

Reti di Elaboratori

Corso di Laurea in Informatica
Università degli Studi di Roma "La Sapienza"
Canale A-L
Prof.ssa Chiara Petrioli

Parte di queste slide sono state prese dal materiale associato al libro *Computer Networking: A Top Down Approach*, 5th edition.

All material copyright 1996-2009

J.F Kurose and K.W. Ross, All Rights Reserved

Thanks also to Antonio Capone, Politecnico di Milano, Giuseppe Bianchi and Francesco LoPresti, Un. di Roma Tor Vergata

Packet switching

Perche' dividere I messaggi trasmessi dall'applicazione in pacchetti di dimensione limitata.

O Nelle prossime slides pro e contro....

Packet-switching: store-and-forward

- □ Takes L/R seconds to transmit (push out) packet of L bits on to link or R bps
- Entire packet must arrive at router before it can be transmitted on next link: store and forward
- □ delay = 3L/R

Example:

- □ L = 7.5 Mbit
- □ R = 1.5 Mbps
- □ delay = 15 sec

(only transmission delay considered here)

Packet Switching: Message Segmenting

Now break up the message into 5000 packets

- □ Each packet 1,500 bits
- 1 msec to transmit packet on one link
- pipelining: each link works in parallel
- □ Delay reduced from 15 sec to 5.002 sec

Message switching iff dim pacchetti= dim. messaggio originale applicativo

See packet-switching vs. message switching (no segmentation) and the effect of queueing delay through the Java applets on the Kurose-Ross website.

Introduction

Effect of packet sizes

Packet format

Header Data

- A longer packet (more data transmitted in a single packet) leads to a lower overhead
- Longer packets result in a higher chance to be corrupted (critical especially for wireless transmission)
- When a packet is corrupted all the data are lost and need to be retransmitted
- Longer packets might decrease the paralellism of transmission

Packet-switched networks: forwarding

- Goal: move packets through routers from source to destination
 - we'll study several path selection (i.e. routing)algorithms (chapter 4)
- datagram network:
 - o destination address in packet determines next hop
 - routes may change during session
 - analogy: driving, asking directions
- virtual circuit network:
 - o each packet carries tag (virtual circuit ID), tag determines next hop
 - fixed path determined at call setup time, remains fixed thru call; <u>VC</u> share network resources
 - routers maintain per-call state (the link on which a packet with a VC tag arriving to a given inbound link has to be forwarded and its VC tag on the next hop)
 - Virtual circuit number changes from hop to hop. Each router has to map incoming interface, incoming VC # in outgoing interface, outgoing VC #
 - Why? (what would be the size of the VC number field and the complexity of the VC number assignment in case the same VC # had to be used over the whole path??)

Introduction

Internet

IP

L3 protocol:

Network Taxonomy

- Datagram network is <u>not</u> either connection-oriented or connectionless.
- Internet provides both connection-oriented (TCP) and connectionless services (UDP) to apps.

- roughly hierarchical
- □ at center: "tier-1" ISPs (e.g., Verizon, Sprint, AT&T, Cable and Wireless), national/international coverage
 - treat each other as equals

Tier-1 ISP: e.g., Sprint

- □ "Tier-2" ISPs: smaller (often regional) ISPs
 - Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs

peer privately Tier-2 ISP Tier-2 ISP pays Tier-2 ISP with each other. tier-1 ISP for Tier 1 ISP connectivity to rest of Internet □ tier-2 ISP is customer of Tier 1 ISP tier-1 provider Tier 1 ISP Tier-2 ISP Tier-2 ISP Tier-2 ISP

Tier-2 ISPs also

- □ "Tier-3" ISPs and local ISPs
 - last hop ("access") network (closest to end systems)

a packet passes through many networks!

A NAP: just another router...?

Pacific Bell

S.

Francisco

NAP

Chapter 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
- 1.3 Network core
- 1.4 Network access and physical media
- 1.5 Internet structure and ISPs
- 1.6 Delay & loss in packet-switched networks
- 1.7 Protocol layers, service models
- 1.8 History

How do loss and delay occur?

packets queue in router buffers

- packet arrival rate to link exceeds output link capacity
- packets queue, wait for turn

Four sources of packet delay

- □ 1. nodal processing:
 - o check bit errors
 - determine output link

- 2. queueing
 - time waiting at output link for transmission
 - depends on congestion level of router

Delay in packet-switched networks

- 3. Transmission delay:
- R=link bandwidth (bps)
- □ L=packet length (bits)
- time to send bits into link = L/R

- 4. Propagation delay:
- □ d = length of physical link
- \square s = propagation speed in medium (~2x108 m/sec)
- propagation delay = d/s

Caravan analogy

- cars "propagate" at 100 km/hr
- □ toll booth takes 12 sec to service car (transmission time)
- car~bit; caravan ~ packet
- Q: How long until caravan is lined up before 2nd toll booth?

- □ Time to "push" entire caravan through toll booth onto highway = 12*10 = 120 sec
- □ Time for last car to propagate from 1st to 2nd toll both: 100km/(100km/hr)= 1 hr
- □ A: 62 minutes

Caravan analogy (more)

- □ Cars now "propagate" at 1000 km/hr
- □ Toll booth now takes 1 min to service a car
- Q: Will cars arrive to 2nd booth before all cars serviced at 1st booth?

- □ Yes! After 7 min, 1st car at 2nd booth and 3 cars still at 1st booth.
- □ 1st bit of packet can arrive at 2nd router before packet is fully transmitted at 1st router!
 - See Ethernet applet at AWL
 Web site

Nodal delay

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

- \Box d_{proc} = processing delay
 - typically a few microsecs or less
- d_{queue} = queuing delay
 - o depends on congestion
- \Box d_{trans} = transmission delay
 - = L/R, significant for low-speed links
- \Box d_{prop} = propagation delay
 - o a few microsecs to hundreds of msecs

Delay for each hop!!!

Queueing delay (revisited)

- □ R=link bandwidth (bps)
- L=packet length (bits)
- a=average packet arrival rate

traffic intensity = La/R

- □ La/R ~ 0: average queueing delay small
- □ La/R -> 1: delays become large
- □ La/R > 1: more "work" arriving than can be serviced, average delay infinite!

Packet loss

- queue (→buffer) preceding link in buffer has finite capacity
- when packet arrives to full queue, packet is dropped (→lost)
- lost packet may be retransmitted by previous node, by source end system, or not retransmitted at all

"Real" Internet delays and routes

- □ What do "real" Internet delay & loss look like?
- □ Trace route program: provides delay measurement from source to router along end-end Internet path towards destination. For all i:
 - sends three packets that will reach router i on path towards destination
 - o router *i* will return packets to sender
 - sender times interval between transmission and reply.

"Real" Internet delays and routes

traceroute: gaia.cs.umass.edu to www.eurecom.fr

```
Three delay measements from
                                                    gaia.cs.umass.edu to cs-gw.cs.umass.edu
1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms
2 border 1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms
3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms
4 jn1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms
5 jn1-so7-0-0-0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms
6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms
7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 22 ms
                                                                                        trans-oceanic
8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms
                                                                                        link
9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms
10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms
11 renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms 112 ms 12 nio-n2.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms 13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms
14 r3t2-nice.cssi.renater.fr (195.220.98.110) 126 ms 126 ms 124 ms
15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms
16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms
                           - * means no reponse (probe lost, router not replying)
19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms
```

Name and address of router, round trip delays (3 samples)

Throughput

- throughput: rate (bits/time unit) at which bits transferred between sender/receiver
 - o instantaneous: rate at given point in time
 - o average: rate over longer period of time

Throughput (more)

 $\square R_s < R_c$ What is average end-end throughput?

 $\square R_s > R_c$ What is average end-end throughput?

bottleneck link

link on end-end path that constrains end-end throughput

Throughput: Internet scenario

- □ per-connection endend throughput: $min(R_c,R_s,R/10)$
- \square in practice: R_c or R_s is often bottleneck

10 connections (fairly) share backbone bottleneck link R bits/sec

Chapter 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
- 1.3 Network core
- 1.4 Network access and physical media
- 1.5 Internet structure and ISPs
- 1.6 Delay & loss in packet-switched networks
- 1.7 Protocol layers, service models
- 1.8 History

Protocol "Layers"

Networks are complex!

- □ many "pieces":
 - hosts
 - o routers
 - links of various media
 - applications
 - protocols
 - hardware, software

Question:

Is there any hope of organizing structure of network?

Or at least our discussion of networks?

Layering

Organization of air travel

ticket (purchase) ticket (complain)

baggage (check) baggage (claim)

gates (load) gates (unload)

runway takeoff runway landing

airplane routing airplane routing

airplane routing

□ a series of steps

Organization of air travel: a different view

ticket (purchase)	ticket (complain)
baggage (check)	baggage (claim)
gates (load)	gates (unload)
runway takeoff	runway landing
airplane routing	airplane routing
airplane routing	

Layers: each layer implements a service

- o via its own internal-layer actions
- o relying on services provided by layer below

Layered air travel: services

Counter-to-counter delivery of person+bags

baggage-claim-to-baggage-claim delivery

people transfer: loading gate to arrival gate

runway-to-runway delivery of plane

airplane routing from source to destination

<u>Distributed</u> implementation of layer functionality

Departing airport

ticket (purchase)

baggage (check)

gates (load)

runway takeoff

airplane routing

ticket (complain)

baggage (claim)

gates (unload)

runway landing

airplane routing

arriving airport

intermediate air traffic sites

Introduction

Why layering?

Dealing with complex systems:

- explicit structure allows identification, relationship of complex system's pieces
 - layered reference model for discussion
- modularization eases maintenance, updating of system
 - change of implementation of layer's service transparent to rest of system
 - e.g., change in gate procedure doesn't affect rest of system (I.e. if baggage check and claim procedures changed due to Sept 11th or if the boarding rules change, boarding people by age)
- layering considered harmful?

Internet protocol stack

- application: supporting network applications
 - FTP, SMTP, HTTP
- transport: host-host data transfer
 - o TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - PPP, Ethernet
- physical: bits "on the wire"

application
transport
network
link
physical

Typically in HW
Typically SW
Introduction

Layering: logical communication

Each layer:

- distributed
- "entities"
 implement layer
 functions at
 each node
- entities perform actions, exchange messages with peers

Layering: logical communication

E.g.: transport

- □ take data from app
- add addressing, reliability check info to form "datagram"
- send datagram to peer
- wait for peer to ack receipt
- analogy: post office

Layering: physical communication

Protocol layering and data

Each layer takes data from above

- adds header information to create new data unit
- passes new data unit to layer below

Layering: pros

Vantaggi della stratificazione

- Modularita'
 - Semplicita' di design
 - Possibilita' di modificare un modulo in modo trasparente se le interfacce con gli altri livelli rimangono le stesse
 - Possibilita' per ciascun costruttore di adottare la propria implementazione di un livello purche' requisiti su interfacce soddisfatti

Gestione dell'eterogeneita'

- Possibili moduli 'diversi' per realizzare lo stesso insieme di funzioni, che riflettano l'eterogeneita' dei sistemi coinvolti (e.g. diverse tecnologie trasmissive, LAN, collegamenti punto-punto, ATM etc.)
- Moduli distinti possibili/necessari anche se le reti adottassero tutte la stessa tecnologia di rete perche' ad esempio le applicazioni possono avere requisiti diversi (es. UDP e TCP). All'inizio TCP ed IP erano integrati. Perche' adesso sono su due livelli distinti?

Layering: cons

- Svantaggi della stratificazione
 - A volte modularita' inficia efficienza
 - A volte necessario scambio di informazioni tra livelli non adiacenti non rispettando principio della stratificazione