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What Comes out of the Fab



Transistor



Abstractions in Logic Design

• In physical world
– Voltages, Currents
– Electron flow

• In logical world - 
abstraction
– V < Vlo ⇒  “0” = FALSE

– V > Vhi ⇒  “1” = TRUE
– In between - forbidden

• Simplify design problem
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The Ugly Truth

• Transistors are not ideal switches!
– Gate Capacitance (Cg)
– S-D resistance (R)
– Drain capacitance

• Issues
– Delay - actually takes real time to turn transistors on and 

off
– Power/Energy (static versus dynamic power)
– Noise (from transistors, power rails)

• Reducing transistor size
– Decrease  Cg 



Define and quantify power (1 / 2)

• For CMOS chips, traditional dominant energy consumption has 
been in switching transistors, called dynamic power

witchedFrequencySVoltageLoadCapacitivePowerdynamic ×××=
2

2/1

• CapacitiveLoad:
– a function of number of transistors connected to output and 

technology, which determines capacitance of wires and transistors

• Slowing clock rate reduces power, but not energy
• Dropping voltage helps both

– Thus now is approx. 1V (from 5V)

• To save power, most CPUs now slow down or turn off clock to 
inactive modules.



Define and quantify power (2 / 2)

• Because leakage current flows even when a transistor is 
off, now static power  is getting important

• Leakage current increases in processors with smaller 
transistor sizes

• Increasing number of transistors increases power even if 
they are turned off

• In 2006, goal for leakage was 25% of total power 
consumption; high performance designs at 40% 

• Very-low-power systems gate voltage to inactive modules 
to control loss due to leakage

VoltageCurrentPower staticstatic ×=



Memory

• Moves information in time (wires move it in 
space)

• Provides state
• Requires energy to change state

– Feedback circuit - SRAM
– Capacitors – DRAM
– Magnetic media - disk

• Required for memories
– Storage medium
– Write mechanism
– Read mechanism

4Gb DRAM Die



Tracking Performance Trends

• Drill down into 4 technologies:
– Disks, 
– Memory, 
– Network, 
– Processors

•  Compare ~1980 Archaic vs. ~2000 Modern 
– Performance milestones in each technology

• Compare for bandwidth vs. latency improvements in 
performance over time

• Bandwidth: number of events per unit time
– E.g., M bits / second over network, M bytes / second from 

disk

• Latency: elapsed time for a single event
–  E.g., one-way network delay in microseconds, 

average disk access time in milliseconds



Disks: Archaic vs. Modern

• CDC Wren I, 1983
• 3600 RPM
• 0.03 GBytes capacity
• Tracks/Inch: 800 
• Bits/Inch: 9550 
• Three 5.25” platters

• Bandwidth: 
0.6 MBytes/sec

• Latency: 48.3 ms
• Cache: none

• Seagate 373453, 2003
• 15000 RPM           (4X)
• 73.4 GBytes         (2500X

)
• TPI: 64000         (80X)
• BPI: 533,000       (60X)
• Four 2.5” platters 

(in 3.5” form factor)
• Bandwidth: 

86 MBytes/sec    (140X)
• Latency:  5.7 ms   (8X)
• Cache: 8 MBytes



Latency Lags Bandwidth
(for last ~20 years)

• Performance Milestones

• Disk: 3600, 5400, 7200, 
10000, 15000 RPM (8x, 
143x)

(latency = simple operation w/o contention
BW = best-case)
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Memory: Archaic vs. Modern 

• 1980 DRAM 
(asynchronous)

• 0.06 Mbits/chip
• 64,000 xtors, 35 mm2

• 16-bit data bus per 
module, 16 pins/chip

• 13 Mbytes/sec
• Latency: 225 ns
• (No block transfer)

• 2000 Double Data Rate 
Synchr. (clocked) DRAM

• 256.00 Mbits/chip    
(4000X)

• 256,000,000 xtors, 204 
mm2

• 64-bit data bus per 
DIMM, 66 pins/chip  
(4X)

• 1600 Mbytes/sec  (120X
)

• Latency: 52 ns  (4X)
• Block transfers 

(page mode)



Latency Lags Bandwidth
(last ~20 years)

• Performance Milestones

• Memory Module: 16bit plain 
DRAM, Page Mode DRAM, 
32b, 64b, SDRAM, 
DDR SDRAM (4x,120x)

• Disk: 3600, 5400, 7200, 
10000, 15000 RPM (8x, 143x)

(latency = simple operation w/o contention
BW = best-case)
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Latency Lags Bandwidth
(last ~20 years)

• Performance Milestones

• Ethernet: 10Mb, 100Mb, 1000Mb, 
10000 Mb/s (15x,1000x)

• Memory Module: 16bit plain 
DRAM, Page Mode DRAM, 32b, 
64b, SDRAM, 
DDR SDRAM (4x,120x)

• Disk: 3600, 5400, 7200, 10000, 
15000 RPM (8x, 143x)

(latency = simple operation w/o contention
BW = best-case)
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CPUs: Archaic vs. Modern 

• 1982 Intel 80286 
• 12.5 MHz
• 2 MIPS (peak)
• Latency 320 ns
• 134,000 xtors, 47 mm2

• 16-bit data bus, 68 pins
• Microcode interpreter, 

separate FPU chip
• (no caches) 

• 2001 Intel Pentium 4 
• 1500 MHz             (120X)
• 4500 MIPS (peak)   (2250X)
• Latency 15 ns (20X)
• 42,000,000 xtors, 217 mm2

• 64-bit data bus, 423 pins
• 3-way superscalar,

Dynamic translate to RISC, 
Superpipelined (22 stage),
Out-of-Order execution

• On-chip 96KB Data cache, 
8KB Instr. Trace cache, 
256KB L2 cache



6 Reasons Latency Lags Bandwidth

1.  Moore’s Law helps BW more than latency 
– Faster transistors, more transistors, 

more pins help bandwidth
• MPU Transistors: 0.130 vs. 42 M xtors (300X)
• DRAM Transistors: 0.064 vs. 256 M xtors (4000X)
• MPU Pins: 68  vs. 423 pins (6X) 
• DRAM Pins: 16  vs. 66 pins  (4X) 

– Smaller, faster transistors but communicate over (relatively) 
longer lines: limits latency 

• Feature size: 1.5 to 3 vs. 0.18 micron(8X,17X) 
• MPU Die Size: 35  vs. 204 mm2 (ratio 

sqrt ⇒ 2X) 
• DRAM Die Size: 47  vs. 217 mm2  (ratio 

sqrt ⇒ 2X) 



6 Reasons Latency Lags Bandwidth 
(cont’d) 

2. Distance limits latency 
– Size of DRAM block → long bit and word lines  → most of DRAM 

access time
– Speed of light and computers on network

3. Bandwidth easier to sell (“bigger=better”)
– E.g., 10 Gbits/s Ethernet (“10 Gig”) vs. 10 msec latency Ethernet
– 4400 MB/s DIMM (“PC4400”) vs. 50 ns latency
– Even if just marketing, customers now trained
– Since bandwidth sells, more resources thrown at bandwidth, 

which further tips the balance



6 Reasons Latency Lags Bandwidth 
(cont’d) 

4. Latency helps BW, but not vice versa 
– Spinning disk faster improves both bandwidth and rotational 

latency 
• 3600 RPM → 15000 RPM = 4.2X
• Average rotational latency: 8.3 ms ⇒ 2.0 ms

– Things being equal, also helps BW 

– Lower DRAM latency → more accesses/second (higher bandwidth)
– Higher linear density helps disk BW (and capacity), but not disk 

latency
• 9,550 BPI → 533,000 BPI → 60X in BW



6 Reasons Latency Lags Bandwidth 
(cont’d) 

5. Bandwidth hurts latency
– Queues help bandwidth, hurt latency (Queuing Theory)
– Adding chips to widen a memory module increases bandwidth 

but higher fan-out on address lines may increase latency 

6. Operating System overhead hurts latency more than 
bandwidth
– Long messages amortize overhead; 

overhead bigger part of short messages



Summary of Technology Trends

• For disk, LAN, memory, and microprocessor, bandwidth 
improves by square of latency improvement
– In time that bandwidth doubles, latency improves by no 

more than 1.2X to 1.4X

• Lag probably even larger in real systems, as bandwidth 
gains multiplied by replicated components
– Multiple processors in cluster or even in chip
– Multiple disks in disk array
– Multiple memory modules in large memory 
– Simultaneous communication in switched LAN



Technology Scaling Trends

• CPU Transistor density – 60% per year
• CPU Transistor speed – 15% per year
• DRAM density – 60% per year
• DRAM speed – 3% per year

• On-chip wire speed – decreasing relative to transistors
• Off-chip pin bandwidth – increasing, but slowly
• Power – approaching costs limits

– P = CV2f + IleakV

• All of these factors affect the end system architecture



Crossroads: Conventional  Wisdom

• Old conventional wisdom:
– Power is free
– Transistors are expensive

• New conventional wisdom: “Power wall”
– Power is expensive
– Transistors are “free” 

(Can put more on chip than can afford to turn on)



Conventional Wisdom (cont’d)

• Old conventional  wisdom:
– Instruction-level parallelism gives performance 

advances
• Compilers
• Innovation

– Out-of-order execution
– Speculation
– Very long instruction words (VLIW)

• New conventional wisdom: “ILP wall”
– Law of diminishing returns on more HW for ILP



Conventional Wisdom (cont’d) 

• Old conventional wisdom:
– Multiplies are slow
– Memory access is fast

• New conventional wisdom: “Memory wall” 
– Memory slow 

(200+ clock cycles to DRAM memory)
– Multiplies are fast 

(4 clocks, pipelined)



Conventional Wisdom (cont’d)

• Old conventional wisdom:
– Uniprocessor performance doubles every 1.5 yrs

• New conventional  wisdom:
– Power Wall + ILP Wall + Memory Wall = Brick Wall
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The End of Conventional Wisdom

• Moore Law’ is slowing down
– Uniprocessor performance now doubles every 5(+?) 

yrs

– Radical change in chip design: multiple “cores” 

(2X processors per chip every ~2 years)
• More but simpler processors

• More power efficient



Change in Chip Design

• Intel 4004 (1971): 4-bit processor,
2312 transistors, 0.4 MHz, 
10 micron PMOS, 11 mm2 chip 

 → Core could be the new transistor

• RISC II (1983): 32-bit, 5 stage 
pipeline, 40,760 transistors, 3 MHz, 
3 micron NMOS, 60 mm2 chip

• 125 mm2 chip, 0.065 micron CMOS 
= 2312 RISC II+FPU+Icache+Dcache
– RISC II shrinks to ~ 0.02 mm2 at 65 nm
– Caches via DRAM or SRAM 
– Proximity Communication via capacitive coupling at > 1 TB/s 

(Ivan Sutherland @ Sun / Berkeley)



Problems with Change 

• Algorithms, Programming Languages, Compilers, 
Operating Systems, Architectures, Libraries, … 
not ready to supply thread-level or data-level 
parallelism for 1000 CPUs/chip (or even tens)

• Architectures are just not ready (yet) for 1000 
CPUs/chip



What Computer Architecture Brings to Table

• Quantitative Principles of Design
– Take Advantage of Parallelism
– Principle of Locality
– Focus on the Common Case
– Amdahl’s Law
– The Processor Performance Equation



1) Taking Advantage of Parallelism

• Increasing throughput of server computer via multiple 
processors or multiple disks

• Detailed HW design
– Carry-lookahead adders use parallelism to speed up computing sums 

from linear to logarithmic in number of bits per operand
– Multiple memory banks searched in parallel in set-associative caches

• Pipelining: overlap instruction execution to reduce the total time 
to complete an instruction sequence.
– Not every instruction depends on immediate predecessor ⇒  

executing instructions completely/partially in parallel possible
– Classic 5-stage pipeline: 

1) Instruction Fetch (Ifetch), 
2) Register Read (Reg), 
3) Execute (ALU), 
4) Data Memory Access (Dmem), 
5) Register Write (Reg)



2) The Principle of Locality

• The Principle of Locality:
– Program access a relatively small portion of the address space 

at any instant of time.
• Two Different Types of Locality:

– Temporal Locality (Locality in Time): If an item is referenced, it 
will tend to be referenced again soon (e.g., loops, reuse)

– Spatial Locality (Locality in Space): If an item is referenced, 
items whose addresses are close by tend to be referenced soon 

(e.g., straight-line code, array access)
• Last 30 years, HW relied on locality for memory perf.

P MEM$



Levels of the Memory Hierarchy

Tape
infinite
sec-min
~$1 / GByte

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

Main Memory
G Bytes
80ns- 200ns
~$100/ GByte

Disk
10s T Bytes, 10 ms 
(10,000,000 ns)
~$1 / GByte
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3) Focus on the Common Case

• Common sense guides computer design
– Since it’s engineering, common sense is valuable

• In making a design trade-off, favor the frequent case over 
the infrequent case
– E.g., Instruction fetch and decode unit used more frequently 

than multiplier, so optimize it 1st
– E.g., If database server has 50 disks / processor, storage 

dependability dominates system dependability, so optimize 
it 1st

• Frequent case is often simpler and can be done faster 
than the infrequent case
– E.g., overflow is rare when adding 2 numbers, so improve 

performance by optimizing more common case of no 
overflow 

– May slow down overflow, but overall performance improved 
by optimizing for the normal case

• What is frequent case and how much performance 
improved by making case faster => Amdahl’s Law 



4) Amdahl’s Law
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Amdahl’s Law Example

• New CPU 10X faster
• 30% time waiting for I/O
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• Apparently, it’s human nature to be attracted by 
10X faster, vs. keeping in perspective it’s just 
2.7X faster



Amdahl’s Law in Reality

• John Ousterhout: “Why Aren’t Systems Getting 
Faster as Fast as Hardware?”, Usenix Summer 
Conference, 1990

– we’re I/O-bound



What’s a Clock Cycle?

• Old days: 10 levels of gates
• Today: determined by numerous time-of-

flight issues + gate delays
– Clock propagation, wire lengths, drivers

Latch
or

register

combinational
logic



And in conclusion …

• Computer Architecture >> instruction sets
• Computer Architecture skill sets are different 

– 5 Quantitative principles of design
– Quantitative approach to design
– Solid interfaces that really work
– Technology tracking and anticipation

• Computer Science at the crossroads from 
sequential to parallel computing
– Salvation requires innovation in many fields, 

including computer architecture
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