DIPARTIMENTO
DI INFORMATICA N[

b/ UNIVERSITA DI ROMA
Via Salaria 113 - 00198, Roma

%4 SAPIENZA

Chapter 3
Transport Layer

Reti di Elaboratori
Corso di Laurea in Informatica
Universita degli Studi di Roma "La Sapienza”
Canale A-L
Prof.ssa Chiara Petrioli

Parte di queste slide sono state prese dal materiale associato al libro

Computer Networking: A Top Down Approach , Sth edition.
All material copyright 1996-2009

J.F Kurose and K.W. Ross, All Rights Reserved

Thanks also to Antonio Capone, Politecnico di Milano, Giuseppe Bianchi and
Francesco LoPresti, Un. di Roma Tor Vergata

TCP: controllo di congestione

r Il TCP ha dei meccanismi di controllo
della congestione

m il flusso dei dati in ingresso in rete e
anche regolato dalla situazione di
traffico in rete

m se il fraffico in rete porta a situazioni di
congestione il TCP riduce velocemente il
traffico in ingresso

m in rete non vi & nessun meccanismo per
notificare esplicitamente le situazioni di
congestione

m il TCP cerca di scoprire i problemi di
congestione sulla base degli eventi di
perdita dei pacchetti

Transport Layer 3-2

-

-

-

-

TCP Congestion Control

end-end control (no network

assistance)

sender limits tfransmission:
LastByteSent-LastByteAcked

How does sender

< CongWin
Roughly,
_ CongWin
rate = RTT Bytes/sec

CongWin 1S dynamic, function of
perceived network congestion

perceive congestion?

r loss event = timeout or
3 duplicate acks

r TCP sender reduces
rate (CongWin) after
loss event

three mechanisms:

m AIMD
m slow start

m conservative after
timeout events

Transport Layer 3-3

Starting a TCP transmission

r A new offered flow may suddenly overload

hetwork nodes

m receiver window is used to avoid recv buffer overflow
m But it may be a large value (16-64 KB)

r Idea: slow start

m Start with small value of cwnd
m And increase it as soon as packets get through

— Arrival of ACKs = no packet losts = no congestion

r Initial cwnd size:
m Just 1 MSS!

m Recent (1998) proposals for more aggressive starts (up to 4
MSS) have been found to be dangerous

Transport Layer 3-4

Detecting congestion and restarting

r Segment gets lost
m Detected via RTO expiration

m Indirectly notifies that one of the network nodes along the
path has lost segment

— Because of full queue

r Restart from cwnd=1 (slow start)

r But introduce a supplementary control: slow start
threshold
+ sstresh = max(min(cwnd,window)/2,2MSS)

m The idea is that we now KNOW that there is congestion in
the network, and we need to increase our rate in a more
careful manner...

m Ssthresh defines the "congestion avoidance” region

Transport Layer 3-5

Congestion avoidance

r If cwnd < ssthresh
m Slow start region: Increase rate exponentially

r If cwnd >= ssthresh

m Congestion avoidance region : Increase rate
linearly |
m At rate 1 MSS per RTT /Perie e i seamente
* Practical implementation:
cwnd += MSS*MSS/cwnd
* Good approximation for 1 MSS per RTT
- Alternative (exact) implementations: count!!

r Which initial ssthresh?
— ssthresh initially set to 65533: unreachable!

In essence, congestion avoidance is flow control imposed by sender
while advertised window is flow control imposed by receiver
Transport Layer 3-6

Sumnln‘ued example (ovemll)

Congestion window cwnd (in MSS)

16-

3

N
N

=)

Timeout:

cwnd = 1‘

ssthresh 8 """

“Timeout:
~cwnd = .
. ssthresh=6

1

cedes

............

..........

Number of transmissions

Transport Layer

3-7

The Fast Retransmit Algorithm

=> Idea: use duplicate ACKs!

= Receiver responds with an ACK
every time it receives an out-
of-order segment

= ACK value = last correctly
received segment

2> FAST RETRANSMIT
algorithm:
= if 3 duplicate acks are received
for the same segment, assume

that the next segment has been
lost. Retransmit it right away.

= Helps if single packet lost. Not
very effective with multiple
losses
= And then? A congestion

control issue...

RTO

ack=10

ack=100
ack=100

ack=100: FR

n

\4

Transport Layer 3-8

What happens AFTER RTO?

(without fast retransmit)

Seq=50
Seq=10g
Se oELI

RTO
ack=100

A
AVl 'y
‘<.>
A

Currentcwnd =6 <

ack=100 -
| ack=100 -
ack=100 Seq=3s;
ack=100
ack=100
set cwnd =1 and rtx seq=100 ¥
\
ack=400!

And then, restart normally with cwnd=2 and send seq=400,450

Transport Layer

3-9

TCP RENO

(with fast retransmit)

Idea del fast retransmit
Dovrebbe portare ad un
Diverso modo di gestire
L'evento da parte del RTO
Controllo di congetsione?

Seq=50

ack=100
Currentcwnd =6 <

ack=100

L ack=100

ack=10(

set cwnd =1and rtx seq=100 ™~ _
ack=100

ack=400!

And then, restart normally \,
with cwnd=2 and send V¥
seq=400,450

Same as before, but shorter time to recover packet loss!
Transport Layer 3-10

Motivations for fast recovery

FAST RECOVERY:

= The phase following fast
retransmit (3 duplicate acks
received)

= TAHOE approach: slow start, to
protect network after congestion

= However, since subsequent acks
have been received, no hard
congestion situation should be
present in the network: slow start
IS a Too conservative restart!

ack=100§

3rd dupack

Transport Layer 3-11

Fast recovery rules

FAST RECOVERY RULES:

= Retransmit lost segment

p
= Set cwnd = cwnd/2
= Restart with congestion
avoidance (linear) cwnd=6 <
= start fast recovery phase:
= Set counter for Fast Ret £
duplicate packets ast ketransmi
ndup=3 & recovery: -
=Use "“inflated” window: SWNnd=3, ndup=3

w = cwnd+ndup cwnd=3, ndup=4

=Upon new dup_acks, cwnd=3, ndup=5
increase ndup, not cwnd
(and send new data) Recovery ack=400

=>Upon recovery ack, ownd=3
“deflate” window
setting ndup=0

Seq=50
Seq=10g

Transport Layer 3-12

Idle periods

r After a long idle period (exceeding one
RTO), reset the congestion window to one.

____________ Receiver Window

Congestion T imeout\
Window SSThresh — Mdle
CWND + Interval

Time

Transport Layer 3-13

Further TCP issues

Timeout = packet loss occurrence in an internal network router
TCP (both Tahoe & Reno) does not AVOID packet loss
Simply REACTS to packet loss

CONCLUSION: a TCP able to AVOID packet

A Timeout: loss should be much better.....

- Timeout: Toward next
i | Timeout...

cwnd

a

Number of transmissions

Transport Layer 3-14

TCP Fairness

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

. 4
TCP @/bo‘rﬂeneck

connection 2 rou’(er
capacity R

Transport Layer 3-15

Why is TCP fair?

Two competing sessions:
Additive increase gives slope of 1, as throughout increases
multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput

Connection 1 throughput R

Transport Layer 3-16

Fairness with UDP traffic

r A serious problem for TCP

m in heavy network load, TCP reduces
transmission rate. Non congestion-controlled
traffic does not.

m Result: in link overload, TCP throughput
vanishes!

This is why we still live in a World Wide Wait time
(Webcams are destroying TCP traffic)

Transport Layer 3-17

E UDP
————— TCP E LLh 0
UDP ;*
£ TCP1

TCP2

1‘l'h______‘_‘_\—.___.
L]
15 For)

ik k) ik
UDP Rate (Mbps)

Transport Layer 3-18

Fairness (more)

Fairness and UDP Fairness and parallel TCP
connections

r nothing prevents app from
opening parallel

r Multimedia apps often
do not use TCP

m do not want rate connections between 2
throttled by congestion hosts
control '

r Web browsers do this

r Example: link of rate R
supporting 9 cnctions;
m new app asks for 1 TCP, gets

r Instead use UDP:

m pump audio/video at
constant rate, tolerate

packet loss rate R/10
r Research area: TCP m new app asks for 11 TCPs,
friendly gets R/2 |

Transport Layer 3-19

