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Chapter 3 outline 

❒  3.1 Transport-layer 
services 

❒  3.2 Multiplexing and 
demultiplexing 

❒  3.3 Connectionless 
transport: UDP 

❒  3.4 Principles of 
reliable data transfer 

❒  3.5 Connection-oriented 
transport: TCP 
❍  segment structure 
❍  reliable data transfer 
❍  flow control 
❍  connection management 

❒  3.6 Principles of 
congestion control 

❒  3.7 TCP congestion 
control 
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TCP: controllo di congestione 
❒  Il TCP ha dei meccanismi di controllo 

della congestione 
❍  il flusso dei dati in ingresso in rete è 

anche regolato dalla situazione di traffico 
in rete 

❍  se il traffico in rete porta a situazioni di 
congestione il TCP riduce velocemente il 
traffico in ingresso 

❍  in rete non vi è nessun meccanismo per 
notificare esplicitamente le situazioni di 
congestione 

❍  il TCP cerca di scoprire i problemi di 
congestione sulla base degli eventi di 
perdita dei pacchetti  
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TCP: controllo di congestione 
❒  il meccanismo si basa ancora sulla sliding window la 

cui larghezza viene dinamicamente regolata in base 
alle condizioni in rete 

❒  in linea di principio scopo del controllo è far si che 
il flusso emesso da ciascuna sorgente venga 
regolato in modo tale che il flusso complessivo 
offerto a ciascun canale non superi la sua capacità 

❒  tutti i flussi possono essere ridotti in modo tale 
che la capacità della rete venga condivisa da tutti 
in misura se possibile uguale 



Transport Layer 3-5 

The problem of congestion 
SENDERs 

(bulk flows) 
RECEIVERs 

(large capacity) 

Internal  
network 
congestion: 
- queues build up 
- delay increases 
- RTOs expire 
- more segments transmitted, more 
Segments retransmitted -> more congestion! 

Advertise large win 

Several outstanding segments 



Transport Layer 3-6 

The goal of congestion control 
SENDERs 

(bulk flows) 
RECEIVERs 

(large capacity) 

Bottleneck link rate C 

N=4 TCP connections 
Each should transmit at C/4 rate. 

 
Since: 

 
 
 

Each should adapt W accordingly…  
How sources can be lead to know the RIGHT value of W?? 

RTT
MSSWthr ⋅

≈
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TCP approach for detecting and 
controlling congestion 

❒  IP protocol does not implement mechanisms to detect 
congestion in IP routers 

•  Unlike other networks, e.g. ATM 
❒  necessary indirect means (TCP is an end-to-end 

protocol) 
❒  TCP approach: congestion detected by lack of acks 

–  couldn’t work efficiently in the 60s & 70s (error prone transmission 
lines) 

–  OK in the 80s & 90s (reliable transmission) 
–  what about wireless networks??? 

❒  Controlling congestion: use a SECOND window 
(congestion window) 

•  Locally computed at sender 
•  Outstanding segments: min(receiver_window, congestion_window) 
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TCP Congestion Control 
❒  end-end control (no network 

assistance) 
❒  sender limits transmission: 
  LastByteSent-LastByteAcked 
                   ≤ CongWin 

❒  Roughly, 

❒  CongWin is dynamic, function of 
perceived network congestion 

How does  sender 
perceive congestion? 

❒  loss event = timeout or 
3 duplicate acks 

❒  TCP sender reduces 
rate (CongWin) after 
loss event 

three mechanisms: 
❍  AIMD 
❍  slow start 
❍  conservative after 

timeout events 

rate =  
CongWin  

RTT  
Bytes/sec 
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Starting a TCP transmission 
❒ A new offered flow may suddenly overload 

network nodes 
❍  receiver window is used to avoid recv buffer overflow 
❍  But it may be a large value (16-64 KB) 

❒  Idea: slow start 
❍  Start with small value of cwnd 
❍  And increase it as soon as packets get through 

–  Arrival of ACKs = no packet losts = no congestion 

❒  Initial cwnd size: 
❍  Just 1 MSS! 
❍  Recent (1998) proposals for more aggressive starts (up to 4 

MSS) have been found to be dangerous 
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Slow start: the idea 
cwnd 

0RTT 
1 

1RTT 
2 
3 

2RTT 
4 
5 7 

6 

3RTT 
8 
9 11 

10 12 
13 15 

14 

Arrivo di ACK 

Si trasmette il minimo tra window e cwd pacchetti  
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Slow start – exponential increase 

… … … … … … … … … …  

Request http obj 
Conn granted 

Conn request 

Cwnd=1 

Cwnd=2 

Cwnd=3 
Cwnd=4 

è  First start: set 
congestion window  

 cwnd = 1MSS 

è  send cwnd segments  
ð  assume cwnd <= 

receiver win 

è  upon successful 
reception: 
ð  Cwnd +=1 MSS 
ð  i.e. double cwnd 

every RTT 
ð  until reaching 

receiver window 
advertisement 

ð OR a segment 
gets lost 
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Detecting congestion and restarting 
❒  Segment gets lost 

❍  Detected via RTO expiration 
❍  Indirectly notifies that one of the network nodes along the 

path has lost segment 
–  Because of full queue 

❒  Restart from cwnd=1 (slow start) 
❒  But introduce a supplementary control: slow start 

threshold 
•  sstresh = max(min(cwnd,window)/2,2MSS) 

❍  The idea is that we now KNOW that there is congestion in 
the network, and we need to increase our rate in a more 
careful manner… 

❍  Ssthresh defines the “congestion avoidance” region 



Transport Layer 3-13 

Congestion avoidance 
❒  If cwnd < ssthresh 

❍ Slow start region: Increase rate exponentially 
❒  If cwnd >= ssthresh 

❍ Congestion avoidance region : Increase rate 
linearly 

❍ At rate 1 MSS per RTT 
•  Practical implementation: 

 cwnd += MSS*MSS/cwnd 
•  Good approximation for 1 MSS per RTT 
•  Alternative (exact) implementations: count!! 

❒ Which initial ssthresh? 
– ssthresh initially set to 65535: unreachable! 

In essence, congestion avoidance is flow control imposed by sender 
while advertised window is flow control imposed by receiver 

Corrisponde ad un segmento 
per finestra 
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Simplified example (overall) 
Co

ng
es

tio
n 

wi
nd

ow
 cw

nd
 (i

n 
MS

S)
 

Number of transmissions 

1 
2 
3 
4 

6 

8 

10 

12 

14 

16 

1 

Timeout: 
cwnd = 1 
ssthresh=8 

Timeout: 
cwnd = 1 
ssthresh=6 
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The Fast Retransmit Algorithm 

Seq=100 
Seq=150 

Seq=50 

Seq=100 

è Idea: use duplicate ACKs! 
ð Receiver responds with an ACK 

every time it receives an out-
of-order segment 

ð ACK value = last correctly 
received segment 

è FAST RETRANSMIT 
algorithm: 
ð  if 3 duplicate acks are received 

for the same segment, assume 
that the next segment has been 
lost. Retransmit it right away. 

ð Helps if single packet lost. Not 
very effective with multiple 
losses 

è And then? A congestion 
control issue… 

ack=100 

ack=100 
ack=100 

ack=100: FR 

RTO 
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What happens AFTER RTO? 
(without fast retransmit) 

Seq=100 
Seq=150 

Seq=50 

Seq=350 

ack=100 

ack=100 
ack=100 
ack=100 

RTO 

Current cwnd = 6 

set cwnd = 1 and rtx seq=100 

ack=400! 
And then, restart normally with cwnd=2 and send seq=400,450 

ack=100 
ack=100 
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TCP RENO 
(with fast retransmit) 

Seq=100 
Seq=150 

Seq=50 

Seq=350 

ack=100 

ack=100 
ack=100 
ack=100 

RTO 

Current cwnd = 6 

set cwnd = 1 and rtx seq=100 

ack=400! 
And then, restart normally  

with cwnd=2 and send  
seq=400,450 

ack=100 
ack=100 

Seq=100 

Same as before, but shorter time to recover packet loss!  

Idea del fast retransmit 
Dovrebbe portare ad un  
Diverso modo di gestire  

L’evento da parte del  
Controllo di congetsione? 
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Motivations for fast recovery 

Seq=100 
Seq=150 

Seq=50 

Seq=100 

ack=100 

3rd dupack 

FAST RECOVERY: 
ð The phase following fast 

retransmit (3 duplicate acks 
received) 

ð  TAHOE approach: slow start, to 
protect network after congestion 

ð  However, since subsequent acks 
have been received, no hard 
congestion situation should be 
present in the network: slow start 
is a too conservative restart! 

Seq=350 
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Fast recovery rules 

Seq=100 
Seq=150 

Seq=50 

Seq=100 

cwnd = 6 

Fast Retransmit  
& recovery:  

cwnd=3, ndup=3 

Seq=350 

FAST RECOVERY RULES: 
ð Retransmit lost segment 
ð Set cwnd = cwnd/2 
ð Restart with congestion 

avoidance (linear) 
ð start fast recovery phase: 

ð Set counter for 
duplicate packets 
ndup=3 

ð Use “inflated” window: 
 w = cwnd+ndup 

ð Upon new dup_acks, 
increase ndup, not cwnd 
(and send new data) 

ð Upon recovery ack, 
“deflate” window 
setting ndup=0 

cwnd=3, ndup=4 
Seq=400 cwnd=3, ndup=5 
Seq=450 

Recovery ack=400 
         cwnd=3 Seq=500 
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Idle periods 

❒ After a long idle period (exceeding one 
RTO), reset the congestion window to one. 

Time 

Congestion 
Window 
CWND 

Receiver Window 

Idle 
Interval 

Timeout 

1 

SSThresh 



Transport Layer 3-21 

Timeout: 

cw
nd

 

Number of transmissions 

Timeout: 

Further TCP issues 
Timeout = packet loss occurrence in an internal network router 
TCP (both Tahoe & Reno) does not AVOID packet loss 
Simply REACTS to packet loss 

CONCLUSION: a TCP able to AVOID packet  
loss should be much better….. 

Toward next 
Timeout… 
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Fairness goal: if K TCP sessions share same 
bottleneck link of bandwidth R, each should have 
average rate of R/K 

TCP connection 1 

bottleneck 
router 

capacity R 

TCP  
connection 2 

TCP Fairness 
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Why is TCP fair? 
Two competing sessions: 
❒  Additive increase gives slope of 1, as throughout increases 
❒  multiplicative decrease decreases throughput proportionally  

R 

R 

equal bandwidth share 

Connection 1 throughput 

Co
nn

ec
ti

on
 2

 t
hr

ou
gh

pu
t 

congestion avoidance: additive increase 

loss: decrease window by factor of 2 

congestion avoidance: additive increase 
loss: decrease window by factor of 2 
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Fairness with UDP traffic 

❒ A serious problem for TCP 
❍  in heavy network load, TCP reduces 

transmission rate. Non congestion-controlled 
traffic does not. 

❍ Result: in link overload, TCP throughput 
vanishes! 

This is why we still live in a World Wide Wait time  
(Webcams are destroying TCP traffic) 
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Mixing TCP & UDP traffic 

Link 45 Mbps 

TCP 

UDP 

UDP 

TCP1 

TCP2 
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Fairness (more) 
Fairness and UDP 
❒  Multimedia apps often 

do not use TCP 
❍  do not want rate 

throttled by congestion 
control 

❒  Instead use UDP: 
❍  pump audio/video at 

constant rate, tolerate 
packet loss 

❒  Research area: TCP 
friendly 

Fairness and parallel TCP 
connections 

❒  nothing prevents app from 
opening parallel 
connections between 2 
hosts. 

❒  Web browsers do this  
❒  Example: link of rate R 

supporting 9 cnctions;  
❍  new app asks for 1 TCP, gets 

rate R/10 
❍  new app asks for 11 TCPs, 

gets R/2 ! 


