

Ivano Salvo More on Monads and more

Corso di Laurea in Informatica, III anno

Lezione 14a

Monade State Transformer

Il Tipo State Transformer

La monade ST serve a introdurre uno stato mutabile: non è possibile definire un tipo sinonimo come monade: occorre introdurre un **costruttore fittizio**.

Per semplicità, lo stato mutabile è costituito da un solo intero.

A causa del costruttore "fittizio" S, conviene definire un'operazione di applicazione che semplicemente applica uno state transformer rimuovendo il costruttore S.

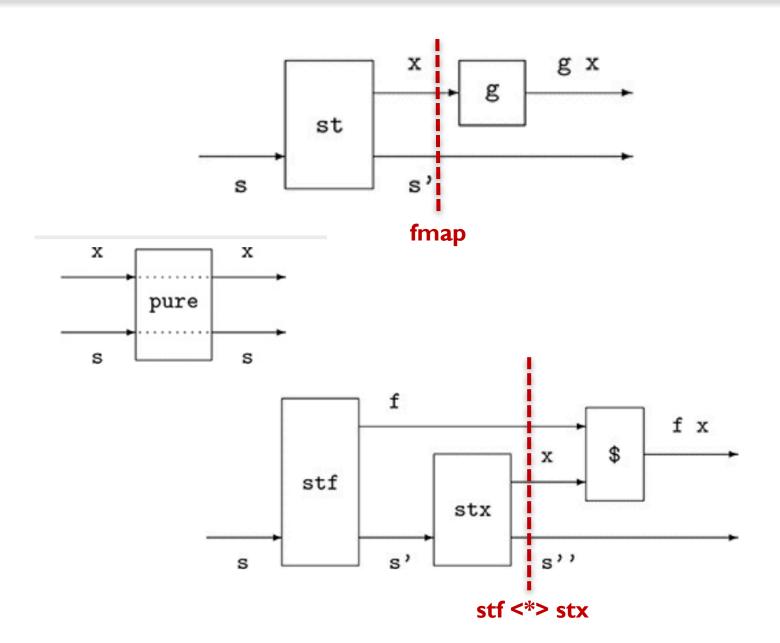
ST come Funtore Applicativo

Cominciamo col vedere il tipo ST degli state transformer come un Funtore...

... e poi come un applicativo.

```
instance Functor ST where
   -- fmap: (a -> b) -> ST a -> ST b
 fmap f st =
   S (\s -> let (x, s') = app st s
                in (f x, s')
instance Applicative ST where
   -- pure :: a -> ST a
 pure x = S (\s -> (x, s))
   -- <*> :: ST (a -> b) -> ST a -> ST b
  stf <*> stx = S (\s ->
      let (f, s') = app stf s in
         let (x, s'') = app stx s' in
             (f x, s''))
```

Pittoricamente...

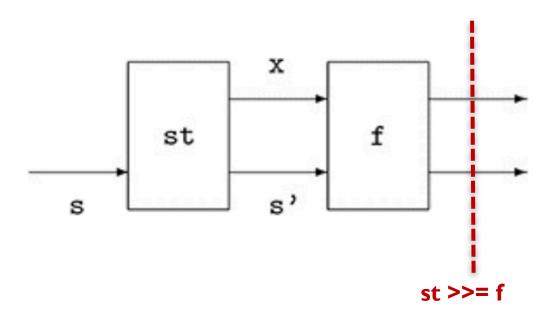


State Transformer come Monade

Infine definiamo la Monade (ricordiamo che Monad è un'istanza derivata da Applicative).

Notate sempre la necessità di astrarre su uno State ogni volta che si costruisce un oggetto di ST.

Pittoricamente...



Valutatore con lo stato 1

Vediamo ora l'esempio del valutatore che conta il numero di divisioni eseguite, usando uno stato.

Vedremo 3 versioni.

Nella prima versione, usiamo >>= e costruiamo "esplicitamente" il risultato finale... notate tuttavia che il risultato è uno "state transformer" più che uno stato e che viene applicato agli state transformer già calcolati ricorsivamente.

Valutatore con lo stato 2 e 3

Usiamo la funzione tick, in congiunzione con pure.

Infine usiamo do-notation. Osservate che return non è un return nel senso dei linguaggi imperativi ☺

Lezione 14b

Altri esempi

Relabeling Trees

Vediamo un altro **problema**: preso un albero, rietichettare tutti i nodi con un intero diverso.

In un linguaggio imperativo si potrebbe fare uso di una variabile **globale** o **statica**.

La soluzione ricorsiva standard, consiste nel passare l'ultimo intero usato alle chiamate ricorsive: questo implica usare un parametro e in un linguaggio come Haskell anche un valore di ritorno (le operazioni non sono sequenzializzate come in un linguaggio imperativo).

```
-- Tipo degli alberi (etichette solo sulle foglie)

data Tree a = Leaf a | Node (Tree a)(Tree a)

-- rlabel :: Tree a -> Int -> (Tree Int, Int)

rlabel (Leaf _) n = (Leaf n, n+1)

rlabel (Node l r) n = (Node l' r', n'')

where (l', n') = rlabel l n

(r',n'') = rlabel r n'
```

Relabeling Trees con Applicativi

Osserviamo subito che il tipo di rlabel è

Osservate che **fresh** ha tipo **ST** Int

```
e pure Leaf ha tipo ST(Int->Tree Int).
```

```
-- funzione che trasforma lo stato
-- fresh :: ST Int
fresh = S (\n->(n, n+1))

-- rlabel :: Tree a -> ST(Tree Int)

alabel (Leaf _) = pure Leaf <*> fresh
alabel (Node l r) =
    pure Node <*> alabel l <*> alabel r
```

Relabeling Trees con Monadi

Probabilmente più semplice la versione con monadi. Che **sembra** (sottolineo **sembra**) un normale programma imperativo ricorsivo, che fa uso di una variabile globale fresh.

Rivediamo il valutatore con Log

Rivediamo l'esempio del valutatore che produce il log delle operazioni eseguite, vedendo le definizioni complete.

Cominciamo con le definizioni del tipo Out come Funtore, Applicativo e Monade.

```
newtype Out a = O (a, String)
  deriving Show
instance Functor Out where
   -- fmap: (a->b) -> Out a -> Out b
 fmap f (0 (x, s)) = 0 (f x, s)
instance Applicative Out where
   -- pure: a -> Out a
pure x = 0 (x, "")
   -- <*>:Out (a->b) -> Out a -> Out b
 (O(f, x)) <*> (O(a, y)) = O(f a, x++y)
instance Monad Out where
   -- (>>=) :: Out a -> (a -> Out b) -> Out b
  (O(a, x)) >>= f =
      let (0 (b, y)) = f a in 0 (b, x++y)
```

Codice del valutatore

Vediamo che ancora una volta, il codice del valutatore deve essere solo minimamente modificato.

Domanda: sarebbe più naturale usare un "log trasformer" come nel caso precedente con lo **state transformer**?

Probabile Esercizio nel prossimo homework ©

Costruire un albero da una lista

Costruiamo un albero bilanciato da una lista.

Idea: dividere la lista in 2 e costruire con una metà il sottoalbero destro e metà il sottoalbero sinistro.

La soluzione ricorsiva puramente funzionale, si trasmette gli elementi della lista tra le varie chiamate.

Ancora una volta, c'è una simulazione di uno stato.

```
-- Notare la tecnica di calcolare la lunghezza di
-- xs una volta sola...
build xs = fst (build' (length xs) xs)

-- xs una volta sola ...
build':: Int -> [a] -> (Tree a, [a])
build' 1 xs = (Leaf (head xs), tail xs)
build' n xs = (Node u v, xs'') where

(u, xs') = build' m xs

(v, xs'') = build' (n-m) xs'

m = n `div` 2
```

Soluzione con Monadi

Bisogna innanzitutto che vengano ridefinita State transformer e ridefinire Funtori, Monadi, Applicativi.

Domanda: ma si può generalizzare? Esercizio.

```
-- Bisogna reistanziare State con [Int]
 -- ma generalizzare?
newtype ST a = S (State -> (a, State))
type State = [Int]
 -- Ricordare che usiamo uno state transformer
buildM xs = fst (app (buildM' (length xs)) xs)
buildM' 1 = S (\s->(Leaf (head s), tail s))
buildM' n = do u <- buildM' m
               v \leftarrow buildM' (n-m)
                return (Node u v)
        where m = n \dot div 2
```

Lezione 14c

Monad Laws revisited

Kleisli composition

Consideriamo il seguente operatore con il seguente tipo:

$$(>=>)$$
::Monad m =>(a->m b)->(b->m c)->(a->m c)

che ha essenzialmente il tipo della composizione di funzioni (.):

$$(.)$$
 :: $(a \rightarrow b) \rightarrow (b \rightarrow c) \rightarrow (a \rightarrow c)$

a parte le occorrenze della monade m.

L'operatore è definito come segue:

$$(f >=> g) x = f x >>= g$$

Notate che l'ordine di `applicazione' è opposto rispetto a (.).

Esiste anche l'operatore `opposto':

$$(<=<)$$
::Monad m =>(b->m c) ->(a->m b)->(a->m c) definito da:

$$(g >=> f) x = f x >>= g$$

Possiamo anche definire (>>=) in termini di (>=>):

Kleisli composition: Monad Laws

Usando l'operatore (>=>) della Kleisli composition (o quello duale (<=<) della Kleisli composition inversa) le leggi che deve soddisfare una monadi si riducono a dire che return e (>=>) formano un monoide, e cioè:

- (>=>) è associativa.
- return è l'identità destra e sinistra per (>=>)

Generic Functions I

Come già visto coi Funtori, le Monadi (ma più in generale tutte le classi) permettono forme di programmazione generica che si basa sul fatto che:

- gli operatori hanno lo stesso nome (overloading)
- soddisfano a leggi ben precise (questo dovrebbe farvi riflettere sull'importanza di verificare le proprietà algebriche richieste). Vediamo alcuni esempi famosi.

```
mapM :: Monad m => (a -> m b) -> [a] -> m [b]
mapM f [] = return []
mapM f (x:xs) = do y < - f x
                   ys <- mapM f xs
                   return (y:ys)
conv:: Char -> Maybe Int
conv c | isDigit c = Just (digitToInt c)
       otherwise = Nothing
> mapM conv "1234"
Just [1,2,3,4]
> mapM conv "123a"
Nothing
```

Generic Functions II

Vediamo la versione monadica filterM di filter, che generalizza filter in modo del tutto analogo a mapM rispetto a map (del resto filter è derivabile da map).

Generic Functions III

Vediamo infine la generalizzazione di concat a una generica monade m: l'idea è sempre quella di sciogliere un'applicazione annidata di un tipo (monade, in questo caso) dentro un'unica applicazione.

Si potrebbe al contrario definire (>>=) in termini di mapM e join e definire le Monad Laws in termini di join, mapM e return!

Lezione 14

That's all Folks...

Grazie per l'attenzione...

Domande?