
Automatic correction of C programming exercises
through Unit-Testing and Aspect-Programming

Andrea STERBINI
Dipartimento di Informatica, Universit à di Roma “La Sapienza”

Rome, I-00198, Italy
sterbini@dsi.uniroma1.it

and

Marco TEMPERINI
Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”

Rome, I-00198, Italy
marte@dis.uniroma1.it

1. ABSTRACT

We present a framework for the automatic testing of C Pro-
gramming assignments that is based on Unit tests and Aspect
programming. Students are required to implement a set of C
functions and are given each function’s prototype. Teachers
are required to write unit tests for each function, a ”reference
implementation” of each function and a feedback message for
each test failed. The system applies the unit tests to the code
and replaces a failing function with the corresponding refer-
ence implementation to test also functions depending on the
failed one.

We are developing the system while testing it on the home-
works submitted for two courses: ”Programming 2” and ”Pro-
gramming Laboratory”, delivered during the second term of
first year of our Computer Science MS degree. We present
the design of the system and the issues solved so far to test
4 homeworks (a total of 186 tests run over 28 implemented
functions).

Keywords: Automatic grading, automatic correction, soft-
ware testing.

2. MOTIVATION

In sciences and engineering faculties, such as the ones we be-
long, computer science foundations and programming are top-
ics normally thought in one or more courses, during the first
year of every study programmes. Such courses are normally
populated by 90 to 150 students, and managed by one or two
teachers (one ”in charge” and the other as a support). In our
experience, it is not infrequent to see part of the students dis-
attending the practical activities assigned in homeworks and
laboratory, and then trying the exam without proper training in
writing, running and debugging programs. The environment
we are confronting at present is that of a couple of courses,
joined by (the same) 130 students each (”Programming 2” and
the attached ”Programming Laboratory”, starting march first
2004 and spanning ten weeks). In each course we are giving
homeworks every two weeks, both to analyse their progress,

and to give them useful feedback through the homework cor-
rection. While we see that such activity could strengthen the
students’ motivation and satisfaction in programming (not to
mention increasing their performance as a final result), we see
the effort needed on our side as well: an overall number of 650
student’s homeworks to be corrected for each course. This can
be managed only by using a framework for automatic correc-
tion and feedback generation.

So far (on previous courses) we have been experimenting,
a bit roughly, with black-box-testing of the student program,
by checking on several input sets the conformance of its out-
put with the expected ones. This approach is helpful, though
in some cases - let’s say 15% of them - we had to go over a
direct hand correction of the code to cope with very simple er-
rors. Such an approach is too simple minded indeed and could
lower the student’s motivations. E.g. when ”insignificant” dif-
ferences between the expected output and the student’s one let
the whole test fail: as normally the students are more focused
on the logic of the exercise, than on its I/O functions. Provid-
ing the student with a whole driver containing the proper I/O
functions, would heal some of these errors, yet we think this
would move the frontier of the testable problems just a little
further. Is it possible to provide the teacher with a sufficiently
simple framework to support the definition of exercises, the
specification of the various detailed tests, and their final auto-
mated correction?

In the development of a framework to answer to the above
question we have the following goals:

• make the correction completely automatic. This way
the corrector can be used also as a self-evaluation tool
in distance-learning settings, by leaving the students test
their code and resubmit it, in an iterative improvement
process;

• give the student a detailed correction report that explains,
where possible, what the error was and how to avoid it;

• avoid the propagation of errors that lead further tests to
failure in the same exercise because of functional depen-
dencies;

1



• collect evidence of side-effect related errors (e.g. im-
proper use of global variables or of references or point-
ers)

3. RELATED WORK

A similar problem has been solved by Morris [1] for program-
ming courses of Java. In his work he uses Java reflection to
analyse the student code and to replace failing functions with
his reference implementation.

In C a similar technique is harder to apply because reflec-
tion is not available. Yet, we have found a viable alternative to
reflection in Aspect Programming [2]. Aspect Programming
allows the definition of ”aspects”, i.e. the specification of code
that should be interspersed in the program to add some func-
tionality (e.g. counting the number of calls of a given func-
tion). With Aspect programming we can easily instrument the
student code so to:

• test each function against a set of unit-tests

• replace failing functions with a reference implementation

• count function calls to check algorithm complexity

Tests are written by following the software engineering
Unit-test methodology, where the smallest possible tests (unit
tests) are defined and then collected in test suites.

4. DESCRIPTION OF OUR FRAMEWORK

Data sources

The specification of a programming exercise is made of the
following items produced by the teacher:

• the exercise description, listing the function prototypes
that the student should implement,

• the unit tests needed to test all kinds of errors we want to
detect,

• the reference implementation of each function,

• the feedback comments to be attached to each test,

• the dependencies among functions, to properly order tests
so that errors are not propagated to depending functions

All the above items (except the exercise text) are used to
correct the student’s implementation of the required functions
(solution)

Automatic correction steps

The correction process follows these steps:

• we instrument the student’s code with the test code,

• we run tests, ordered depending on the functional depen-
dencies between functions,

• failing functions are replaced with their reference imple-
mentation to avoid that earlier errors are propagated to
depending functions

• we collect the feedback from tests to tell to the student
what errors have been discovered. Feedback is sent by
email to the student or published on a web site.

Further opportunities

The above steps implement an adequate automatic correction
tool for a generic programming course. In our specific course
the student are taught software engineering techniques and
should implement the tests needed to check their code correct-
ness. Thus, beside the above sources, we should manage and
correct the student’s tests.

To correct the each student’s tests we apply to all student’s
solutions the following steps:

• use the student’s tests against all the other student’s pro-
grams,

• store the test’s answers,

• compare the student tests answers with the teacher test
answers,

• tests are considered ’correct’ when they behave in the
same way than the teacher’s ones

• when tests behave differently we produce a report show-
ing the different behaviour observed

Writing and reusing tests

We use unit-testing as a method for writing tests. We have
chosen the cppunit [3] open-source implementation of the unit-
test framework for C and C++. Tests can be written both as
single functions or as methods of test classes. The tool is easy
to use and allows also the detection of the exceptions thrown
by the tested code. As test development is a time consuming
activity, test generalization and reuse is a key issue that will
distribute the energies spent for writing tests over their reuse in
several similar exercises. Good reusability and generalization
of tests is obtained both by using C++ templates to write tests
that are parametric on the types of the used data-structures,
and by using a hierarchy of test classes that can be extended to
produce more specific tests.



Catching evidence of subtle errors

By testing separately each implemented function we catch
only the errors that were expected by the teacher. Subtler er-
rors happens when the student uses global variables or side-
effects to communicate informations between different parts of
the program. To catch such interactions (or at least to obtain a
symptom of their presence) we want to run tests on more than
one student function at the same time. I.e. a subset ofm stu-
dent functions are embedded in the reference implementation
of the whole program. For an exercise whereN functions have
been implemented, a worst case of2N possible tests should be
run to examine all subsets of theN functions. Exposing the
student to such amount of output is useless, thus we filter the
test’s output and keep only two notable cases:

• when we test a subsetM of m student functions and:

– the tests of a function are PASSED but at least one
of them tests already run on the subsetM
x were FAILED,

– or the tests of a function are FAILED but all them
tests already run on the subsetM
x were PASSED.

5. A TOY EXAMPLE OF FUNCTIONS, TESTS AND
ASPECTS

Functions, tests and reference implementations

#include <stdio.h>
#include "main.h"

int square(int N) { // WRONG implementation
return N*(N-1); }

int square_OK(int N) { // REFERENCE implementation
return N*N; }

bool test_square() { // TEST
int i = -17;
return (i*i == square(i)); }

int f(int N) { // CORRECT implementation
return square(N) + 2; }

int f_OK(int N) { // REFERENCE implementation
return square(N) + 2; }

bool test_f() { // TEST
int i = -18;
return (i*i+2 == f(i)); }

int main() {
printf("f(4) = %d (18)\n", f(4));
printf("square(4) = %d (16)\n", square(4));
return 0; }

Figure 1: Toy example of code to be instrumented.

In figure 1 we show a toy example that shows how aspects
can be defined to support our framework. First we define a pair
of functions (’f’ and ’square’) with their reference implemen-
tations (’f OK’ and ’squareOK’) and their tests (’testf’ and
’test square’).

6. A SIMPLE ASPECT DEFINITION

In figure 3 we show a sample aspect definition used to instru-
ment the above program. The aspect instruments the code both
to execute the corresponding tests (’testf’ and ’test square’)
and to replace failing functions with the corresponding refer-
ence implementations (’fOK’ and ’squareOK’).

When the aspect is applied to the code we obtain a program
that produces the output shown in figure 2. From the example
of execution (when ’f’ is correct and ’square’ is not) we notice
how:

• the tests are run in the proper order

• the ’square’ function is replaced both during ’f’ test and
during the program execution

• the ’f’ function is found correct and is not replaced

testing the ’square’ function ... FAILED!
testing the ’f’ function ...

using REPLACED version of int square(int)
PASSED!

computing f(4) ...
using ORIGINAL version of int f(int)
using REPLACED version of int square(int)
f(4) = 18 (expecting 18)

computing square(4) ...
using REPLACED version of int square(int)
square(4) = 16 (expecting 16)

Figure 2: Output of the execution of the instrumented code.

7. STATUS OF THE PROJECT

The project has begun two months ago as a pilot project im-
plemented by a Master thesis student. We have written and
run tests for two courses: ”Programming 2” and ”Program-
ming Laboratory”, delivered to freshmens during the second
term of the first year of our Computer Science MS degree.
The first course teaches programming in C with dynamic data
structures (lists, trees, graphs), while the second is a laboratory
on software engineering practices, teaching how to write good
quality code by using ”contracts” (pre/post-requisites, invari-
ants, assertions). Students are invited to participate to the pilot
by assigning 30% of the final grade to the homeworks. Yet,
not all the students are participating. This is probably due to
the fact that this group of students were not asked to complete
programming homeworks during the the first term.

Programming 2 Programming Lab.
HW1 HW2 HW1 HW2

Functions tested 4 3 10 11
Tests developed 15 37 37 97
HW Submitted 45 36 24 24



We have tested two homeworks for each course and we are
now just writing tests for the third (and final) assignment of
both courses.

In this initial phase we have implemented the unit-tests ma-
chinery and we have solved the following problems:

segmentation faults whenever an invalid pointer (null or
uninitialized) is dereferenced a segmentation fault hap-
pens. We track these errors by registering an inter-
rupt handler that jumps to a recovery routine when a
SIG SEGF interrupt fires. As the memory space of the
program could be badly ruined, we run each test in a sep-
arate process and wait for its termination. If a SIGSEGF
happened the process is killed and the main program is
signaled.

endless loopsEach test is run against a timeout to catch end-
less loops.

exit and abort To avoid the termination of the whole tests we
replace the ’exit’ end ’abort’ standard functions with a
null implementation.

assert To track for correct usage of assertions we replace the
standard ’assert’ macro with a version that throws an ex-
ception that is expected by the tests. We can do that if the
student’s program can be compiled with the C++ com-
piler.

We are now compiling student’s programs with a stan-
dard C compiler, and thus we cannot use exceptions. The
’assert’ macro in this case sets a global variable and the
tests check for it after the test.

C++ vs. C Students are asked to implement their functions in
standard C. To allow us the usage of AspectC and of Cp-
pUnit exceptions we are trying to compile their code with
a C++ compiler (the Gnu compiler g++) . Several stan-
dard C constructs raise errors when compiled with g++,
e.g. the implicit casts of malloc-ed data, but they can be
solved by using the option-fpermissive that transforms
most of these errors into simple warnings.

missing functions and typosSometimes the student imple-
ments only part of the homework or writes a typo in the
function name or prototype. In this case the test sys-
tem would’nt pass the compilation because of the missing
functions. We solve this issue by giving a dummy imple-
mentation of all the required functions that just throws an
exception and writes a message (”Function XXX is not
implemented.”)

This dummy library is linked against the student code
and test system with the-kmuldefs option that allows for
multiple definitions of a function and links the first found.

We are just now introducing and running the aspect-based
machinery to replace failed functions with their reference im-
plementation. The machinery will be used on the third (last)
assignment. All the tests run so far will be re-run to purge er-
rors coming from functional dependencies to failing functions.

8. MORE IDEAS

Automatic generation of aspects

The aspect example shown in figure 3 suggests that the as-
pect sub-classes coud be automatically generated by using a
standard naming scheme for function, tests and reference im-
plementations (e.g. ’square’, ’testsquare’, ’squareOK’) and
by extracting the functional dependencies from the student’s
code.

Checking the complexity of the algorithms implemented

Aspects are the perfect tool to add counters to functions. With
counters we can track allocation and deallocation of dynamic
data structures, or count how many times a function is called
or a field is accessed. Thus we can compare the algorithms
used by the students to see which one is more efficient than
others’, both respect to its complexity and respect to memory
usage.

Reusing student’s submissions

Student’s solutions and tests are a valuable resource that
should be exploited to enhance their learning opportunities. To
this aim the teacher could enlarge the set of tests by selecting
tests from the student’s submissions.

Playing with the students

We would like to involve the students in the correction by run-
ning a tournament and by ranking their solutions and tests to
highlight both the student’s solutions that pass more tests and
the student’s tests that catch more errors. To have more fun
the teacher’s participates to the tournament with his reference
solution and tests.

References

[1] Derek S. Morris. ”Automatically Grading Java Pro-
gramming Assignments via Reflection, Inheritance,
and Regular Expressions”, Proc. Frontiers in Educa-
tion 2002, Boston, USA, 2002.

[2] http://www.aspectc.org

[3] http://cppunit.sourceforge.net

http://www.aspectc.org
http://cppunit.sourceforge.net


#include <stdio.h>
#include "main.h"

// Abstract aspect that tests a function and replaces it with a reference implementation if the test fails
aspect Redirect {

// abstract pointcut that defines which function will be instrumented
pointcut virtual calls() = 0;
// abstract method that calls the reference implementation
virtual int use_correct(int X) = 0;
// abstract method that tests the function
virtual bool test_it() = 0;
// abstract method that returns the function’s name
virtual char * name() = 0;

// variable to store the test outcome
bool passed;

// just before running the code, run the tests in the order given by the ’ordering’ directives (see later)
advice execution("% main(...)") : before() {

printf("testing the ’%s’ function ... ", name());
passed = test_it();
printf(passed ? "PASSED!\n" : "FAILED!\n");

}

// replace all the calls except when used in the unit tests
advice calls() && !within("% test_%(...)") && args(X) : around(int X) {

if (passed) {
printf("\n\tusing ORIGINAL version of %s\n", JoinPoint::signature());
// proceed with normal execution

tjp->proceed();
} else {

printf("\n\tusing REPLACED version of %s\n", JoinPoint::signature());
// replace the function with its reference implementation
*(tjp->result()) = use_correct(X);
}

}
};

// we extend the abstract aspect Redirect to test the ’f’ function
aspect Redirect_f : public Redirect {

// as the ’f’ function uses the ’square’ one,
// we define the proper ordering of tests, that is: first ’square’ then ’f’
advice main() : order("Redirect_square","Redirect_f");

pointcut calls() = call("% f(...)");
char * name() { return "f"; }
int use_correct(int X) { return f_OK(X); }
bool test_it() { return test_f(); }

};

// we extend the abstract aspect Redirect to test the ’square’ function
aspect Redirect_square : public Redirect {

pointcut calls() = call("% square(...)");
char * name() { return "square"; }
int use_correct(int X) { return square_OK(X); }
bool test_it() { return test_square(); }

};

Figure 3: Aspect example.


