
Transport Layer 3-1

Reti di Elaboratori
Corso di Laurea in Informatica

Università degli Studi di Roma “La Sapienza”

Prof.ssa Chiara Petrioli
 Parte di queste slide sono state prese dal materiale associato al libro

Computer Networking: A Top Down Approach , 5th edition.
All material copyright 1996-2009
J.F Kurose and K.W. Ross, All Rights Reserved
Thanks also to Antonio Capone, Politecnico di Milano, Giuseppe Bianchi and
Francesco LoPresti, Un. di Roma Tor Vergata

Chapter 3
Transport Layer

Transport Layer 3-2

TCP data transfer management
❒  Full duplex connection

❍  data flows in both directions, independently
❍  To the application program these appear as two unrelated data

streams

❒  each end point maintains a sequence number
❍  Independent sequence numbers at both ends
❍  Measured in bytes

❒  acks often carried on top of reverse flow data
segments (piggybacking)
❍  But ack packets alone are possible

Transport Layer 3-3

Byte-oriented

0 100 1 … … 535 … … 1023 … …

Example: 1 Kbyte message – 1024 bytes

…

Example: segment size = 536 bytes  2 segments: 0-535; 536-1023

seq=0

Ack=536
seq=536

Ack=1024

time time

sender receiver

è No explicit segment size
indication
ð Seq = first byte number
ð Returning Ack = last byte

number + 1
ð Segment size = Ack-seq#

Transport Layer 3-4

Pipelining – cumulative ack

0 100 1 … … 535 … … 1023 … …

Example: 1024 bytes msg; seg_size = 536 bytes  2 segments: 0-535; 536-1023

…

seq=0
seq=536

Ack=1024

time time

sender receiver

è Cumulative ack
ð ACK = all previous bytes

correctly received!
ð E.g. ACK=1024: all bytes 0-1023

received
ð Other names of pipelining:

ð Go-Back-N ARQ mechanisms
ð Sliding window mechanisms

Why pipelining? Dramatic improvement in efficiency!

Transport Layer 3-5

Multiple acks; Piggybacking

CLIENT SERVER

Bytes 100-199, seq=100,

EMPTY, Ack=200

Bytes 450-525, seq=450, ack=200

Bytes 200-249, seq=200, ack=526

Immediate ack,
no payload Data in reverse

direction,carries
previous ack

Next segment,
piggybacked ack

Transport Layer 3-6

TCP data transfer
bidirectional example

16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

118
117
116
115
114
113
112

Segment size = 6

Segment size = 4

Time 0: Seq=1, NO ack Seq=112, NO ack

Time 1: Seq=7, ack=116 Seq=116, ack=7

Time 2: Seq=13, ack=119 Seq=119, ack=13

Time 3: Seq=119, ack=17

Transport Layer 3-7

TCP seq. #’s and ACKs
Seq. #’s:

❍  byte stream
“number” of first
byte in segment’s
data

ACKs:
❍  seq # of next byte

expected from
other side

❍  cumulative ACK
Q: how receiver handles

out-of-order segments
❍  A: TCP spec

doesn’t say, - up to
implementor

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time

simple telnet scenario

TCP Solution: Go Back N like

Transport Layer 3-8

TCP Round Trip Time and Timeout
Q: how to set TCP

timeout value? (not
trivial, highly
varying, it is a RTT
over a network
path)

❒  longer than RTT
❍  but RTT varies

❒  too short: premature
timeout
❍  unnecessary

retransmissions
❒  too long: slow reaction

to segment loss

Q: how to estimate RTT?
❒  SampleRTT: measured time from

segment transmission until ACK
receipt
❍  ignore retransmissions
Why??

❒  SampleRTT will vary, want
estimated RTT “smoother”
❍  average several recent

measurements, not just
current SampleRTT

Transport Layer 3-9

TCP Round Trip Time and Timeout
EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

❒  Exponential weighted moving average
❒  influence of past sample decreases exponentially fast
❒  typical value: α = 0.125

Transport Layer 3-10

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT

Transport Layer 3-11

TCP Round Trip Time and Timeout
Setting the timeout
❒  EstimtedRTT plus “safety margin”

❍  large variation in EstimatedRTT -> larger safety margin
❒  first estimate of how much SampleRTT deviates from

EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-β)*DevRTT +
 β*|SampleRTT-EstimatedRTT|

(typically, β = 0.25)

 Then set timeout interval:

Transport Layer 3-12

Guessing right?
Karn’s problem

ack

DATA

Retransmit DATA

RTO

Scenario 1

M

RTO

Scenario 2

M?

M?

How can we distinguish among an ACK to the original segment and to a duplicate?

Transport Layer 3-13

Solution to Karn’s problem

❒  Very simple: DO NOT update RTT when a segment has been
retransmitted because of RTO expiration!

❒  Instead, use Exponential backoff
❍  double RTO for every subsequent expiration of same segment

•  When at 64 secs, stay
•  persist up to 9 minutes, then reset

Transport Layer 3-14

TCP reliable data transfer
(more in detail)
❒  TCP creates rdt

service on top of IP’s
unreliable service

❒  Pipelined segments
❒  Cumulative acks
❒  TCP uses single

retransmission timer

❒  Retransmissions are
triggered by:
❍  timeout events
❍  duplicate acks

❒  Initially consider
simplified TCP sender:
❍  ignore duplicate acks
❍  ignore flow control,

congestion control

Transport Layer 3-15

TCP sender events:
data rcvd from app:
❒  Create segment with

seq #
❒  seq # is byte-stream

number of first data
byte in segment

❒  start timer if not
already running (think
of timer as for oldest
unacked segment)

❒  expiration interval:
TimeOutInterval

timeout:
❒  retransmit segment

that caused timeout
❒  restart timer
 Ack rcvd:
❒  If acknowledges

previously unacked
segments
❍  update what is known to

be acked
❍  start timer if there are

outstanding segments

Transport Layer 3-16

TCP
sender
(simplified)

 NextSeqNum = InitialSeqNum
 SendBase = InitialSeqNum

 loop (forever) {
 switch(event)

 event: data received from application above
 create TCP segment with sequence number NextSeqNum
 if (timer currently not running)
 start timer
 pass segment to IP
 NextSeqNum = NextSeqNum + length(data)

 event: timer timeout
 retransmit not-yet-acknowledged segment with
 smallest sequence number
 start timer

 event: ACK received, with ACK field value of y
 if (y > SendBase) {
 SendBase = y
 if (there are currently not-yet-acknowledged segments)
 start timer
 }

 } /* end of loop forever */

Comment:
•  SendBase-1: last
cumulatively
ack’ed byte
Example:
•  SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is
acked

Purche’ non si ecceda la finestra

Transport Layer 3-17

TCP: retransmission scenarios
Host A

Seq=100, 20 bytes data

time

premature timeout

Host B

Seq=92, 8 bytes data

Seq=92, 8 bytes data

Se
q=

92
 t

im
eo

ut

Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time

SendBase
= 100

SendBase
= 120

Sendbase
= 100

Transport Layer 3-18

TCP retransmission scenarios (more)
Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120

Transport Layer 3-19

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment starts at lower end of gap

Favor piggybacking

Duplicate ACK important feedback—more later
Can advance source window

Main motivation: performance

Transport Layer 3-20

So what is the TCP solution

❒ Go-Back-N??
❒ Selective Repeat?
❒ A: An Hybrid solution.

❍  Possibility of buffering correctly received
packets AND selective retransmission of
packets, BUT NOT pure Selective Repeat,
cumulative ACK, buffering not required (free
implementation choice)

❍  Shares some aspects with GBN BUT
•  A single timer for the oldest unacked packet;
•  when the timer experises ONLY that packet is

retransmitted

Transport Layer 3-21

TCP: a reliable transport
❒  TCP is a reliable protocol

❍  all data sent are guaranteed to be received
❍  very important feature, as IP is unreliable network layer

❒  employs positive acknowledgement
❍  cumulative ack
❍  selective ack may be activated when both peers

implement it (use option)
❒  does not employ negative ack

❍  error discovery via timeout (retransmission timer)
❍  …But “implicit NACK” is available (more later: fast

retransmit)

TCP SACKS

Transport Layer 3-22

Need for implicit NACKs

Seq=100

Retransmit Seq=100

RTO

Seq=150
Seq=200
Seq=250

Seq=50

Seq=350

Seq=300

è TCP does not support
negative ACKs

è This can be a serious
drawback
ð Especially in the case of single

packet loss
è Necessary RTO expiration to

start retransmit lost packet
May take too much time before

retransmitting!!!

è ISSUE: is there a way to
have NACKs in an implicit
manner????

Transport Layer 3-23

The Fast Retransmit Algorithm

Seq=100
Seq=150

Seq=50

Seq=100

è Idea: use duplicate ACKs!
ð Receiver responds with an ACK

every time it receives an out-
of-order segment

ð ACK value = last correctly
received segment

è FAST RETRANSMIT
algorithm:
ð  if 3 duplicate acks are received

for the same segment, assume
that the next segment has been
lost. Retransmit it right away.

ð Helps if single packet lost. Not
very effective with multiple
losses

ack=100

ack=100
ack=100

ack=100: FR

RTO

Transport Layer 3-24

 event: ACK received, with ACK field value of y
 if (y > SendBase) {
 SendBase = y
 if (there are currently not-yet-acknowledged segments)
 start timer
 }
 else {
 increment count of dup ACKs received for y
 if (count of dup ACKs received for y = 3) {
 resend segment with sequence number y
 }

Fast retransmit algorithm:

a duplicate ACK for
already ACKed segment

fast retransmit

Transport Layer

❒  flow control
❒  congestion control

TCP mechanisms for:

Graphical examples (applet java) of several algorithms at:
http://www.ce.chalmers.se/~fcela/tcp-tour.html

Transport Layer 3-26

TCP pipelining

❒  More than 1 segment “flying” in
the network

❒  Transfer efficiency increases
with W

❒  So, why an upper limit on W?
❍  Esempio: flow control

W=6

⎟
⎠

⎞
⎜
⎝

⎛
+

⋅
=

CMSSRTT
MSSWCthr

/
,min

Transport Layer 3-27

Why flow control?

❒  Limited receiver buffer
❍  If MSS = 2KB = 2048 bytes
❍  And receiver buffer = 8 KB = 8192 bytes
❍  Then W must be lower or equal than 4 x MSS

❒  A possible implementation:
❍  During connection setup, exchange W value.
❍  DOES NOT WORK. WHY?

receiver

sender

Transport Layer 3-28

Window-based flow control

è MSS = 2KB = 2048 bytes
è Receiver Buffer capacity = 10 KB = 10240 bytes
è TCP data stored in buffer: 3 segments
è Receiver window = Spare room: 10-6 = 4KB = 4096 bytes

ð Then, at this time, W must be lower or equal than 2 x MSS

Receiver buffer

è receiver buffer capacity varies with time!
ð Upon application process read()

[asynchronous, not depending on OS, not predictable]

From IP Application process read()

Receiver window

Transport Layer 3-29

❒  Window size field: used to advertise receiver’s
remaining storage capabilities
❍  16 bit field, on every packet
❍  Measure unit: bytes, from 0 (included) to 65535
❍  Sender rule:
 LastByteSent - LastByteAcked <=
RcvWindow.

❍  W=2048 means:
•  I can accept other 2048 bytes since ack, i.e. bytes [ack, ack+W-1]
•  also means: sender may have 2048 bytes outstanding (in multiple segments)

Header
length

checksum

32 bit Sequence number

Window size

Source port Destination port

32 bit acknowledgement number
6 bit

Reserved
Urgent pointer

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Transport Layer 3-30

What is flow control needed for?

❒  Window flow control guarantees receiver buffer to
be able to accept outstanding segments.

❒  When receiver buffer full, just send back win=0
❒  in essence, flow control guarantees that

transmission bit rate never exceed receiver rate

Transport Layer 3-31

S=7

Sliding window

S=4
S=5
S=6

Dynamic window based reduces to
pure sliding window when receiver
app is very fast in reading data…

W=3

W=3

 1 2 3 4 5 6 7 8 9

SEQ

Window “sliding” forward

Transport Layer 3-32

Dynamic window - example
sender receiver Rec. Buffer

EMPTY
Exchanged param: MSS=2K,
sender ISN=2047, WIN=4K
(carried by receiver SYN)

0 4K
TCP CONN

SETUP
Application
does a 2K write 2K, seq=2048 0 4K

2K
Ack=4096, win=2048

Application
does a 3K write 2K, seq=4096

Sender blocked Ack=6144, win=0

0 4K
FULL

Application
does a 2K read

A B

Transport Layer 3-33

Dynamic window - example
sender receiver Rec. Buffer

EMPTY
Exchanged param: MSS=2K,
sender ISN=2047, WIN=4K
(carried by receiver SYN)

0 4K
TCP CONN

SETUP
Application
does a 2K write 2K, seq=2048 0 4K

2K
Ack=4096, win=2048

Application
does a 3K write 2K, seq=4096

Sender blocked Ack=6144, win=0

0 4K
FULL

Application
does a 2K read Ack=6144, win=2048

0 4K
2K

Sender unblocks
may send last 1K 1K, seq=6144

Piggybacked in a packet sent from B to A

A B

Window thus source rate limited by reading speed and buffer size at the receiver

Transport Layer 3-34

Blocked sender deadlock problem
sender receiver Rec. Buffer

0 4K
FULL

Application read
0 4K

2K

BLOCKED

ACK=X, WIN=2K

REMAINS
BLOCKED
FOREVER!!

Since ACK does not
carry data, no ack
from sender
expected….

Transport Layer 3-35

Solution: Persist timer
❒  When win=0 (blocked sender), sender starts a “persist” timer

•  Initially 500ms (but depends on implementation)
❒  When persist timer elapses AND no segment received during this

time, sender transmits “probe”
❍  Probe = 1byte segment; makes receiver reannounce next byte

expected and window size
•  this feature necessary to break deadlock
•  if receiver was still full, rejects byte
•  otherwise acks byte and sends back actual win

❒  Persist time management (exponential backoff):
❍  Doubles every time no response is received
❍  Maximum = 60s

