
Transport Layer 3-1

Reti di Elaboratori
Corso di Laurea in Informatica

Università degli Studi di Roma “La Sapienza”

Prof.ssa Chiara Petrioli
 Parte di queste slide sono state prese dal materiale associato al libro

Computer Networking: A Top Down Approach , 5th edition.
All material copyright 1996-2009
J.F Kurose and K.W. Ross, All Rights Reserved
Thanks also to Antonio Capone, Politecnico di Milano, Giuseppe Bianchi and
Francesco LoPresti, Un. di Roma Tor Vergata

Chapter 3
Transport Layer

Transport Layer 3-2

Chapter 3 outline

❒  3.1 Transport-layer
services

❒  3.2 Multiplexing and
demultiplexing

❒  3.3 Connectionless
transport: UDP

❒  3.4 Principles of
reliable data transfer

❒  3.5 Connection-oriented
transport: TCP
❍  segment structure
❍  reliable data transfer
❍  flow control
❍  connection management

❒  3.6 Principles of
congestion control

❒  3.7 TCP congestion
control

Transport Layer 3-3

TCP: controllo di congestione
❒  Il TCP ha dei meccanismi di controllo

della congestione
❍  il flusso dei dati in ingresso in rete è

anche regolato dalla situazione di traffico
in rete

❍  se il traffico in rete porta a situazioni di
congestione il TCP riduce velocemente il
traffico in ingresso

❍  in rete non vi è nessun meccanismo per
notificare esplicitamente le situazioni di
congestione

❍  il TCP cerca di scoprire i problemi di
congestione sulla base degli eventi di
perdita dei pacchetti

Transport Layer 3-4

TCP: controllo di congestione
❒  il meccanismo si basa ancora sulla sliding window la

cui larghezza viene dinamicamente regolata in base
alle condizioni in rete

❒  in linea di principio scopo del controllo è far si che
il flusso emesso da ciascuna sorgente venga
regolato in modo tale che il flusso complessivo
offerto a ciascun canale non superi la sua capacità

❒  tutti i flussi possono essere ridotti in modo tale
che la capacità della rete venga condivisa da tutti
in misura se possibile uguale

Transport Layer 3-5

The problem of congestion
SENDERs

(bulk flows)
RECEIVERs

(large capacity)

Internal
network
congestion:
- queues build up
- delay increases
- RTOs expire
- more segments transmitted, more
Segments retransmitted -> more congestion!

Advertise large win

Several outstanding segments

Transport Layer 3-6

The goal of congestion control
SENDERs

(bulk flows)
RECEIVERs

(large capacity)

Bottleneck link rate C

N=4 TCP connections
Each should transmit at C/4 rate.

Since:

Each should adapt W accordingly…
How sources can be lead to know the RIGHT value of W??

RTT
MSSWthr ⋅

≈

Transport Layer 3-7

TCP approach for detecting and
controlling congestion

❒  IP protocol does not implement mechanisms to detect
congestion in IP routers

•  Unlike other networks, e.g. ATM
❒  necessary indirect means (TCP is an end-to-end

protocol)
❒  TCP approach: congestion detected by lack of acks

–  couldn’t work efficiently in the 60s & 70s (error prone transmission
lines)

–  OK in the 80s & 90s (reliable transmission)
–  what about wireless networks???

❒  Controlling congestion: use a SECOND window
(congestion window)

•  Locally computed at sender
•  Outstanding segments: min(receiver_window, congestion_window)

Transport Layer 3-8

TCP Congestion Control
❒  end-end control (no network

assistance)
❒  sender limits transmission:
 LastByteSent-LastByteAcked
 ≤ CongWin

❒  Roughly,

❒  CongWin is dynamic, function of
perceived network congestion

How does sender
perceive congestion?

❒  loss event = timeout or
3 duplicate acks

❒  TCP sender reduces
rate (CongWin) after
loss event

three mechanisms:
❍  AIMD
❍  slow start
❍  conservative after

timeout events

rate =
CongWin

RTT
Bytes/sec

Transport Layer 3-9

Starting a TCP transmission
❒ A new offered flow may suddenly overload

network nodes
❍  receiver window is used to avoid recv buffer overflow
❍  But it may be a large value (16-64 KB)

❒  Idea: slow start
❍  Start with small value of cwnd
❍  And increase it as soon as packets get through

–  Arrival of ACKs = no packet losts = no congestion

❒  Initial cwnd size:
❍  Just 1 MSS!
❍  Recent (1998) proposals for more aggressive starts (up to 4

MSS) have been found to be dangerous

Transport Layer 3-10

Slow start: the idea
cwnd

0RTT
1

1RTT
2
3

2RTT
4
5 7

6

3RTT
8
9 11

10 12
13 15

14

Arrivo di ACK

Si trasmette il minimo tra window e cwd pacchetti

Transport Layer 3-11

Slow start – exponential increase

… … … … … … … … … …

Request http obj
Conn granted

Conn request

Cwnd=1

Cwnd=2

Cwnd=3
Cwnd=4

è  First start: set
congestion window

 cwnd = 1MSS

è  send cwnd segments
ð  assume cwnd <=

receiver win

è  upon successful
reception:
ð  Cwnd +=1 MSS
ð  i.e. double cwnd

every RTT
ð  until reaching

receiver window
advertisement

ð OR a segment
gets lost

Transport Layer 3-12

Detecting congestion and restarting
❒  Segment gets lost

❍  Detected via RTO expiration
❍  Indirectly notifies that one of the network nodes along the

path has lost segment
–  Because of full queue

❒  Restart from cwnd=1 (slow start)
❒  But introduce a supplementary control: slow start

threshold
•  sstresh = max(min(cwnd,window)/2,2MSS)

❍  The idea is that we now KNOW that there is congestion in
the network, and we need to increase our rate in a more
careful manner…

❍  Ssthresh defines the “congestion avoidance” region

Transport Layer 3-13

Congestion avoidance
❒  If cwnd < ssthresh

❍ Slow start region: Increase rate exponentially
❒  If cwnd >= ssthresh

❍ Congestion avoidance region : Increase rate
linearly

❍ At rate 1 MSS per RTT
•  Practical implementation:

 cwnd += MSS*MSS/cwnd
•  Good approximation for 1 MSS per RTT
•  Alternative (exact) implementations: count!!

❒ Which initial ssthresh?
– ssthresh initially set to 65535: unreachable!

In essence, congestion avoidance is flow control imposed by sender
while advertised window is flow control imposed by receiver

Corrisponde ad un segmento
per finestra

Transport Layer 3-14

Simplified example (overall)
Co

ng
es

tio
n

wi
nd

ow
 cw

nd
 (i

n
MS

S)

Number of transmissions

1
2
3
4

6

8

10

12

14

16

1

Timeout:
cwnd = 1
ssthresh=8

Timeout:
cwnd = 1
ssthresh=6

Transport Layer 3-15

The Fast Retransmit Algorithm

Seq=100
Seq=150

Seq=50

Seq=100

è Idea: use duplicate ACKs!
ð Receiver responds with an ACK

every time it receives an out-
of-order segment

ð ACK value = last correctly
received segment

è FAST RETRANSMIT
algorithm:
ð  if 3 duplicate acks are received

for the same segment, assume
that the next segment has been
lost. Retransmit it right away.

ð Helps if single packet lost. Not
very effective with multiple
losses

è And then? A congestion
control issue…

ack=100

ack=100
ack=100

ack=100: FR

RTO

Transport Layer 3-16

What happens AFTER RTO?
(without fast retransmit)

Seq=100
Seq=150

Seq=50

Seq=350

ack=100

ack=100
ack=100
ack=100

RTO

Current cwnd = 6

set cwnd = 1 and rtx seq=100

ack=400!
And then, restart normally with cwnd=2 and send seq=400,450

ack=100
ack=100

Transport Layer 3-17

TCP RENO
(with fast retransmit)

Seq=100
Seq=150

Seq=50

Seq=350

ack=100

ack=100
ack=100
ack=100

RTO

Current cwnd = 6

set cwnd = 1 and rtx seq=100

ack=400!
And then, restart normally

with cwnd=2 and send
seq=400,450

ack=100
ack=100

Seq=100

Same as before, but shorter time to recover packet loss!

Idea del fast retransmit
Dovrebbe portare ad un
Diverso modo di gestire

L’evento da parte del
Controllo di congetsione?

Transport Layer 3-18

Motivations for fast recovery

Seq=100
Seq=150

Seq=50

Seq=100

ack=100

3rd dupack

FAST RECOVERY:
ð The phase following fast

retransmit (3 duplicate acks
received)

ð  TAHOE approach: slow start, to
protect network after congestion

ð  However, since subsequent acks
have been received, no hard
congestion situation should be
present in the network: slow start
is a too conservative restart!

Seq=350

Transport Layer 3-19

Fast recovery rules

Seq=100
Seq=150

Seq=50

Seq=100

cwnd = 6

Fast Retransmit
& recovery:

cwnd=3, ndup=3

Seq=350

FAST RECOVERY RULES:
ð Retransmit lost segment
ð Set cwnd = cwnd/2
ð Restart with congestion

avoidance (linear)
ð start fast recovery phase:

ð Set counter for
duplicate packets
ndup=3

ð Use “inflated” window:
 w = cwnd+ndup

ð Upon new dup_acks,
increase ndup, not cwnd
(and send new data)

ð Upon recovery ack,
“deflate” window
setting ndup=0

cwnd=3, ndup=4
Seq=400 cwnd=3, ndup=5
Seq=450

Recovery ack=400
 cwnd=3 Seq=500

Transport Layer 3-20

Idle periods

❒ After a long idle period (exceeding one
RTO), reset the congestion window to one.

Time

Congestion
Window
CWND

Receiver Window

Idle
Interval

Timeout

1

SSThresh

Transport Layer 3-21

Timeout:

cw
nd

Number of transmissions

Timeout:

Further TCP issues
Timeout = packet loss occurrence in an internal network router
TCP (both Tahoe & Reno) does not AVOID packet loss
Simply REACTS to packet loss

CONCLUSION: a TCP able to AVOID packet
loss should be much better…..

Toward next
Timeout…

Transport Layer 3-22

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP
connection 2

TCP Fairness

Transport Layer 3-23

Why is TCP fair?
Two competing sessions:
❒  Additive increase gives slope of 1, as throughout increases
❒  multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

Co
nn

ec
ti

on
 2

 t
hr

ou
gh

pu
t

congestion avoidance: additive increase

loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Transport Layer 3-24

Fairness with UDP traffic

❒ A serious problem for TCP
❍  in heavy network load, TCP reduces

transmission rate. Non congestion-controlled
traffic does not.

❍ Result: in link overload, TCP throughput
vanishes!

This is why we still live in a World Wide Wait time
(Webcams are destroying TCP traffic)

Transport Layer 3-25

Mixing TCP & UDP traffic

Link 45 Mbps

TCP

UDP

UDP

TCP1

TCP2

Transport Layer 3-26

Fairness (more)
Fairness and UDP
❒  Multimedia apps often

do not use TCP
❍  do not want rate

throttled by congestion
control

❒  Instead use UDP:
❍  pump audio/video at

constant rate, tolerate
packet loss

❒  Research area: TCP
friendly

Fairness and parallel TCP
connections

❒  nothing prevents app from
opening parallel
connections between 2
hosts.

❒  Web browsers do this
❒  Example: link of rate R

supporting 9 cnctions;
❍  new app asks for 1 TCP, gets

rate R/10
❍  new app asks for 11 TCPs,

gets R/2 !

