Automatic correction of C programming exercises
through Unit-Testing and Aspect-Programming

Andrea STERBINI
Dipartimento di Informatica, Universit a di Roma “La Sapienza”
Rome, 1-00198, Italy
sterbini@dsi.uniromal.it

and

Marco TEMPERINI
Dipartimento di Informatica e Sistemistica, Universita di Roma “La Sapienza”
Rome, 1-00198, Italy
marte@dis.uniromal.it

1. ABSTRACT and to give them useful feedback through the homework cor-
rection. While we see that such activity could strengthen the
We present a framework for the automatic testing of C Prstudents’ motivation and satisfaction in programming (not to
gramming assignments that is based on Unit tests and Aspeention increasing their performance as a final result), we see
programming. Students are required to implement a set ofh@ effort needed on our side as well: an overall number of 650
functions and are given each function’s prototype. Teachstgdent’s homeworks to be corrected for each course. This can
are required to write unit tests for each function, a "referenbe managed only by using a framework for automatic correc-
implementation” of each function and a feedback messagetion and feedback generation.
each test failed. The system applies the unit tests to the cod8o far (on previous courses) we have been experimenting,
and replaces a failing function with the corresponding refex-bit roughly, with black-box-testing of the student program,
ence implementation to test also functions depending on thechecking on several input sets the conformance of its out-
failed one. put with the expected ones. This approach is helpful, though
We are developing the system while testing it on the horig-some cases - let's say 15% of them - we had to go over a
works submitted for two courses: "Programming 2” and "Prelirect hand correction of the code to cope with very simple er-
gramming Laboratory”, delivered during the second term &irs. Such an approach is too simple minded indeed and could
first year of our Computer Science MS degree. We preséwer the student’s motivations. E.g. when "insignificant” dif-
the design of the system and the issues solved so far to feggnces between the expected output and the student’s one let
4 homeworks (a total of 186 tests run over 28 implementti whole test fail: as normally the students are more focused

functions). on the logic of the exercise, than on its I/O functions. Provid-
Keywords: Automatic grading, automatic correction, softhg the student with a whole driver containing the proper 1/0O
ware testing. functions, would heal some of these errors, yet we think this

would move the frontier of the testable problems just a little
further. Is it possible to provide the teacher with a sufficiently
2. MOTIVATION simple framework to support the definition of exercises, the
specification of the various detailed tests, and their final auto-
In sciences and engineering faculties, such as the ones wenlygted correction?
long, computer science foundations and programming are topin the development of a framework to answer to the above
ics normally thought in one or more courses, during the figgliestion we have the following goals:
year of every study programmes. Such courses are normally) . .
populated by 90 to 150 students, and managed by one or tw Make the correction completely automatic. This way
teachers (one "in charge” and the other as a support). In our the corrector can be used also as a self-evaluation tool
experience, it is not infrequent to see part of the students dis- N distance-learning settings, by leaving the students test
attending the practical activities assigned in homeworks and their code and resubmit it, in an iterative improvement
laboratory, and then trying the exam without proper training in PrOCess;

writing, running and debugging programs. The environment, qi e the student a detailed correction report that explains,

we are confronting at present is that of a couple of courses, | 1 aa possible, what the error was and how to avoid it:
joined by (the same) 130 students each ("Programming 2” and ’ ’

the attached "Programming Laboratory”, starting march firste avoid the propagation of errors that lead further tests to
2004 and spanning ten weeks). In each course we are giving failure in the same exercise because of functional depen-
homeworks every two weeks, both to analyse their progress, dencies;

e collect evidence of side-effect related errors (e.g. imutomatic correction steps

proper use of global variables or of references or point- .
ers) The correction process follows these steps:

e we instrument the student’s code with the test code,

3. RELATED WORK e we run tests, ordered depending on the functional depen-

dencies between functions,
A similar problem has been solved by Mortis$ [1] for program-

ming courses of Java. In his work he uses Java reflection t@ failing functions are replaced with their reference imple-
analyse the student code and to replace failing functions with mentation to avoid that earlier errors are propagated to
his reference implementation. depending functions

In C a similar technique is harder to apply because reflec-
tion is not available. Yet, we have found a viable alternative to®
reflection in Aspect Programmingl[2]. Aspect Programming
allows the definition of "aspects”, i.e. the specification of code
that should be interspersed in the program to add some func-
tionality (e.g. counting the number of calls of a given fund=urther opportunities

tion). With Aspect programming we can easily instrument thg,q 4pove steps implement an adequate automatic correction
student code so to: tool for a generic programming course. In our specific course
the student are taught software engineering techniques and
should implement the tests needed to check their code correct-
N]]) _ness. Thus, beside the above sources, we should manage and
e replace failing functions with a reference implementatiqtyrect the student's tests.

))) To correct the each student’s tests we apply to all student’s
e count function calls to check algorithm complexity solutions the following steps:

we collect the feedback from tests to tell to the student
what errors have been discovered. Feedback is sent by
email to the student or published on a web site.

e test each function against a set of unit-tests

Tests are written by following the software engineering e use the student’s tests against all the other student’s pro-
Unit-test methodology, where the smallest possible tests (unit grams,

tests) are defined and then collected in test suites.
e store the test’s answers,

e compare the student tests answers with the teacher test
answers,

4. DESCRIPTION OF OUR FRAMEWORK

Data sources e tests are considered 'correct’ when they behave in the

The specification of a programming exercise is made of the Same way than the teacher's ones

following items produced by the teacher: e when tests behave differently we produce a report show-

. - - . ing the different behaviour observed
e the exercise description, listing the function prototypes

that the student should implement, N)
Writing and reusing tests

the unit tests needed to test all kinds of errors we want\ie use unit-testing as a method for writing tests. We have

detect, chosen the cppunit[3] open-source implementation of the unit-
_ _ _ test framework for C and C++. Tests can be written both as
o the reference implementation of each function, single functions or as methods of test classes. The tool is easy

to use and allows also the detection of the exceptions thrown
¢ the feedback comments to be attached to each test, by the tested code. As test development is a time consuming
activity, test generalization and reuse is a key issue that will
the dependencies among functions, to properly order teditstribute the energies spent for writing tests over their reuse in
so that errors are not propagated to depending functioseveral similar exercises. Good reusability and generalization
of tests is obtained both by using C++ templates to write tests
All the above items (except the exercise text) are usedthat are parametric on the types of the used data-structures,
correct the student’s implementation of the required functioasd by using a hierarchy of test classes that can be extended to
(solution) produce more specific tests.

6. A SIMPLE ASPECT DEFINITION

By testing separately each implemented function we Ca'i?lhfigure[g we show a sample aspect definition used to instru-
only the errors that were expected by the teacher. Subtler fgnt the above program. The aspect instruments the code both

rors happens whe_n the. student. uses global vgriables or S{fl&syecute the corresponding tests (tBsind 'testsquare’)
effects to communicate informations between different partsgfy (o replace failing functions with the corresponding refer-
the program. To catch such interactions (or at least to obtaig g implementations (K’ and 'squareOK’).

symptom of their presence) we want to run tests on more thaWyhen the aspect is applied to the code we obtain a program
one student function at the same time. l.e. a subset sfu- 1, produces the output shown in figfite 2. From the example

dent functions are embedded in thg reference implemema%‘?'éxecution (when 'f'is correct and 'square’ is not) we notice
of the whole program. For an exercise whéféunctions have .-

been implemented, a worst case2df possible tests should be
run to examine all subsets of thé functions. Exposing the e the tests are run in the proper order
student to such amount of output is useless, thus we filter the

test's output and keep only two notable cases: ¢ the 'square’ function is replaced both during 'f’ test and
during the program execution

Catching evidence of subtle errors

o when we test a subsét of m student functions and:

_ the tests of a function are PASSED but at least one® e T’ function is found correct and is not replaced

of them tests already run on the sub3et
x were FAILED,

— or the tests of a function are FAILED but all the testing the 'square’ function ... FAILED!

testing the 'f function ...
tests already run on the subgédt using REPLACED version of int square(int)

x were PASSED. _PASSED!
computing f(4) ...
us@ng ORIGINAL versiqn of im f(int) .
5. A TOY EXAMPLE OF FUNCTIONS, TESTS AND L 15 oo g Ot square(ng
ASPECTS computing square(4) ...
using REPLACED version of int square(int)
square(4) = 16 (expecting 16)

Functions, tests and reference implementations

#include <stdio.h>

#include "main.h"

int square(int N) { /I WRONG implementation
return N*(N-1); }

int square_OK(int N) { // REFERENCE implementation
return N*N; }

bool test_square() { /Il TEST

int i = -17;
return (i*i == square(i)); }

int f(int N) { /I CORRECT implementation
return square(N) + 2; }

int f_OK(int N) { /I REFERENCE implementation
return square(N) + 2; }

bool test_f() { /I TEST
int i = -18;
return (i*i+2 == f(i)); }

int main() {

printf("f(4) = %d (18)\n", f(4));
printf("square(4) = %d (16)\n", square(4));
return 0; }

Figure 1: Toy example of code to be instrumented.

In figure[] we show a toy example that shows how aspegts Programming 2| Programming Lab|
can be defined to support our framework. First we define a pair HW1 | HW2 | HW1 HW2
of functions ('f" and 'square’) with their reference implemen-| Functions tested 4 3 10 11
tations (' OK’ and 'squareOK’) and their tests (‘test’ and Tests developed 15 37 37 97
‘test square’). HW Submitted 45 36 24 24

Figure 2: Output of the execution of the instrumented code.

7. STATUS OF THE PROJECT

The project has begun two months ago as a pilot project im-
plemented by a Master thesis student. We have written and
run tests for two courses: "Programming 2" and "Program-
ming Laboratory”, delivered to freshmens during the second
term of the first year of our Computer Science MS degree.
The first course teaches programming in C with dynamic data
structures (lists, trees, graphs), while the second is a laboratory
on software engineering practices, teaching how to write good
quality code by using "contracts” (pre/post-requisites, invari-
ants, assertions). Students are invited to participate to the pilot
by assigning 30% of the final grade to the homeworks. Yet,
not all the students are participating. This is probably due to
the fact that this group of students were not asked to complete
programming homeworks during the the first term.

We have tested two homeworks for each course and we aré/e are just now introducing and running the aspect-based
now just writing tests for the third (and final) assignment ofiachinery to replace failed functions with their reference im-
both courses. plementation. The machinery will be used on the third (last)

In this initial phase we have implemented the unit-tests ngssignment. All the tests run so far will be re-run to purge er-
chinery and we have solved the following problems: rors coming from functional dependencies to failing functions.

segmentation faults whenever an invalid pointer (null or 8. MORE IDEAS
uninitialized) is dereferenced a segmentation fault hap-
pens. We track these errors by registering an inteutomatic generation of aspects

rupt handler that jumps to a recovery routine when_a

SIG_SEGEF interrupt fires. As the memory space of th-ltg1e aspect example shown in figire 3 suggests that the as-

program could be badly ruined, we run each test in as@?—m sub-classes coud be automatically generated by using a

arate process and wait for its termination. If a SSEGF standard naming scheme for function, tests and reference im-

happened the process is killed and the main progra gmentat!ons (e.g. square, tesquare ! squareK’) and ,

signaled y extracting the functional dependencies from the student’s
' code.

endless loopsEach test is run against a timeout to catch end-
less loops. Checking the complexity of the algorithms implemented

. . — Aspects are the perfect tool to add counters to functions. With
exitand abort TO, av_qd the,term|r’1at|on of the whqle test; WEounters we can track allocation and deallocation of dynamic
repl:_;lce the eX|t_ end "abort’ standard functions with fata structures, or count how many times a function is called
null implementation. or a field is accessed. Thus we can compare the algorithms

. sed by the students to see which one is more efficient than
assert To track for correct usage of assertions we replace tg][‘?’ners' both respect to its complexity and respect to memory
standard 'assert’ macro with a version that throws an q%gs '
the

ception that is expected by the tests. We can do that if S

student’'s program can be compiled with the C++ com- . i o
piler. Reusing student’s submissions

We are now compiling student's programs with a starptudent’s solutions and tests are a valuable resource that
dard C compiler, and thus we cannot use exceptions. ghould be exploited to enhance their learning opportunities. To

"assert’ macro in this case sets a global variable and {pis aim the teacher could enl_arge the set of tests by selecting
tests check for it after the test. tests from the student’s submissions.

C++ vs. C Students are asked to implement their functions ffaying with the students

stan.dard C. TO allow us the_ usage of A_spectQ and of ~We would like to involve the students in the correction by run-
pUnit exceptions we are trying to compile their code wi

c i he G | S | ing a tournament and by ranking their solutions and tests to
3 J+Ccomp| er (t € hu compl Er g++) - ,Ieger","hStarﬂ'lghlight both the student’s solutions that pass more tests and
ar constructs raise errors when compiled With G+e o1 dent's tests that catch more errors. To have more fun

e.g. the |mpI!C|t casts Of malloc-_ed _data, but they can Pr‘?e teacher’s participates to the tournament with his reference
solved by using the optioffpermissive that transforms solution and tests

most of these errors into simple warnings.

missing functions and typos Sometimes the student impleReferences
ments only part of the homework or writes a typo in the

function name or prototype. In this case the test sys- [1] Derek S. Morris. "Automatically Grading Java Pro-

tem would’nt pass the compilation because of the missing gramming Assignments via Reflection, Inheritance,
functions. We solve this issue by giving a dummy imple- and Regular Expressions”, Proc. Frontiers in Educa-
mentation of all the required functions that just throws an tion 2002, Boston, USA, 2002.

exception and writes a message ("Function XXX is not

implemented.”) [2] |http://www.aspectc.org

This dummy library is linked against the student code [3] |http://cppunit.sourceforge.net
and test system with th&muldefs option that allows for
multiple definitions of a function and links the first found.

http://www.aspectc.org
http://cppunit.sourceforge.net

#include <stdio.h>
#include "main.h"

/I Abstract aspect that tests a function and replaces it with a reference implementation if the test fails
aspect Redirect {
/I abstract pointcut that defines which function will be instrumented

pointcut virtual calls() = 0;

/I abstract method that calls the reference implementation
virtual int use_correct(int X) = 0;

/I abstract method that tests the function

virtual bool test_it() = 0;

/I abstract method that returns the function’s name
virtual char * name() = O;

/I variable to store the test outcome
bool passed;

/I just before running the code, run the tests in the order given by the ’ordering’ directives (see later)
advice execution("% main(...)") : before() {
printf("testing the '%s’ function ...
passed = test_it();
printf(passed ? "PASSEDN\n" : "FAILED\n");

, name());

}

/I replace all the calls except when used in the unit tests
advice calls() && !within("% test_%(...)") && args(X) : around(int X) {
if (passed) {
printf("\n\tusing ORIGINAL version of %s\n", JoinPoint::signature());
/I proceed with normal execution
tjp->proceed();
} else {
printf("\n\tusing REPLACED version of %s\n", JoinPoint::signature());
/I replace the function with its reference implementation
*(tjp->result()) = use_correct(X);

I

/I we extend the abstract aspect Redirect to test the 'f’ function

aspect Redirect_f : public Redirect {
/I as the 'f" function uses the ’'square’ one,
/I we define the proper ordering of tests, that is: first 'square’ then 'f
advice main() : order("Redirect_square","Redirect_f");

pointcut calls() = call("% f(...)");

char * name() { return "f*; }
int use_correct(int X) { return f_OK(X); }
bool test_it() { return test_f(); }

h

/I we extend the abstract aspect Redirect to test the ’square’ function
aspect Redirect_square : public Redirect {

pointcut calls() = call("% square(...)");

char * name() { return "square";

int use_correct(int X) { return square_OK(X); }
bool test_it() { return test_square(); }

Figure 3: Aspect example.

