deision level, ounting from 1for the �rst assumption made and so forth. Assignments made before the �rstassumption (deision level 0) are alled top-level.All assignments will be stored on a stak in the order they were made; fromnow on referred to as the trail. The trail is divided into deision levels and isused to undo information during baktraking.The deision phase will ontinue until either all variables have been assigned,in whih ase we have a model, or a onit has ourred. On onits, thelearning proedure will be invoked and a onit lause produed. The trail willbe used to undo deisions, one level at a time, until preisely one of the literals ofthe learnt lause beomes unbound (they are all False at the point of onit).By onstrution, the onit lause annot go diretly from oniting to a lausewith two or more unbound literals. If the lause remains unit for several deisionlevels, it is advantageous to hose the lowest level (referred to as bakjumping ornon-hronologial baktraking [MS96℄).looppropagate() { propagate unit lausesif not onit thenif all variables assigned thenreturn Satisfiableelsedeide() { pik a new variable and assign itelseanalyze() { analyze onit and add a onit lauseif top-level onit found thenreturn Unsatisfiableelsebaktrak() { undo assignments until onit lause is unit5



An important part of the proedure is the heuristi for deide(). Like CHAFF,
MINISAT uses a dynami variable order that gives priority to variables involvedin reent onits.Although this is a good default order, domain spei� heuristis have suess-[Disussion℄ fully been used in various areas to improve the performane [Stri00℄. Variableordering is a traditional target for improving SAT-solvers.Ativity heuristis. One important tehnique introdued by CHAFF [MZ01℄ isa dynami variable ordering based on ativity (referred to as the VSIDS heuris-ti). The original heuristi imposes an order on literals, but borrowing from
SATZOO, we make no distintion between p and p in MINISAT.Eah variable has an ativity attahed to it. Every time a variable ours in areorded onit lause, its ativity is inreased. We will refer to this as bumping.After reording the onit, the ativity of all the variables in the system aremultiplied by a onstant less than 1, thus deaying the ativity of variables overtime. Reent inrements ount more than old. The urrent sum determines theativity of a variable.In MINISAT we use a similar idea for lauses. When a learnt lause is usedin the analysis proess of a onit, its ativity is bumped. Inative lauses areperiodially removed.Constraint removal. The onstraint database is divided into two parts: theproblem onstraints and the learnt lauses. As we have noted, the set of learntlauses an be periodially redued to inrease the performane of propagation.Learnt lauses are used to rop future branhes in the searh tree, so we riskgetting a bigger searh spae instead. The balane between the two fores isdeliate, and there are SAT-instanes for whih a big learnt lause set is ad-vantageous, and others where a small set is better. MINISAT's default heurististarts with a small set and gradually inreases the size.Problem onstraints an also be removed if they are satis�ed at the top-level.The API method simplifyDB() is responsible for this. The proedure is par-tiularly important for inremental SAT-problems, where tehniques for lauseremoval build on this feature.Top-level solver. Although the pseudo-ode for the searh proedure presentedabove suÆes for a simple onit-driven SAT-solver, a solver strategy an im-prove the performane. A typial strategy applied by modern onit-drivenSAT-solvers is the use of restarts to esape from futile parts of the searh tree.In MINISAT we also vary the number of learnt lauses kept at a given time.Furthermore, the solve() method of the API supports inremental assumptions,not handled by the above pseudo-ode.4 ImplementationThe following onventions are used in the ode. Atomi types start with a lower-ase letter and are passed by value. Composite types start with a apital letterand are passed by referene. Bloks are marked only by indentation level. The6



lass VehT i { Publi interfae{ Construtors:Ve()Ve(int size)Ve(int size, T pad){ Size operations:int size ()void shrink (int nof elems)void pop ()void growTo (int size)void growTo (int size, T pad)void lear (){ Stak interfae:void push ()void push (T elem)T last (){ Vetor interfae:T op [ ℄ (int index){ Dupliatation:void opyTo (VehT i opy)void moveTo (VehT i dest)

lass lit { Publi interfaelit (var x){ Global funtions:lit op : (lit p)bool sign (lit p)int var (lit p)int index (lit p)lass lbool { Publi interfaelbool () lbool (bool x){ Global funtions:lbool op : (lbool x){ Global onstants:lbool False?, True?, ?lass QueuehT i { Publi interfaeQueue ()void insert (T x)T dequeue ()void lear ()int size ()Fig. 1. Basi abstrat data types used throughout the ode. The vetor data type anpush a default onstruted element by the push() method with no argument. ThemoveTo() method will move the ontents of a vetor to another vetor in onstanttime, learing the soure vetor. The literal data type has an index() method whihonverts the literal to a \small" integer suitable for array indexing. The var() methodreturns the underlying variable of the literal, and the sign() method if the literal issigned (False for x and True for x).bottom symbol ? will always mean unde�ned ; the symbol False will be usedto denote the boolean false.We will use, but not speify an implementation of, the following abstrat datatypes: VehT i an extensible vetor of type T ; lit the type of literals ontaininga speial literal ?lit; lbool for the lifted boolean domain ontaining elementsTrue?, False?, and ?; QueuehT i a queue of type T . We also use var asa type synonym for int (for impliit doumentation) with the speial onstant?var. The interfaes of the abstrat data types are presented in Figure 1.4.1 The solver stateA number of things need to be stored in the solver state. Figure 2 shows theomplete set of member variables of the solver type of MINISAT. Together withthe state variables we de�ne some short helper methods in Figure 3, as well asthe interfae of VarOrder (Figure 4), explained in setion 4.6.The state does not ontain a boolean \onit" to remember if a top-level [Disussion℄onit has been reahed. Instead we impose as an invariant that the solver mustnever be in a oniting state. As a onsequene, any method that puts the solver7



in a oniting state must ommuniate this. Using the solver objet after thispoint is illegal. The invariant makes the interfae slightly more umbersome touse, but simpli�es the implementation, whih is important when extending andexperimenting with new tehniques.4.2 Constraints
MINISAT an handle arbitrary onstraints over boolean variables through theabstration presented in Figure 5. Eah onstraint type needs to implementmethods for onstruting, removing, propagating and alulating reasons. Inaddition, methods for simplifying the onstraint and updating the onstraint onbaktrak an be spei�ed. We explain the meaning and responsibilities of thesemethods in detail:Construtor. The onstrutor may only be alled at the top-level. It mustreate and add the onstraint to appropriate wather lists after enqueu-ing any unit information derivable under the urrent top-level assignment.Should a onit arise, this must be ommuniated to the aller.Remove. The remove method supplants the destrutor by reeiving thesolver state as a parameter. It should dispose the onstraint and remove itfrom the wather lists.Propagate. The propagate method is alled if the onstraint is found ina wather list during propagation of unit information p. The onstraint isremoved from the list and is required to insert itself into a new or the samewather list. Any unit information derivable as a onsequene of p should beenqueued. If suessful, True is returned; if a onit is deteted, False isreturned. The onstraint may add itself to the undo list of var(p) if it needsto be updated when p beomes unbound.Simplify. At the top-level, a onstraint may be given the opportunity tosimplify its representation (returns False) or state that the onstraint issatis�ed under the urrent assignment and an be removed (returns True).A onstraint must not be simpli�able to produe unit information or to beoniting; in that ase the propagation has not been orretly de�ned.Undo. During baktraking, this method is alled if the onstraint addeditself to the undo list of var(p) in propagate(). The urrent variable assign-ments are guaranteed to be idential to that of the moment before propa-gate() was alled.Calulate Reason. This method is given a literal p and an empty vetor.The onstraint is the reason for p being true, that is, during propagation, theurrent onstraint enqueued p. The reeived vetor is extended to inlude aset of assignments (represented as literals) implying p. The urrent variableassignments are guaranteed to be idential to that of the moment beforethe onstraint propagated p. The literal p is also allowed to be the speialonstant ?lit in whih ase the reason for the lause being oniting shouldbe returned through the vetor. 8



lass Solver{ Constraint databaseVehConstri onstrs { List of problem onstraints.VehClausei learnts { List of learnt lauses.double la in { Clause ativity inrement { amount to bump with.double la deay { Deay fator for lause ativity.{ Variable orderVehdoublei ativity { Heuristi measurement of the ativity of a variable.double var in { Variable ativity inrement { amount to bump with.double var deay { Deay fator for variable ativity.VarOrder order { Keeps trak of the dynami variable order.{ PropagationVehVehConstrii { For eah literal 'p', a list of onstraints wathing 'p'.wathes A onstraint will be inspeted when 'p' beomes true.VehVehConstrii { For eah variable 'x', a list of onstraints that need toundos update when 'x' beomes unbound by baktraking.Queuehliti propQ { Propagation queue.{ AssignmentsVehlbooli assigns { The urrent assignments indexed on variables.Vehliti trail { List of assignments in hronologial order.Vehinti trail lim { Separator indies for di�erent deision levels in 'trail'.VehConstri reason { For eah variable, the onstraint that implied its value.Vehinti level { For eah variable, the deision level it was assigned.int root level { Separates inremental and searh assumptions.Fig. 2. Internal state of the solver.int Solver.nVars() return assigns.size()int Solver.nAssigns() return trail.size()int Solver.nConstraints() return onstrs.size()int Solver.nLearnts() return learnts.size()lbool Solver.value(var x) return assigns[x℄lbool Solver.value(lit p) return sign(p) ? :assigns[var(p)℄ : assigns[var(p)℄int Solver.deisionLevel() return trail lim.size()Fig. 3. Small helper methods. For instane, nLearnts() returns the number of learntlauses.lass VarOrder { Publi interfaeVarOrder (Vehlbooli ref to assigns, Vehdoublei ref to ativity)void newVar() { Called when a new variable is reated.void update(var x) { Called when variable has inreased in ativity.void updateAll() { Called when all variables have been assigned new ativities.void undo(var x) { Called when variable is unbound (may be seleted again).var selet() { Called to selet a new, unassigned variable.Fig. 4. Assisting ADT for the dynami variable ordering of the solver. The onstrutortakes referenes to the assignment vetor and the ativity vetor of the solver. Themethod selet() will return the unassigned variable with the highest ativity.9



lass Constrvirtual void remove (Solver S) { must be de�nedvirtual bool propagate (Solver S, lit p) { must be de�nedvirtual bool simplify (Solver S) { defaults to return falsevirtual void undo (Solver S, lit p) { defaults to do nothingvirtual void alReason (Solver S, lit p, Vehliti out reason) { must be de�nedFig. 5. Abstrat base lass for onstraints.The ode for the Clause onstraint is presented in Figure 7. It is also used forlearnt lauses, whih are unique in that they an be added to the lause databasewhile the solver is not at top-level. This makes the onstrutor ode a bit moreompliated than it would be for a normal onstraint.Implementing the addClause() method of the var Solver.newVar()int indexindex = nVars()wathes .push()wathes .push()undos .push()reason .push(Null)assigns .push(?)level .push(-1)ativity .push(0)order .newVar()return indexFig. 6. Creates a new SATvariable in the solver.

solver API is just a matter of alling Clause -new() and pushing the new onstraint on the\onstrs" vetor, storing the list of problem on-straints. For ompleteness, we also display theode for reating variables in the solver (Fig-ure 6).There are a number of triks for smart-oding[Disussion℄ that an be used in a C++ implementation ofClause. In partiularly the \lits" vetor an beimplemented as an zero-sized array plaed lastin the lass, and then extra memory alloatedfor the lause to ontain the data. We observeda 20% speedup for this trik. Furthermore, mem-ory an be saved by not storing ativity for prob-lem lauses.Of the methods de�ning a onstraint, propagate() should be the primary tar-[Disussion℄ get for eÆient implementation. The SAT-solver spends about 80% of the timepropagating, so the method will be alled frequently. In SATZOO a performanegain was ahieved by remembering the position of the last wathed literal andstart looking for a new literal to wath from that position. Further speedupsmay be ahieved by speializing the ode for small lause sizes.4.3 PropagationGiven the mehanism for adding onstraints, we now move on to desribe thepropagation of unit information on these onstraints.The propagation routine keeps a set of literals (unit information) that is tobe propagated. We all this the propagation queue. When a literal is inserted intothe queue, the orresponding variable is immediately assigned. For eah literalin the queue, the wather list of that literal determines the onstraints that maybe a�eted by the assignment. Through the interfae desribed in the previoussetion, eah onstraint is asked by a all to its propagate() method if more unitinformation an be inferred, whih will then be enqueued. The proess ontinuesuntil either the queue is empty or a onit is found.10



lass Clause : publi Constrbool learntoat ativityVehliti lits{ Construtor { reates a new lause and adds it to wather lists:stati bool Clause new(Solver S, Vehliti ps, bool learnt, Clause out lause)\Implementation in Figure 8 "{ Learnt lauses only:bool loked(Solver S)return S.reason[var(lits[0℄)℄ == this{ Constraint interfae:void remove(Solver S)removeElem(this, S.wathes[index(:lits[0℄)℄)removeElem(this, S.wathes[index(:lits[1℄)℄)delete thisbool simplify(Solver S) { only alled at top-level with empty prop. queueint j = 0for (int i = 0; i < lits.size(); i++)if (S.value(lits[i℄) == True?)return Trueelse if (S.value(lits[i℄) == ?)lits[j++℄ = lits[i℄ { false literals are not opied (only our for i � 2)lits.shrink(lits.size() � j)return Falsebool propagate(Solver S, lit p){ Make sure the false literal is lits[1℄:if (lits[0℄ == :p)lits[0℄ = lits[1℄, lits[1℄ = :p{ If 0th wath is true, then lause is already satis�ed.if (S.value(lits[0℄) == True?)S.wathes[index(p)℄.push(this) { re-insert lause into wather listreturn True{ Look for a new literal to wath:for (int i = 2; i < size(); i++)if (S.value(lits[i℄) != False?)lits[1℄ = lits[i℄, lits[i℄ = :pS.wathes[index(:lits[1℄)℄.push(this) { insert lause into wather listreturn True{ Clause is unit under assignment:S.wathes[index(p)℄.push(this)return S.enqueue(lits[0℄, this) { enqueue for propagationvoid alReason(Solver S, lit p, vehliti out reason){ invariant: (p == ?) or (p == lits[0℄)for (int i = ((p == ?) ? 0 : 1); i < size(); i++)out reason.push(:lits[i℄) { invariant: S.value(lits[i℄) == False?if (learnt) S.laBumpAtivity(this)Fig. 7. Implementation of the Clause onstraint.11



bool Clause new(Solver S, Vehliti ps, bool learnt, Clause out lause)out lause = Null{ Normalize lause:if (!learnt)if ("any literal in ps is true") return Trueif ("both p and :p ours in ps") return True"remove all false literals from ps""remove all dupliates from ps"if (ps.size() == 0)return Falseelse if (ps.size() == 1)return S.enqueue(ps[0℄) { unit fats are enqueuedelse{ Alloate lause:Clause  = new Clauseps.moveTo(.lits).learnt = learnt.ativity = 0 { only relevant for learnt lausesif (learnt){ Pik a seond literal to wath:"Let max i be the index of the literal with highest deision level".lits[1℄ = ps[max i℄, .lits[max i℄ = ps[1℄{ Bumping:S.laBumpAtivity() { newly learnt lauses should be onsidered ativefor (int i = 0; i < ps.size(); i++)S.varBumpAtivity(ps[i℄) { variables in onit lauses are bumped{ Add lause to wather lists:S.wathes[index(:.lits[0℄)℄.push()S.wathes[index(:.lits[1℄)℄.push()out lause = return TrueFig. 8. Construtor funtion for lauses. Returns False if top-level onit is deteted.'out lause' may be set to Null if the new lause is already satis�ed under the urrenttop-level assignment. Post-ondition: 'ps' is leared. For learnt lauses, all literals willbe false exept `lits[0℄' (this by design of the analyze() method). For the propagationto work, the seond wath must be put on the literal whih will �rst be unbound bybaktraking. (Note that none of the learnt-lause spei� things needs to be done fora user de�ned onstraint type.)
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An implementation of this proedure is displayed in Figure 9. It starts bydequeuing a literal and learing the wather list for that literal by moving it to\tmp". The propagate method is then alled for eah onstraint of \tmp". Thiswill re-insert wathes into new lists. Should a onit be deteted during thetraversal of \tmp", the remaining wathes will be opied bak to the originalwather list, and the propagation queue leared.The method for enqueuing unit information is relatively straightforward.Note that the same fat an be enqueued several times, as it may be prop-agated from di�erent onstraints, but it will only be put on the propagationqueue one.It may be that later enqueuings have a \better" reason (determined heuristi- [Disussion℄ally) and a small performane gain was ahieved in SATZOO by hanging reasonif the new reason was smaller than the previously stored. The hanging a�etsthe onit lause generation desribed in the next setion.4.4 LearningThis setion desribes the onit-driven lause learning. It was �rst desribedin [MS96℄ and is one of the major advanes of SAT-tehnology in the last deade.We desribe the basi onit-analysis algorithm by an example. Assumethe database ontains the lause fx; y; zg whih just beame unsatis�ed duringpropagation. This is our onit. We all x^y^z the reason set of the onit.Now x is false beause x was propagated from some onstraint. We ask thatonstraint to give us the reason for propagating x (the alReason() method).It will respond with another onjuntion of literals, say u ^ v . These were thevariable assignment that implied x. The onstraint may in fat have been thelause fu; v; xg. From this little analysis we know that u ^ v ^ y ^ z must alsolead to a onit. We may prohibit this onit by adding the lause fu; v; y; zgto the lause database. This would be an example of a learnt onit lause.In the example, we piked only one literal and analyzed it one step. Theproess of expanding literals with their reason sets an be ontinued, in theextreme ase until all the literals of the onit set are deision variables (whihwere not propagated by any onstraints). Di�erent learning shemes based onthis proess have been proposed. Experimentally the \First Unique ImpliationPoint" (First UIP) heuristi has been shown e�etive [ZM01℄. We will not give thede�nition of UIPs here, but just state the algorithm: In a breadth-�rst manner,ontinue to expand literals of the urrent deision level, until there is just oneleft.In the ode for analyze(), displayed in Figure 10, we make use of the fatthat a breadth-�rst traversal an be ahieved by inspeting the trail bakwards.Espeially, the variables of the reason set of p is always before p in the trail. Fur-thermore, in the algorithm we initialize p to ?lit, whih will make alReason()return the reason for the onit.Assuming x to be the unit information that auses the onit, an alternative [Disussion℄implementation would be to alulate the reason for x and just add x to that set.The ode would be slightly more umbersome but the ontrat for alReason()would be simpler, as we no longer need the speial ase for ?lit.13



Constr Solver.propagate()while (propQ.size() > 0)lit p = propQ.dequeue() { 'p' is now the enqueued fat to propagateVehConstri tmp { 'tmp' will ontain the wather list for 'p'wathes[index(p)℄.moveTo(tmp)for (int i = 0; i < tmp.size(); i++)if (!tmp[i℄.propagate(this, p)){ Constraint is oniting; opy remaining wathes to 'wathes[p℄'{ and return onstraint:for (int j = i+1; j < tmp.size(); j++)wathes[index(p)℄.push(tmp[j℄)propQ.lear()return tmp[i℄return Nullbool Solver.enqueue(lit p, Constr from = Null)if (value(p) != ?)if (value(p) == False?){ Coniting enqueued assignmentreturn Falseelse{ Existing onsistent assignment { don't enqueuereturn Trueelse{ New fat, store itassigns [var(p)℄ = lbool(!sign(p))level [var(p)℄ = deisionLevel()reason [var(p)℄ = fromtrail.push(p)propQ.insert(p)return TrueFig. 9. propagate(): Propagates all enqueued fats. If a onit arises, the onitinglause is returned, otherwise Null. enqueue(): Puts a new fat on the propagationqueue, as well as immediately updating the variable's value in the assignment vetor. Ifa onit arises, False is returned and the propagation queue is leared. The parameter'from' ontains a referene to the onstraint from whih 'p' was propagated (defaultsto Null if omitted).Finally, the analysis not only returns a onit lause, but also the bak-traking level. This is the lowest deision level for whih the onit lause isunit. It is advantageous to baktrak as far as possible [MS96℄, and is referredto as bak-jumping or non-hronologial baktraking in the literature.4.5 SearhThe searh method in Figure 13 works basially as desribed in setion 3 butwith the following additions:Restarts. The �rst argument of the searh method is \nof onits". Thesearh for a model or a ontradition will only be onduted for this many14



void Solver.analyze(Constr on, Vehliti out learnt, Int out btlevel)Vehbooli seen(nVars(), False)int ounter = 0lit p = ?litVehliti p reasonout learnt.push() { leave room for the asserting literalout btlevel = 0do p reason.lear()on.alReason(this, p, p reason) { invariant here: on != NULL{ Trae reason for p:for (int j = 0; j < p reason.size(); j++)lit q = p reason[j℄if (!seen[var(q)℄)seen[var(q)℄ = Trueif (level[var(q)℄ == deisionLevel())ounter++else if (level[var(q)℄ > 0) { exlude variables from deision level 0out learnt.push(:q)out btlevel = max(out btlevel, level[var(q)℄){ Selet next literal to look at:do p = trail.last()on = reason[var(p)℄undoOne()while (!seen[var(p)℄)ounter��while (ounter > 0)out learnt[0℄ = :pFig. 10. Analyze a onit and produe a reason lause. Pre-onditions: (1)'out learnt' is assumed to be leared. (2) Current deision level must be greaterthan root level. Post-onditions: (1) 'out learnt[0℄' is the asserting literal at level'out btlevel'. E�et: Will undo part of the trail, but not beyond last deision level.void Solver.reord(Vehliti lause)Clause  { will be set to reated lause, or NULL if 'lause[℄' is unitClause new(this, lause, True, ) { annot fail at this pointenqueue(lause[0℄, ) { annot fail at this pointif ( != Null) learnts.push()Fig. 11. Reord a lause and drive baktraking. Pre-ondition: 'lause[0℄' must ontainthe asserting literal. In partiular, 'lause[℄' must not be empty.15



onits. If failing to solve the SAT-problem within the bound, all assump-tions will be aneled and ? returned. The surrounding solver strategy willthen restart the searh, possibly with a new set of parameters.Redue. The seond argument, \nof learnts", sets an upper limit on thenumber of learnt lauses that are kept. One this number is reahed, re-dueDB() is alled. Clauses that are urrently the reason for a variable as-signment are said to be loked and annot be removed by redueDB(). Forthis reason, the limit is extended by the number of assigned variables, whihapproximates the number of loked lauses.Parameters. The third argument to the searh method groups some tuningonstants. In the urrent version of MINISAT, it only ontains the deayfators for variables and lauses.Root-level. To support inremental SAT, the onept of a root-level is in-trodued. The root-level ats a bit as a new top-level. Above the root-levelare the inremental assumptions passed to solve() (if any). The searh pro-edure is not allowed to baktrak above the root-level, as this would hangethe inremental assumptions. If we reah a onit at root-level, the searhwill return False.A problem with the approah presented here is onit lauses that areunit. For these, analyze() will always return a baktrak level of 0 (top-level). As unit lauses are treated speially, they are never added to thelause database. Instead they are enqueued as fats to be propagated (seethe ode of Clause new()). There would be no problem if this was doneat top-level. However, the searh proedure will only undo until root-level,whih means that the unit fat will be enqueued there. One searh() hassolved the urrent SAT-problem, the surrounding solver strategy will undoany inremental assumption and put the solver bak at the top-level. By thisthe unit lause will be forgotten, and the next inremental SAT problem willhave to infer it again.A solution to this is to store the learnt unit lauses in a vetor andre-insert them at top-level before the next all to solve(). The reason foromitting this in MINISAT is that we have not seen any performane gain bythis extra handling in our appliations [ES03,CS03℄. Simpliity thus ditatesthat we leave it out of the presentation.Simplify.Provided the root-level is 0 (no assumptions were passed to solve())the searh will return to the top-level every time a unit lause is learnt. Atthat point it is legal to all simplifyDB() to simplify the problem onstraintsaording to the top-level assignment. If a stronger simpli�er than presentedhere is implemented, a ontradition may be found, in whih ase the searhshould be aborted. As our simpli�er is not stronger than normal propaga-tion, it an never reah a ontradition, so we ignore the return value ofsimplify(). 16



void Solver.undoOne()lit p = trail.last()var x = var(p)assigns [x℄ = ?reason [x℄ = Nulllevel [x℄ = -1order.undo(x)trail.pop()while (undos[x℄.size() > 0)undos[x℄.last().undo(this, p)undos[x℄.pop()
bool Solver.assume(lit p)trail lim.push(trail.size())return enqueue(p)void Solver.anel()int  = trail.size() � trail lim.last()for (;  != 0; ��)undoOne()trail lim.pop()void Solver.anelUntil(int level)while (deisionLevel() > level)anel()Fig. 12. assume(): returns False if immediate onit. Pre-ondition: propaga-tion queue is empty. undoOne(): unbinds the last variable on the trail. anel():reverts to the state before last push(). Pre-ondition: propagation queue is empty.anelUntil(): anels several levels of assumptions.4.6 Ativity heuristisThe implementation of ativity is shown in Figure 14. Instead of atually multi-plying all variables by a deay fator after eah onit, we bump variables withlarger and larger numbers. Only relative values matter. Eventually we will reahthe limit of what is representable by a oating point number. At that point, allativities are saled down.In the VarOrder data type of MINISAT, the list of variables is kept sortedon ativity at all time. The baktraking will always aurately hoose the mostative variable. The original suggestion for the VSIDS dynami variable orderingwas to sort periodially.The polarity of a literal is ignored in MINISAT. However, storing the latest [Disussion℄polarity of a variable might improve the searh when restarts are used, but itremains to be empirially supported. Furthermore, the interfae of VarOrderan be used for other variable heuristis. In SATZOO, an initial stati variableorder omputed from the lause struture was partiularly suessful on manyproblems.4.7 Constraint removalThe methods for reduing the set of learnt lauses as well as the top-level sim-pli�ation proedure an be found in Figure 15.When removing learnt lauses, it is important not to remove so alled lokedlauses. Loked lauses are those partiipating in the urrent baktraking branhby being the reason (through propagation) for a variable assignment. The redueproedure keeps half of the learnt lauses, exept for those whih have deayedbelow a threshold limit. Suh lauses an our if the set of ative onstraints isvery small.Top-level simpli�ation an be seen as a speial ase of propagation. Sine [Disussion℄17



lbool Solver.searh(int nof onits, int nof learnts, SearhParams params)int onitC = 0var deay = 1 / params.var deayla deay = 1 / params.la deaymodel.lear()loopConstr on = propagate()if (on != Null){ ConflitonitC++Vehliti learnt lauseint baktrak levelif (deisionLevel() == root level)return False?analyze(on, learnt lause, baktrak level)anelUntil(max(baktrak level, root level))reord(learnt lause)deayAtivities()else{ No onflitif (deisionLevel() == 0){ Simplify the set of problem lauses:simplifyDB() { our simpli�er annot return false hereif (learnts.size()�nAssigns() � nof learnts){ Redue the set of learnt lauses:redueDB()if (nAssigns() == nVars()){ Model found:model.growTo(nVars())for (int i = 0; i < nVars(); i++)model[i℄ = (value(i) == True?)anelUntil(root level)return True?else if (onitC � nof onits){ Reahed bound on number of onits:anelUntil(root level) { fore a restartreturn ?else{ New variable deision:lit p = lit(order.selet()) { may have heuristi for polarity hereassume(p) { annot return falseFig. 13. Searh method. Assumes and propagates until a onit is found, from whiha onit lause is learnt and baktraking performed until searh an ontinue. Pre-ondition: root level == deisionLevel().18



void Solver.varBumpAtivity(var x)if ((ativity[x℄ += var in) > 1e100)varResaleAtivity()order.update(x)void Solver.varDeayAtivity()var in *= var deayvoid Solver.varResaleAtivity()for (int i = 0; i < nVars(); i++)ativity[i℄ *= 1e-100var in *= 1e-100
void Solver.laBumpAtivity(Clause )void Solver.laDeayAtivity()void Solver.laResaleAtivity(){ Similarly implemented.void Solver.deayAtivities()varDeayAtivity()laDeayAtivity()Fig. 14. Bumping of variable and lause ativities.it is performed under no assumption, anything learnt an be kept forever. Thefreedom of not having to store derived information separately, with the abilityto undo it later, makes it easier to implement stronger propagation.4.8 Top-level solverThe method implementing MINISAT's top-level strategy an be found in Figure16. It is responsible for making the inremental assumptions and setting the rootlevel. Furthermore, it ompletes the simple baktraking searh with restarts,whih are performed less and less frequently. After eah restart, the number ofallowed learnt lauses is inreased.The ode ontains a number of hand-tuned onstants that have shown to per-form reasonable on our appliations [ES03,CS03℄. The top-level strategy, how-ever, is a produtive target for improvements (possibly appliation dependent).In SATZOO, the top-level strategy ontains an initial phase where a stati vari-able ordering is used.5 Conlusions and Related WorkBy this paper, we have provided a minimal referene implementation of a modernonit-driven SAT-solver. Despite the abstration layer for boolean onstraints,and the lak of more sophistiated heuristis, the performane of MINISAT isomparable to state-of-the-art SAT-solvers. We have tested MINISAT against

ZCHAFF and BERKMIN 5.61 on 177 SAT-instanes. These instanes were used totune SATZOO for the SAT 2003 Competition. As SATZOO solved more instanesand series of problems, ranging over all three ategories (industrial, handmade,and random), than any other solver in the ompetition, we feel that this is agood test-set for the overall performane. No extra tuning was done in MINISAT;it was just run one with the onstants presented in the ode. At a time-out of10 minutes, MINISAT solved 158 instanes, while ZCHAFF solved 147 instanesand BERKMIN 157 instanes.Another approah to inremental SAT and non-lausal onstraints was pre-sented by Aloul, Ramani, Markov, and Sakallah in their work on SATIRE and
PBS [WKS01,ARMS02℄. Our implementation di�ers in that it has a simpler19



void Solver.redueDB()int i, jdouble lim = la in / learnts.size()sortOnAtivity(learnts)for (i=j=0; i < learnts.size()/2; i++)if (!learnts[i℄.loked(this))learnts[i℄.remove(this)elselearnts[j++℄ = learnts[i℄for (; i < learnts.size(); i++)if (!learnts[i℄.loked(this)&& learnts[i℄.ativity() < lim)learnts[i℄.remove(this)elselearnts[j++℄ = learnts[i℄learnts.shrink(i � j)

bool Solver.simplifyDB()if (propagate() != Null)return Falsefor (int type = 0; type < 2; type++)VehConstri s = type ?(VehConstri)learnts : onstrsint j = 0for (int i = 0; i < s.size(); i++)if (s[i℄.simplify(this))s[i℄.remove(this)elses[j++℄ = s[i℄s.shrink(s.size()�j)return TrueFig. 15. redueDB(): Remove half of the learnt lauses minus some loked lauses.A loked lause is a lauses that is reason to a urrent assignment. Clauses below aertain lower bound ativity are also be removed. simplifyDB(): Top-level simplifyof onstraint database. Will remove any satis�ed onstraint and simplify remainingonstraints under urrent (partial) assignment. If a top-level onit is found, False isreturned. Pre-ondition: Deision level must be zero. Post-ondition: Propagationqueue is empty.bool Solver.solve(Vehliti assumps)SearhParams params(0.95, 0.999)double nof onits = 100double nof learnts = nConstraints()/3lbool status = ?{ Push inremental assumptions:for (int i = 0; i < assumps.size(); i++)if (!assume(assumps[i℄) j j propagate() != Null)anelUntil(0)return Falseroot level = deisionLevel(){ Solve:while (status == ?)status = searh((int)nof onits, (int)nof learnts, params)nof onits *= 1.5nof learnts *= 1.1anelUntil(0)return status == True?Fig. 16. Main solve method. Pre-ondition: If assumptions are used, simplifyDB()must be alled right before using this method. If not, a top-level onit (resulting in anon-usable internal state) annot be distinguished from a onit under assumptions.20



notion of inrementality, and that it ontains a well doumented interfae fornon-lausal onstraints.Finally, a set of referene implementations of modern SAT-tehniques ispresent in the OPENSAT projet.3 However, the projet aim for ompletenessrather than minimal exposition, as we have hosen in this paper.6 Exerises1. Write the ode for an AtMost onstraint. The onstraint is satis�ed if atmost n out of m spei�ed literals are true.2. Implement a generator for (generalized) pigeon-hole formulas using the newonstraints. The generator should take three arguments: number of pigeons,number of holes, and hole apaity. Eah pigeon must reside in some pigeon-hole. No hole may ontain more pigeons than its apaity.3. Make an inremental version that adds one pigeon to the problem at a timeuntil the problem beomes unsatis�able.Referenes[ARMS02℄ F. Aloul, A. Ramani, I. Markov, K. Sakallah. \Generi ILP vs. Spe-ialized 0-1 ILP: an Update" in International Conferene on ComputerAided Design (ICCAD), 2002.[BCCFZ99℄ A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, Y. Zhu. \Symboli ModelCheking using SAT proedures instead of BDDs" in Proeedings ofDesign Automation Conferene (DAC'99), 1999.[CS03℄ K. Claessen, N. S�orensson. \New Tehniques that ImproveMACE-styleFinite Model Finding" in CADE-19, Workshop W4. Model Computation{ Priniples, Algorithms, Appliations, 2003.[DLL62℄ M. Davis, G. Logemann, D. Loveland. \A mahine program for theoremproving" in Communiations of the ACM, vol 5, 1962.[ES03℄ N. E�en, N. S�orensson. \Temporal Indution by Inremental SAT Solv-ing" in Pro. of First International Workshop on Bounded Model Cheking,2003. ENTCS issue 4 volume 89.[Lar92℄ T. Larrabee. \Test Pattern Generation Using Boolean Satis�ability"in IEEE Transations on Computer-Aided Design, vol. 11-1, 1992.[MS96℄ J.P. Marques-Silva, K.A. Sakallah. \GRASP { A New Searh Algorithmfor Satis�ability" in ICCAD. IEEE Computer Soiety Press, 1996[MZ01℄ M.W. Moskewiz, C.F. Madigan, Y. Zhao, L. Zhang, S. Malik. \Cha�: Engi-neering an EÆient SAT Solver" in Pro. of the 38th Design AutomationConferene, 2001.[Stri00℄ O. Strihman \Tuning SAT hekers for Bounded Model Cheking"in Pro. of 12th Intl. Conf. on Computer Aided Veri�ation, LNCS:1855,Springer-Verlag 2000[WKS01℄ J. Whittemore, J. Kim, K. Sakallah. \SATIRE: A New InrementalSatis�ability Engine" in Pro. 38th Conf. on Design Automation, ACMPress 2001.[ZM01℄ L. Zhang, C.F. Madigan, M.W. Moskewiz, S. Malik. \EÆient ConitDriven Learning in Boolean Satis�ability Solver" in Pro. of the In-ternational Conferene on Computer Aided Design (ICCAD), 2001.3 http://www.opensat.org 21



Appendix { What is missing from Satzoo?In order to redue the size of MINISAT to a minimum, all non-essential parts of
SATZOO/SATNIK were left out. Sine SATZOO won two ategories of the SAT2003 Competition, we hose to present the missing parts here for ompleteness.Initial strategies:� Burst of random variable orders. Before anything else, SATZOO runs severalpasses of about 10-100 onits eah with the variable order initiated torandom. For satis�able problems, SATZOO an sometimes stumble upon thesolution by this strategy. For hard (typially unsatis�able) problems, impor-tant lauses an be learnt in this phase that is outside the "loal optimum"that the ativity driven variable heuristi will later get stuk in.� Stati variable ordering. The seond phase of SATZOO is to ompute a stativariable ordering taking into aount how the variables of di�erent lausesrelates to eah other (see Figure 17). Variables often ourring together inlauses will be put lose in the variable order. SATZOO uses this stati or-dering for at least 5000 onits and does not stop until progress is haltedseverely. The stati ordering often ounters the e�et of "shu�ing" the prob-lem (hanging the order of lauses). The authors believe this phase to be themost important feature left out of MINISAT, and an important part of thesuess of SATZOO in the ompetition.4Extra variable deision heuristis:� Variable of reent importane. Inspired by the SAT-solver BERKMIN, oa-sionally variables from reent (unsatis�ed) reorded lauses are piked.� Random. About 1% of the time, a random variable is seleted for branhing.This simple strategy seems to rak some extra problems without inurringany substantial overhead for other problems. Give it a try!Other:� Equivalent variable substitution. The binary lauses are heked for yliimpliations. If a yle is found, a representative is seleted and all othervariables in the yle is replaed by this representative in the lause database.This yields a smaller database and fewer variables. The simpli�ation is doneperiodially, but is most important in the initial phase (some problems anbe very redundant).� Garbage olletion. SATZOO implements its own memory management whihallows lauses to be stored more ompatly.� 0-1-programming. Pseudo-boolean onstraints are supported by SATZOO.This an of ourse easily be added to MINISAT through the onstraint in-terfae.4 The provided ode urrently has no further motivation beyond the authors' intuition.Indeed it was added as a quik hak two days before the ompetition.22



void Solver.statiVarOrder(){ Clear ativity:for (int i = 0; i < nVars(); i++) ativity[i℄ = 0{ Do simple variable ativity heuristi:for (int i = 0; i < lauses.size(); i++)Clause  = lauses[i℄double add = pow2 (�size())for (int j = 0; j < size(); j++) ativity[var([j℄)℄ += add{ Calulate the initial "heat" of all lauses:VehVehintii ours(2*nVars()) { Map literal to list of lause indiesVehPairhdouble,intii heat(lauses.size()) { Pairs of heat and lause indexfor (int i = 0; i < lauses.size(); i++)Clause  = lauses[i℄double sum = 0for (int j = 0; j < size(); j++)ours[index([j℄)℄.push(i)sum += ativity[var([j℄)℄heat[i℄ = Pair new(sum, i){ Bump heat for lauses whose variables our in other hot lauses:double iter size = 0for (int i = 0; i < lauses.size(); i++)Clause  = lauses[i℄for (int j = 0; j < size(); j++) iter size += ours[index([j℄)℄.size()int iterations = min((int)(((double)literals / iter size) * 100), 10)double disapation = 1.0 / iterationsfor (int  = 0;  < iterations; ++)for (int i = 0; i < lauses.size(); i++)Clause  = lauses[i℄for (int j = 0; j < size(); j++)Vehinti os = ours[index([j℄)℄for (int k = 0; k < os.size(); k++)heat[i℄.fst += heat[os[k℄℄.fst * disapation{ Set ativity aording to hot lauses:sort(heat)for (int i = 0; i < nVars(); i++) ativity[i℄ = 0double extra = 1e200for (int i = 0; i < heat.size(); i++)Clause&  = lauses[heat[i℄.snd℄for (int j = 0; j < size(); j++)if (ativity[var([j℄)℄ == 0)ativity[var([j℄)℄ = extraextra *= 0.995order.updateAll()var in = 1Fig. 17. The stati variable ordering of SATZOO. The ode is de�ned only for lauses,not for arbitrary onstraints. It must be adapted before it an be used in MINISAT.23


