
Introduction 1-1

Reti di Elaboratori

Corso di Laurea in Informatica
Università degli Studi di Roma “La Sapienza”

Canale A-L
Prof.ssa Chiara Petrioli

Parte di queste slide sono state prese dal materiale associato al libro
Computer Networking: A Top Down Approach , 7th edition.
All material copyright 1996-2009
J.F Kurose and K.W. Ross, All Rights Reserved
Thanks also to Antonio Capone, Politecnico di Milano, Giuseppe Bianchi and
Francesco LoPresti, Un. di Roma Tor Vergata

Application Layer 2-2

Chapter 2: outline

2.1 principles of network
applications
m app architectures
m app requirements

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

m SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications
2.7 Caching and Content

Delivery Networking

Application Layer 2-3

FTP: the file transfer protocol
file transfer

FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

v transfer file to/from remote host
v client/server model

§ client: side that initiates transfer (either to/from remote)
§ server: remote host

v ftp: RFC 959
v ftp server: port 21

Application Layer 2-4

FTP: separate control, data connections

r FTP client contacts FTP server
at port 21, using TCP

r client authorized over control
connection

r client browses remote
directory, sends commands
over control connection

r when server receives file
transfer command, server
opens 2nd TCP data
connection (for file) to client

r after transferring one file,
server closes data connection

FTP
client

FTP
server

TCP control connection,
server port 21

TCP data connection,
server port 20

v server opens another TCP
data connection to transfer
another file

v control connection: “out of
band”

v FTP server maintains
“state”: current directory,
earlier authentication

Application Layer 2-5

FTP commands, responses

sample commands:
r sent as ASCII text over

control channel
r USER username
r PASS password

r LIST return list of file in
current directory

r RETR filename
retrieves (gets) file

r STOR filename stores
(puts) file onto remote
host

sample return codes
q status code and phrase (as

in HTTP)
q 331 Username OK,
password required

q 125 data
connection
already open;
transfer starting

q 425 Can’t open
data connection

q 452 Error writing
file

Application Layer 2-6

Chapter 2: outline

2.1 principles of network
applications
m app architectures
m app requirements

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

m SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications
2.7 Caching and Content

Delivery Networking

Application Layer 2-7

Electronic mail
Three major components:
q user agents
q mail servers
q simple mail transfer

protocol: SMTP

User Agent
q a.k.a. “mail reader”
q composing, editing, reading

mail messages
q e.g., Outlook, Thunderbird,

iPhone mail client
q outgoing, incoming

messages stored on server

user mailbox

outgoing
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

Application Layer 2-8

user
agent

Scenario: Alice sends message to Bob

1) Alice uses UA to compose
message “to”
bob@someschool.edu

2) Alice’s UA sends message
to her mail server; message
placed in message queue

3) client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent
to read message

mail
server

mail
server

1

2 3 4
5

6

Alice’s mail server Bob’s mail server

user
agent

Application Layer 2-9

Electronic mail: mail servers

mail servers:
q mailbox contains incoming

messages for user
q message queue of outgoing

(to be sent) mail messages
q SMTP protocol between

mail servers to send email
messages
m client: sending mail

server
m “server”: receiving mail

server

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

Application Layer 2-10

Electronic Mail: SMTP [RFC 2821]
r uses TCP to reliably transfer email message from

client to server, port 25
r direct transfer: sending server to receiving

server
r three phases of transfer

m handshaking (greeting)
m transfer of messages
m closure

r command/response interaction (like HTTP, FTP)
m commands: ASCII text
m response: status code and phrase

r messages must be in 7-bit ASCI

Application Layer 2-11

Sample SMTP interaction

S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

Application Layer 2-12

SMTP: final words

r SMTP uses persistent
connections

r SMTP requires message
(header & body) to be in
7-bit ASCII

r SMTP server uses
CRLF.CRLF to
determine end of message

comparison with HTTP:

r HTTP: pull
r SMTP: push

r both have ASCII
command/response
interaction, status codes

r HTTP: each object
encapsulated in its own
response msg

r SMTP: multiple objects
sent in multipart msg

Application Layer 2-13

Mail message format

SMTP: protocol for
exchanging email msgs

RFC 822: standard for text
message format:

q header lines, e.g.,
m To:
m From:
m Subject:

different from SMTP MAIL
FROM, RCPT TO:
commands!

q Body: the “message”
m ASCII characters only

header

body

blank
line

Application Layer 2-14

Mail access protocols

q SMTP: delivery/storage to receiver’s server
q mail access protocol: retrieval from server

m POP: Post Office Protocol [RFC 1939]: authorization,
download

m IMAP: Internet Mail Access Protocol [RFC 1730]: more
features, including manipulation of stored msgs on
server

m HTTP: gmail, Hotmail, Yahoo! Mail, etc.

sender’s mail
server

SMTP SMTP
mail access

protocol

receiver’s mail
server

(e.g., POP,
IMAP)

user
agent

user
agent

Application Layer 2-15

POP3 protocol

authorization phase
r client commands:

m user: declare username
m pass: password

r server responses
m +OK
m -ERR

transaction phase, client:
r list: list message numbers
r retr: retrieve message by

number
r dele: delete
r quit

C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: <message 1 contents>
S: .
C: dele 1
C: retr 2
S: <message 1 contents>
S: .
C: dele 2
C: quit
S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on

Application Layer 2-16

POP3 (more) and IMAP

more about POP3
q previous example uses

POP3 “download and
delete” mode
m Bob cannot re-read e-

mail if he changes
client

q POP3 “download-and-
keep”: copies of messages
on different clients

q POP3 is stateless across
sessions

IMAP
r keeps all messages in one

place: at server
r allows user to organize

messages in folders
r keeps user state across

sessions:
m names of folders and

mappings between
message IDs and folder
name

Application Layer 2-17

Chapter 2: outline

2.1 principles of network
applications
m app architectures
m app requirements

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

m SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications
2.7 Caching and Content

Delivery Networking

Application Layer 2-18

Web caches (proxy server)

quser sets browser: Web
accesses via cache

qbrowser sends all HTTP
requests to cache
mobject in cache: cache

returns object
melse cache requests

object from origin
server, then returns
object to client

goal: satisfy client request without involving origin server

client

proxy
server

client

HTTP request

HTTP response

HTTP request HTTP request

origin
server

origin
server

HTTP response HTTP response

Application Layer 2-19

More about Web caching

q cache acts as both
client and server
m server for original

requesting client
m client to origin server

q typically cache is
installed by ISP
(university, company,
residential ISP)

why Web caching?
q reduce response time

for client request
q reduce traffic on an

institution’s access link
q Internet dense with

caches: enables “poor”
content providers to
effectively deliver
content (so too does
P2P file sharing)

Application Layer 2-20

Caching example:

origin
servers

public
Internet

institutional
network

1 Gbps LAN

1.54 Mbps
access link

assumptions:
§ avg object size: 100K bits
§ avg request rate from

browsers to origin
servers:15/sec

§ avg data rate to browsers: 1.50
Mbps

§ RTT from institutional router
to any origin server: 2 sec

§ access link rate: 1.54 Mbps

consequences:
§ LAN utilization: 0,15%
§ access link utilization = 99%
§ total delay = Internet delay +

access delay + LAN delay
= 2 sec + minutes + usecs

problem!

Application Layer 2-21

assumptions:
§ avg object size: 100K bits
§ avg request rate from

browsers to origin
servers:15/sec

§ avg data rate to browsers: 1.50
Mbps

§ RTT from institutional router
to any origin server: 2 sec

§ access link rate: 1.54 Mbps

consequences:
§ LAN utilization: 0,15%
§ access link utilization = 9,9%
§ total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + usecs

Caching example: fatter access link

origin
servers

1.54 Mbps
access link

154 Mbps

154 Mbps

msecs
Cost: increased access link speed (not cheap!)

9.9%

public
Internet

institutional
network

1 Gbps LAN

institutional
network

1 Gbps LAN

Application Layer 2-22

Caching example: install local cache

origin
servers

1.54 Mbps
access link

local web
cache

assumptions:
§ avg object size: 100K bits
§ avg request rate from browsers to

origin servers:15/sec
§ avg data rate to browsers: 1.50 Mbps
§ RTT from institutional router to any

origin server: 2 sec
§ access link rate: 1.54 Mbps

consequences:
§ LAN utilization: 0,15%
§ access link utilization = 100%
§ total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + usecs??

How to compute link
utilization, delay?

Cost: web cache (cheap!)

public
Internet

Application Layer 2-23

Caching example: install local cache

Calculating access link
utilization, delay with cache:

qsuppose cache hit rate is 0.4
m 40% requests satisfied at cache,

60% requests satisfied at origin

origin
servers

1.54 Mbps
access link

§ access link utilization:
§ 60% of requests use access link

§ data rate to browsers over access
link
= 0.6*1.50 Mbps = .9 Mbps
§ utilization = 0.9/1.54 = .58

§ total delay
§ = 0.6 * (delay from origin servers) +0.4

* (delay when satisfied at cache)
§ = 0.6 (2.01) + 0.4 (~msecs) = ~ 1.2 secs
§ less than with 154 Mbps link (and

cheaper too!)

public
Internet

institutional
network

1 Gbps LAN

local web
cache

Content distribution networks

qchallenge: how to stream content (selected from
millions of videos) to hundreds of thousands of
simultaneous users?

qoption 1: single, large “mega-server”
msingle point of failure
mpoint of network congestion
mlong path to distant clients
mmultiple copies of video sent over outgoing link

….quite simply: this solution doesn’t scale
Application Layer 2-24

Content Delivery Networks

r We have seen the
extensive use of
caching for reducing
latencies in resolving
names and accessing
web content

r Is this enough?
m Origin servers may

still have to be
accessed to maintain
consistency

r Caching
m What to cache
m How to maintain

consistency
m How to invalidate or

update in case an
inconsistency is
detected

r More
here:http://citeseerx.ist.p
su.edu/viewdoc/download?
doi=10.1.1.73.586&rep=rep1
&type=pdf 2: Application Layer 25

Content Delivery Networks

2: Application Layer 26

Content Delivery Networks

2: Application Layer 27

Content Delivery Networks

2: Application Layer 28

Content Delivery Networks

r HTTP Redirect
r DNS Redirect

2: Application Layer 29

Content distribution networks

q challenge: how to stream content (selected from
millions of videos) to hundreds of thousands of
simultaneous users?

q option 2: store/serve multiple copies of videos at
multiple geographically distributed sites (CDN)
m enter deep: push CDN servers deep into many access

networks
• close to users
• used by Akamai, 1700 locations

m bring home: smaller number (10’s) of larger clusters in
POPs near (but not within) access networks

• used by Limelight Application Layer 2-30

Content Distribution Networks (CDNs)

…

…

……

…

…

§ subscriber requests content from CDN

§ CDN: stores copies of content at CDN nodes
• e.g. Netflix stores copies of MadMen

where’s Madmen?
manifest file

• directed to nearby copy, retrieves content
• may choose different copy if network path

congested

Application Layer 2-31

Content Distribution Networks (CDNs)

…

…

……

…

…
Internet host-host communication as a service

OTT challenges: coping with a congested Internet
m from which CDN node to retrieve content?
m viewer behavior in presence of congestion?
m what content to place in which CDN node?

“over the top”

more .. in chapter 7

CDN content access: a closer look
Bob (client) requests video http://netcinema.com/6Y7B23V
§ video stored in CDN at http://KingCDN.com/NetC6y&B23V

netcinema.com

KingCDN.com

1

1. Bob gets URL for video
http://netcinema.com/6Y7B23V
from netcinema.com web page

2

2. resolve http://netcinema.com/6Y7B23V
via Bob’s local DNS

netcinema’s
authoratative DNS

3

3. netcinema’s DNS returns URL
http://KingCDN.com/NetC6y&B23V 4

4&5. Resolve
http://KingCDN.com/NetC6y&B23
via KingCDN’s authoritative DNS,
which returns IP address of KingCDN
server with video

56. request video from
KINGCDN server,
streamed via HTTP

KingCDN
authoritative DNS

Bob’s
local DNS
server

Application Layer 2-33

Case study: Netflix

1

1. Bob manages
Netflix account

Netflix registration,
accounting servers

Amazon cloud

CDN
server

2
2. Bob browses
Netflix video

3

3. Manifest file
returned for
requested video

4. DASH
streaming

upload copies of
multiple versions of
video to CDN servers

CDN
server

CDN
server

Application Layer 2-34

Application Layer 2-35

Video Streaming and CDNs: context

• Netflix, YouTube: 37%, 16% of downstream
residential ISP traffic

• ~1B YouTube users, ~75M Netflix users
§ challenge: scale - how to reach ~1B

users?
• single mega-video server won’t work (why?)

§ challenge: heterogeneity
§ different users have different capabilities (e.g.,

wired versus mobile; bandwidth rich versus
bandwidth poor)

§ solution: distributed, application-level
infrastructure

§ video traffic: major consumer of Internet bandwidth

q video: sequence of images
displayed at constant rate
m e.g., 24 images/sec

q digital image: array of pixels
m each pixel represented

by bits
q coding: use redundancy

within and between images
to decrease # bits used to
encode image
m spatial (within image)
m temporal (from one

image to next)

Multimedia: video

……………………..

spatial coding example: instead
of sending N values of same
color (all purple), send only two
values: color value (purple) and
number of repeated values (N)

……………….…….

frame i

frame i+1

temporal coding example:
instead of sending
complete frame at i+1,
send only differences from
frame i

Application Layer 2-36

Multimedia: video
§ CBR: (constant bit rate):

video encoding rate fixed
§ VBR: (variable bit rate):

video encoding rate changes
as amount of spatial,
temporal coding changes

§ examples:
• MPEG 1 (CD-ROM) 1.5

Mbps
• MPEG2 (DVD) 3-6 Mbps
• MPEG4 (often used in

Internet, < 1 Mbps)

……………………..

spatial coding example: instead
of sending N values of same
color (all purple), send only two
values: color value (purple) and
number of repeated values (N)

……………….…….

frame i

frame i+1

temporal coding example:
instead of sending
complete frame at i+1,
send only differences from
frame i

Application Layer 2-37

Streaming stored video:

simple scenario:

video server
(stored video)

client

Internet

Application Layer 2-38

Streaming multimedia: DASH

q DASH: Dynamic, Adaptive Streaming over HTTP
q server:

m divides video file into multiple chunks
m each chunk stored, encoded at different rates
m manifest file: provides URLs for different chunks

q client:
m periodically measures server-to-client bandwidth
m consulting manifest, requests one chunk at a time

• chooses maximum coding rate sustainable given
current bandwidth

• can choose different coding rates at different points
in time (depending on available bandwidth at time)Application Layer 2-39

Streaming multimedia: DASH

q DASH: Dynamic, Adaptive Streaming over HTTP
q “intelligence” at client: client determines

m when to request chunk (so that buffer starvation, or
overflow does not occur)

m what encoding rate to request (higher quality when
more bandwidth available)

m where to request chunk (can request from URL server
that is “close” to client or has high available
bandwidth)

Application Layer 2-40

Case study: Netflix

1

1. Bob manages
Netflix account

Netflix registration,
accounting servers

Amazon cloud

CDN
server

2
2. Bob browses
Netflix video

3

3. Manifest file
returned for
requested video

4. DASH
streaming

upload copies of
multiple versions of
video to CDN servers

CDN
server

CDN
server

Application Layer 2-41

