Chapter 3
Transport Layer

A note on the use of these ppt slides:

We're making these slides freely available to all (faculty, students, readers).
They're in powerpoint form so you can add, modify, and delete slides
(including this one) and slide content to suit your needs. They obviously
represent a lot of work on our part. In return for use, we only ask the
following:

Q If you use these slides (e.g., in a class) in substantially unaltered form,
that you mention their source (after all, we'd like people to use our book!)

Q If you post any slides in substantially unaltered form on a www site, that
you note that they are adapted from (or perhaps identical to) our slides, and
note our copyright of this material.

Thanks and enjoy! JFK/IKWR

All material copyright 1996-2002
J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking:
A Top Down Approach
Featuring the Internet,
2nd edition.

Jim Kurose, Keith Ross
Addison-Wesley, July
2002.

Transport Layer 3-1

Chapter 3: Transport Layer

Our goals:

0 understand principles
behind transport
layer services:

o multiplexing/demultipl
exing

O reliable data transfer

o flow control

O congestion control

J learn about transport

layer protocols in the
Internet:

O UDP: connectionless
transport

O TCP: connection-oriented
transport

O TCP congestion control

Transport Layer

3-2

Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

0 3.4 Principles of
reliable data transfer

0 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
0 3.6 Principles of
congestion control

0 3.7 TCP congestion

control

Transport Layer 3-3

Transport services and protocols

O provide /ogical communication

between app processes
running on different hosts

O transport protocols run in
end systems

O send side: breaks app

messages into segments,
passes to hetwork layer

O rcv side: reassembles

segments into messages,

passes to app layer

T more than one transport
protocol available to apps

o Internet: TCP and UDP

transport |

[_network |
etk
physical

data link
physical

Transport Layer

3-4

Transport vs. network layer

O network layer: logical

Household analogy:

communication 12 kids sending letters
between hosts to 12 kids

O transport layer: logical O processes = kids
communication O app messages = letters
between processes in envelopes
O relies on, enhances, O hosts = houses

network layer services

O transport protocol =
Ann and Bill

O network-layer protocol
= postal service

Transport Layer 3-5

Internet transport-layer protocols

o reliable, in-order
delivery (TCP)
O congestion control
o flow control
O connection setup

o unreliable, unordered
delivery: UDP
O no-frills extension of

“best-effort” IP

O services hot available:
O delay guarantees
O bandwidth guarantees

transport |

networl

physical

Transport Layer

3-6

Chapter 3 outline

a 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

0 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
0 3.6 Principles of
congestion control
0 3.7 TCP congestion
control

Transport Layer 3-7

Servizio di trasporto

0 Pid applicazioni possono essere attive su un end
system
o il livello di trasporto svolge funzioni di
multiplexing/demultiplexing
O ciascun collegamento logico tra applicazioni & indirizzato
dal livello di trasporto

protocolli
applicativi

entita di
trasporto

livello rete

indirizzo di liv.
trasporto
(SAP di livello 4)

protocollo di trasporto
>

—T
[
trasporto

livello rete

Transport Layer 3-8

Multiplexing/demultiplexing

Demultiplexing at rcv host:

delivering received segments
to correct socket

Multiplexing at send host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

[=socket O = process
P1) application @ P4 application
transport fransport fransport
network network network
link link link
physical physical physical
host 1 host 2 host 3

Transport Layer ~ 3-9

How demultiplexing works

O host receives IP datagrams

O each datagram has source
IP address, destination IP

address

O each datagram carries 1
transport-layer segment

O each segment has source,
destination port number
(recall: well-known port
numbers for specific

applications)

O host uses IP addresses & port
numbers to direct segment to

appropriate socket

32 bits

source port #l dest port #

other header fields

application
data
(message)

TCP/UDP segment format

Transport Layer 3-10

Connectionless demultiplexing

O Create sockets with port

numbers:
DatagramSocket mySocketl =

DatagramSocket (99111);
DatagramSocket mySocket2 =

DatagramSocket (99222) ;

0 UDP socket identified by

two-tuple:

(dest IP address, dest port number)

o When host receives UDP
segment:
O checks destination port
number in segment

new O directs UDP segment to

socket with that port
number
O IP datagrams with
different source IP
addresses and/or source
port numbers directed
to same socket

Transport Layer 3-11

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket (6428);

SP: 6428

DP: 9157

SP: 6428

DP: 5775

client
IP: A

SP: 9157
DP: 6428

server
IP: C

SP provides “return address”

SP: 5775
DP: 6428

Client
IP:B

Transport Layer 3-12

Connection-oriented demux

O TCP socket identified O Server host may support

by 4-tuple: many simultaneous TCP
o source IP address sockets:
O source port number O each socket identified by

O dest IP address its own 4-tuple
O dest port number 0 Web servers have

0 recv host uses all four different sockets for
values to direct each connecting client

segment to appropriate O non-persistent HTTP will
socket have different socket for

each request

Transport Layer 3-13

Connection-oriented demux

(cont)

SP: 80 SP: 80
DP: 9157 DP: 5775

SP: 9157 SP: 5775
client DP: 80 server DP: 80 Client
IP: A IP: C IP:B

Transport Layer 3-14

Chapter 3 outline

o 3.1 Transport-layer 0 3.5 Connection-oriented
services transport: TCP

3 3.2 Multiplexing and O segment structure
demultiplexing o reliable data transfer

0 3.3 Connectionless o flow control
transport: uDP O connection management

7 3.4 Principles of 0 3.6 Principles of

reliable data transfer congestion control
0 3.7 TCP congestion

control

Transport Layer 3-15

UDP: User Datagram Protocol [RFC 768]
Why is there a UDP?

O no connection
establishment (which can

g “no frills," "bare bones"
Internet transport protocol

7 “best effort” service, UDP

segments may be: add delay)
O lost O simple: no connection state
O delivered out of order to at sender, receiver

app l T small segment header

reliable transfer over UDP: add 3 no congestion control: UDP
reliability at application layer can blast away as fast as
O application-specific error desired
recovery!
O connectionless:
O no handshaking between
UDP sender, receiver
O each UDP segment handled orate sensitive
independently of others gther UDP uses: DNS, SNMP..

Ooften used for streaming multimedia apps

oOloss tolerant

Transport Layer 3-16

UDP Packets

O Connection-Less
O (no handshaking)

O Each application interacts with UDP transport
sw to produce EXACTLY ONE UDP datagram!

Application

IUDP headerl Application data

encapsulated in
exactly 1 IP packet

| IP header [UDP header| Application data |

This is why, improperly, we use the term UDP packets

Transport Layer 3-17

UDP datagram format
8 bytes header + variable payload

0 7 15 23 31
source port destination port | 5 yDP length field
length (bytes) Checksum > all UDP datagram
> (header + payload)

O payload sizes allowed:

Data O Empty
O even size (bytes)

=>UDP functions limited to:

=addressing
->which is the only strictly necessary role of a transport protocol

=Error checking
->which may even be disabled for performance

Transport Layer 3-18

Maximum UDP datagram size

0 16 bit UDP length field:
O Maximum up to 2!61= 65535 bytes
> Includes 8 bytes UDP header (max data = 65527)

O But max IP packet size is also 65535
> Minus 20 bytes IP header, minus 8 bytes UDP header
O Max UDP_data = 65507 bytes!

O Moreover, most OS impose further limitations!
> most systems provide 8192 bytes maximum (max size in NFS)
O some OS had (still have?) internal implementation features (bugs?) that limit IP
packet size

+ 5unOS 4.1.3 had 32767 for max tolerable IP packet transmittable (but 32786 in
reception...) - bug fixed only in Solaris 2.2

]

Finally, subnet Maximum Transfer Unit (MTU) limits may fragment
datagram - annoying for reliability!
o E.g. ethernet = 1500 bytes; PPP on your modem = 576

Transport Layer 3-19

Error checksum

O 16 bit checksum field, obtained by:
O summing up all 16 bit words in
Il"eader‘ cliafa a‘rrlcé feuﬁohe?{ie’g in o 7 15 23 31
s complement (checksum fields
filled with Os initially) pocpot 1 Destpot
O take 1's complement of result
o if result is 0, set it to 11111111

(65535==0 in 1's complement) why> Data
O Sender puts checksum value into
UDP checksum field
O at destination: Zero padding

o 1's complement sum should return \© To multiple of 16 bits

0, otherwise error detected 7 checksum disabled
O upon error, ho action (just packet O by source, by setting O in
discard) the checksum field

0 efficient implementation RFC 1071

Transport Layer 3-20

Pseudo header

0 Is not transmitted!
O But it is information available at transmitter and at receiver
O intention: double check that packet has arrived at correct destination

0 7 15 23 31
Source IP address
Destination IP address 12 bytes
pseudoheader

00000000 | protocol UDP length

Souroe por Destination port 8 bytes UDP header

UDP length checksum

data

Protocol field (TCP=6,UDP=17) necessary, as same checksum
calculation used in TCP. UDP length duplicated.

Q: NON SODDISFA IL PRINCIPIO DELLA SUDDIVISIONE IN‘ILrE\r(sEpIEIr"FEuyzr 301

disabling checksum

3 In principle never!

O Remember that IP packet checksum DOES
NOT include packet payload.

3 In practice, often done in NFS
O sun was the first, to speed up implementation

7 may be tolerable in LANs under one's
control.

0 Definitely dangerous in the wide internet
o Exist layer 2 protocols without error checking

Transport Layer 3-22

UDP: a lightweight protocol

I No connection establishment
O no initial overhead due to handshaking
I No connection state
O greater number of supported connections by a server!
o Small packet header overhead
O 8 bytes only vs 20 in TCP
O originally intended for simple applications, oriented to short
information exchange
o DNS

O management (e.g. SNMP)
O etc

I No rate limitations
O No throttling due to congestion & flow control mechanisms
O No retransmission (for certain application loss tolerable)

O extremely important features for today multimedia applications!
Expecially for real time applications which can tolerate some packet
loss but require a minimum send rate.

Transport Layer 3-23

RTP as seen from Application

Be careful: UDP ok for multimedia because it does not provide anything
at all (no features = no limitsl). Application developers have to provide
supplementary transport capabilities at the application layer!

Application Solution for audio/video:
Real Time Protocol
. RTP (RTP, RFC 1889)
& SOCKET
= UDP INTERFACE

Application developer integrates
RTP into the application by:
IP ewriting code which creates the RTP
encapsulating packets;
esends the RTP packets into a UDP

socket interface.

Lower layers
Details of RTP in subsequent courses — unless we are ahegg.of schedule,

Chapter 3 outline

o 3.1 Transport-layer 0 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and O segment structure
demultiplexing O reliable data transfer

3 3.3 Connectionless o flow control
transport: UDP O connection management

0 3.4 Principles of 0 3.6 Principles of

reliable data transfer congestion control
0 3.7 TCP congestion

control

Transport Layer 3-25

A MUCH more complex transport
for three main reasons

7 Connection oriented

o implements mechanisms to setup and tear down
a full duplex connection between end points

7 Reliable

O implements mechanisms to guarantee error
free and ordered delivery of information

7 Flow & Congestion controlled
O implements mechanisms to control traffic

Transport Layer 3-26

TCP services

O connection oriented
O TCP connections
O reliable transfer service

=>TCP functions

-> application addressing (ports)
-> error recovery (acks and

O all bytes sent are received retransmission)
-> reordering (sequence numbers)
-> flow control
-> congestion control

Transport Layer 3-27

Byte stream service

o TCP exchange data between applications as a stream of
bytes.

o It does not introduce any data delimiter (an application
duty)
> source application may enter 10 bytes followed by 1 and 40 (grouped
with some semantics)
data is buffered at source, and transmitted
at receiver, may be read in the sequence 25 bytes, 22 bytes and 4
byftes...

o O

Application view | .--.

TCP view | |

Transport Layer 3-28

TCP segments

O Application data broken into segments for transmission

O segmentation totally up to TCP, according to what TCP considers being
the best strategy

O each segment placed into an IP packet

O very different from UDP!!

[HeaderTcP] TCPdata | [HeadertcP] TCPdata |
A% A% < <
Header IP | IP data | [HeaderiP] IP data |

Transport Layer 3-29

TCP segment format
20 bytes header (minimum)

0 3 7 15 31
Source port I Destination port

32 bit Sequence number

32 bit acknowledgement number

longth | moseriea |EKRS A Wndowsie

checksum Urgent pointer

Options (if any)
i padding

Data (if any)

Transport Layer 3-30

Source port I Destination port

32 bit Sequence number

32 bit acknowledgement number

Header 6 bit PR n 1
length | Reserved Elﬁlﬁl?lﬁl{, Window size
checksum Urgent pointer
O Source & destination port + source and destination IP
addresses

O univocally determine TCP connection

T checksum as in UDP
O same calculation including same pseudoheader

O no explicit segment length specification

Transport Layer 3-31

Source port | Destination port

32 bit Sequence number

32 bit acknowledgement number

Header 6 bit UTATETRISTE : -
length | Reserved lglﬁlﬁl%lﬁlﬁ Window size
checksum Urgent pointer

Options (if any)

00000000
O Header length: 4 bits

O specifies the header size (n*4byte words) for options
O maximum header size: 60 (15*4)

O option field size must be multiple of 32bits: zero padding
when not.

O Reserved: 000000 (still today!)

Transport Layer 3-32

Reliable data transfer: issues

PROBLEMS:

T

DJ INTERNET M @D,EJ,/ 1) Packet received with errors
<% <z 2) Packet not received at all

Same problem considered at DATA LINK LAYER
(although it is less likely that a whole packet is lost at data link)
0 mechanisms to guarantee correct reception:
O Forward Error Correction (FEC) coding schemes

+ Powerful to correct bits affected by error, not effective in
case of packet loss

+ Mostly used at link layer
O Error detection (e.g. checksum used in UDP)
O Retransmission - issues:

+ ACK

+ NACK

+ TIMEOUT

Transport Layer 3-33

Principles of Reliable data transfer

T important in app., transport, link layers
O top-10 list of important networking topics!

(Jreliable channel arsend0 geliver data()
reliable data reliable data
fransfer protocol fransfer protocol
(sending side) (receiving side)

udt_send()t Irdt_rcv()

L’ Eunrelic:b\e channel J

(a) provided service (b) service implementation

application
layer
=128
Qo3
ol
%23

transport
layer

o characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-34

Reliable data transfer: getting started

rdt_send () : called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

deliver data() : called by
rdt to deliver data to upper

rdt_send() | Esialldeliver data()

send |relicble data relicble data receive
id transfer protocol transfer protocol id
slde [isending side) (receiving side) Side

udt_send()¢ Irdt rcv ()

/ L{ iunrelioble channel)J

udt_send () : called by rdf,
to transfer packet over
unreliable channel to receiver

rdt_rcv () : called when packet
arrives on rcv-side of channel

Transport Layer 3-35

Reliable data transfer: getting started

we'll:

0 incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

0 consider only unidirectional data transfer
O but control info will flow on both directions!

0 use finite state machines (FSM) to specify

sender, receiver
event causing state transition

actions taken on state transition

state: when in this
“state” next state
uniquely determined
by next event

Transport Layer 3-36

Rdt1.0: reliable transfer over a reliable channel

O underlying channel perfectly reliable

O ho bit errors

O ho loss of packets (>no congestion, no buffer overflows)
O separate FSMs for sender, receiver:

O sender sends data into underlying channel

O receiver read data from underlying channel

rdt_send(data) rdt_rcv(packet)

extract (packet,data)

packet = make_pk(data) deliver_data(data)

udt_send(packet)

sender receiver

Transport Layer 3-37

Rdt2.0: channel with bit errors

0 underlying channel may flip bits in packet
O recall: UDP checksum to detect bit errors

o Still no loss!!

O the question: how to recover from errors:

acknowledgements (ACKs): receiver explicitly tells sender that
pkt received OK

negative acknowledgements (NAKs): receiver explicitly tells
sender that pkt had errors

O sender retransmits pkt on receipt of NAK
O human scenarios using ACKs, NAKs?
O new mechanisms in rdt2.0 (beyond rdt1.0):
O error defection
O receiver feedback: control msgs (ACK,NAK) rcvr->sender

o

o}

Transport Layer 3-38

rdt2.0: FSM specification

rdt_send(data)

snkpkt = make_pkt(data, checksum) receiver
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)
[rdt_rcv(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

sender

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-39

rdt2.0: operation with no errors

rdt_send(data)
snkpkt = make_| pkt(data checksum)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)
‘ —_ rdt_rcv(rcvpkt) &&
) dt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

Lrdt_revi rcvgkn &&

notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)

udt_send(ACK)

Transport Layer 3-40

rdt2.0: error scenario

rdt_send(data)
snkpkt = make: pkt(data checksum)
d

rdt_rcvgrchkt)(&&
corrupt(rcvpkt)

udt send(NAK
[N

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-41

rdt2.0 has a fatal flaw!

What happens if Handling duplicates:
ACK/NAK corrupted? o sender adds sequence

0 sender doesn't know what number to each pkt
happened at receiver! O sender retransmits current

O can't just retransmit: pkt if ACK/NAK garbled
possible duplicate O receiver discards (doesn't

deliver up) duplicate pkt
What to do?

0 sender ACKs/NAKs .
receiver's ACK/NAK? What stop and wait
if sender ACK/NAK lost? Sender sends one packet,
. L then waits for receiver
O retransmit, but this might response
cause retransmission of
correctly received pkft!

Transport Layer 3-42

Retransmission scenarios

referred to as ARQ schemes (Automatic Retransmission reQuest)
COMPONENTS: a) error checking at receiver; b) feedback to sender; c) retx

SRC DST"Error : SRC DSTError
| e
: g
Basic ACK idea : :
: : Basic NACK idea

D A N A A A R L R R R R R R P R R R R R A R R R A R R R R R R R R R R R R R R R R

DST SRC DST

SRC

ssecsesscsscscsscsscsnn,

Basic ACK/Timeout idea

“eeseccecsesscsessecsesscsesscssesecsecsessessesesecsscsecsesscsscsessessessssess0ne

Transport Layer 3-43

PO S et
:

Why sequence numbers?
(on data)

Sender side:
RTO

Receiver side:

NETWORK
(ACK lost)

rtx
New data?

Old data?

Need to univocally “label” all packets circulating
in the network between two end points.
1 bit (0-1) enough for Stop-and-wait
Transport Layer 3-44

rdt2.1: sender, handles garbled ACK/NAKs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

udt_send(sndpkt)

Wait for
call 0 froi
above,

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

A

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

udt_send(sndpkt)

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

Transport Layer 3-45

rdt2.1: receiver, handles garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
V sndpkt = make_pkt(ACK, chksum)
\ udt_send(sndpkt)
rdt_rcv(rcvpkt) && (corrupt(revpkt) ‘\

sndpkt = make_pkt(NAK, chksum) \
y

udt_send(sndpkt) Q‘

rdt_rcv(revpkt) &&
not corrupt(rcvpkt) && (
has_seq1(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rev(rcvpkt) && (corrupt(rcvpkt)
sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq0(rcvpkt
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&8& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Transport Layer 3-46

rdt2.1: discussion

Receiver:

O must check if received
packet is duplicate

Sender:
0 seq # added to pkt
0 two seq. #'s (0,1) will

O state indicates whether

suffice. Why? State i e
I must check if received Se:r# Is expected pkt

ACK/NAK corrupted

O twice as many states
O state must “remember”
whether “current” pkt
has O or 1 seq. #

O note: receiver can not
know if its last
ACK/NAK received OK
at sender

Transport Layer 3-47

rdt2.2: a NAK-free protocol

O same functionality as rdt2.1, using NAKs only

0 instead of NAK, receiver sends ACK for last pkt
received OK
O receiver must explicitly include seq # of pkt being ACKed

O duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-48

rdt2.2: sender, receiver fragments

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt) rdt_rev(revpkt) &&

. corrupt(rcvpkt
W:g}f(or (isACIFig(rcvakt)Al))
0 udt_send(sndpkt)
sender FSM
fragment rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

A

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
has_seq1(rcvpkt))

receiver FSM

udt_send(sndpkt) fragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)

udt_send(sndpkt) Transport Layer 3-49

rdt3.0: channels with errors andloss

New assumption:
underlying channel can

also lose packets (data
or ACKs)

O checksum, seq. #, ACKs,
retransmissions will be
of help, but not enough

Q: how to deal with loss?

O sender waits until
certain data or ACK
lost, then retransmits

O yuck: drawbacks?

Approach: sender waits
“reasonable” amount of

time for ACK
O retransmits if no ACK
received in this time
o if pkt (or ACK) just delayed
(not lost):
O retfransmission will be
duplicate, but use of seq.
#'s already handles this
O receiver must specify seq
of pkt being ACKed
O requires countdown timer

Transport Layer 3-50

Why sequence numbers?
(on ack)

Sender side: Receiver side:

| Duplicated

. ACK

Queueing
Delay

Data 2 lost !!

With pathologically critical network (as the Internet!)
also need to univocally “label” all acks circulating
in the network between two end points.

1 bit (0-1) enough for Stop-and-wait ?

Transport Layer 3-51

rdt3.0 sender

rdt_send(data)

rdt_rev(rcvpkt) &&

\ sndpkt = make_pkt(0, data, checksum) (corrupt(revpkt) ||

\ udt_send(sndpkt)

rdt_rcv(rcvpkt) \ start_timer

A

Wait for
call Ofrom
above
rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer

timeout
Udt_send(snd ._send(sndpkt) C

start_timer (J

rdt_send(data)

isACK(rcvpkt,1))
A

timeout
udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

stop_timer

rdt_rcv(rcvpkt)
A

rdt_rcv(rcvpkt) &&

sndpkt = make_pkt(1, data, checksum)

(corrupt(revpkt) ||
iSACK(rcvpkt,0)) udt_send(sndpkt)
7 start_timer

Transport Layer 3-52

rdt3.0 in action

sender receiver
sender receiver okt
send pkt0 Pkig send pkio rcv pkto
p! \ rcv pki0
send ACKO ACK send ACKO

rcv ACKO

/9/ send pit1 \%
\\ (loss)
rcv pkfl
send ACK1
rcVACK1)
send kaOﬁ fimeout okt

rcv ACKO
send pktl

1
rev pkio resend pkt1 \ rcv pktl

send ACKO ACK send ACK1

1CVACK1

send pkt0 Kt

rev pktQ
}e/ send ACKO

(b) lost packet

(a) operation with no loss

Transport Layer 3-53

rdt3.0 in action

sender receiver sender receiver
pkt ki
send pkio T ovpo send pki0 \k’ oV pii0
ACK send ACKO ACK send ACKO
rcv ACKO rcv ACKO
send pktl Kkt send pktl
rcv pbj;lcm cv DkﬂC
ACK send send ACK1
(loss) XA)/
fimeout
timeout Pkt resend pktl
resend pkt \rcv pkil v rcv pkt1
ACK (detect duplicate) rcvACK1 (detect duplicate)
send ACK1 send pkiO send ACK1
1CVACK1 ot rcv pkto
send pktO
send ACKO
ACK rcv pki0 ACK
send ACKO 0

(c) lost ACK

(d) premature timeout

Transport Layer 3-54

Performance of rd+3.0

o rdt3.0 works, but performance stinks
0 example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

T - L (packet length in bits) _ 8kb/pkt
fransmit ™ R (transmission rate, bps) ~ 10**9 b/sec

= 8 microsec

- L/R 008 0.00027
sender RTT+L/R 30.008

O U gongert Utilization - fraction of time sender busy sending
O 1KB pkt every 30 msec -> 33kB/sec throuput over 1 Gbps link
O network protocol limits use of physical resources!

Transport Layer 3-55

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0 —hs---------------ooooeeeees
last packet bit transmitted, t =L/ R

first packet bit arrives
—last packet bit arrives, send
ACK

RTT

ACK arrives, send nex
packet, t=RTT +L/R |

U = =
sender” pyT . L/R 30008

Transport Layer 3-56

Pipelined protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-
be-acknowledged pkts
O range of sequence numbers must be increased
O buffering at sender and/or receiver

data packet—s

<— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

0 Two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-57

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —hso-------------eemeeeeee]
last bit transmitted, t =L/ R

first packet bit arrives

last packet bit arrives, send ACK

last bit of 2" packet arrives, send ACK
last bit of 3" packet arrives, send ACK

ACK arrives, send next
packet,t=RTT +L/R

Increase utilization
/ by a factor of 3!

_3*L/R _ .04 0.0008

U = =
sender RTT+L/R 30008

Transport Layer 3-58

Go-Back-N

Sender:
O k-bit seq # in pkt header
o “window" of up to N, consecutive unack'ed pkts allowed

send_base nextsegnum sl .
y ¢ ack’ed yet sent
TV EDITIRO0000NN] sapiceiea) rovesome
£ window sze—%
N

O ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK"
O may deceive duplicate ACKs (see receiver)

O timer for each in-flight pkt

O timeout(n): retransmit pkt n and all higher seq # pkts in window

Transport Layer 3-59

GBN: sender extended FSM

rdt_send(data)

if (nextsegqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextsegnum])
if (base == nextsegnum)
start_timer
nextsegqnum-++

A else
“ refuse_data(data)

base=1

nextseqnums=1 .
timeout

by start_timer
udt_send(sndpkt[base])
O Q udt_send(sndpki[base+1])

ij.at_send(sndpkt[nextseqnum-1 1)

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

rdt_rev(rcvpkt) &&
notcorrupt(rcvpkt)
base = getacknum(rcvpkt)+1
If (base == nextseqnum)
stop_timer
else
start_timer Transport Layer 3-60

GBN: receiver extended FSM

default
udt_send(: sndpkl)

rdt_rcv(rcvpkt)

~~o && notcurrupt(rcvpkt)

A o S=a - && hassegnum(rcvpkt,expectedsegnum)
expectedsegnum=1 ‘Qextrad (rcvpkt,data)

sndpkt = deliver_data(data)
make_pkt(expectedseqnum,ACK,chksum) — sndpkt = make_pki(expectedseqnum,ACK,chksum)

udt_send(sndpkt)
expectedseqnum-++

ACK-only: always send ACK for correctly-received pkt
with highest /n-order seq #
O may generate duplicate ACKs
O need only remember expectedseqnum
O out-of-order pkt:
o discard (don't buffer) -> no receiver buffering!
O Re-ACK pkt with highest in-order seq #
Transport Layer 3-61

. sender receiver
w send pkt0
action T rovpko

send pki1 send ACKO
> send pki2 \(Is?ss) rsgr%ﬂ/-\cm
send pkt3
(waif) rcv pkt3, discard
/ send ACK]
rcv ACKO
send pkt4 ki, o q
rcv iscar
srg%’(fgéé — sena ACK]
rev pkts, discard
—okt2 timeout M Send ACKI
send pkt2

sond ki3 Ty o pki2, deliver

send pkt4 send ACK2

send pktd rcv pkf3, deliver
\ send ACK3

Transport Layer 3-62

Selective Repeat

O receiver /ndividually acknowledges all correctly
received pkts

O buffers pkts, as needed, for eventual in-order delivery
to upper layer

0 sender only resends pkts for which ACK not
received
O sender timer for each unACKed pkt
O sender window
O N consecutive seq #'s
O again limits seq #s of sent, unACKed pkts

Transport Layer 3-63

Selective repeat: sender, receiver windows

send_ base nexfseqnum dlready usable, not
ack’ed yet sent
sent, not
H[IHHHI]H\II\IIHIIIIIIHI]HI]HI]H | seingleg] rotsame
window size —4
N
(a) sender view of sequence numbers
: out of order acceptable
i (bufferec) but I (within window)
dlready ack’ed

ﬂﬂ[lﬂﬂﬂl][ll]ﬂIIMIIIIIIIIII]I]I] [Rmcal i

t window sze—4
N
rev_base
(b) receiver view of sequence numbers
Transport Layer 3-64

Selective repeat

—sender — receiver
data from above : ka nin [rcvbase, rcvbase+N-1]
O if next available seq # in 0 send ACK(n)
window, send pkt O out-of-order: buffer
timeout(n): Eﬂcif;?;ﬂx;me O in-order: deliver (also

deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

ka nin [rcvbase-N,revbase-1]

O resend pk‘r n, restart timer

ACK(H) in [sendbase, sendbase+NJ:
0 mark pkt n as received
o if n smallest unACKed pkt,

advance window base to 7 ACK(n)
next unACKed seq # otherwise:
9 ignore

o
Important!l Sender and receiver may have different Views”TransporT Layer 3-65

Selective repeat in action

pkt) sent

Bl | oot \—\\K—ﬂpktﬂ revd, delivered, ACKD sent

pktl sent 0123 4[58 789
L pktl rovd. delivered. ACK1 sent
pkt? sent 01|23 456 7889

0123456789 X
(loss)
pkt3 sent. vindow full

[p123lassras

pkt3 revd, buffered, ACK3 sent

ni1fzzssleres

ACKD rovd. pktd sent
0|1 2 34|56 7873

A4CK1 rcvd, pktS sent

01[2 34567839

—— pkt2 TIMEQUT, pkt2 resent

01|z 345|67813

pktd rcvd, buffersd, ACK{ sent
01|23 4 5|6 783

pktS rcvd, buffersd, ACKS sent

v1fz3asleras

pkt2 rewd, pkt2,pktd, pktd,pkts
delivered, ACKZ ssat

012345 783)]

ACK3 rcvd, nothing sent

012345667889

rt Layer 3-66

Selective repeat:

dilemma
Example:
0 seq#s:0,1,2,3
O window size=3

O receiver sees no
difference in two
scenarios!

O incorrectly passes
duplicate data as new
in (a)

Q: what relationship
between seq # size
and window size?

(®)
Clearly at least the window must be small enough so that there is nds.
ambiguity on sequence numbers!ll Ts it enough in Selective Repeat??

sender window receiver window

(after receipt) (after receipt
oft23lo12

012 8]

timeout
retransmit pklokto

3 01 5)) receive packet

with seq number O

(@)

sender window

(after receipt)

receiver window

(after receipt

ofzzlo12
CKO
o o i 2
0123012

ACK2

receive packet
with seq number O

ransport Layer 3-67

Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

0 3.4 Principles of
reliable data transfer

o 3.5 Connection-oriented

transport: TCP

O segment structure

O reliable data transfer
O flow control

O connection management

0 3.6 Principles of

congestion control

0 3.7 TCP congestion

control

Transport Layer 3-68

TCP: Overview

0 point-to-point:
O one sender, one receiver
O reliable, in-order byte
steam:
O no “"message boundaries”
O pipelined:
O TCP congestion and flow
control set window size
0 send & receive buffers

socket
door

send buffer receive buffer
Q e O

RFCs: 793, 1122, 1323, 2018, 2581

o full duplex data:

O bi-directional data flow
in same connection

O MSS: maximum segment

size
0 connection-oriented:

O handshaking (exchange
of control msgs) init's
sender, receiver state
before data exchange

0 flow controlled:

v O sender will not
oot overwhelm receiver

Transport Layer 3-69

(generally not used)

PSH: push data now
(generally not used)—|

TCP segment structure

URG: urgent data

32 bits

source port # | dest port #

counting

ACK: ACK #

sequence number

by bytes
of data

valid ~{—atknowledgement number

(not segments!)

head[not
_MWP RISF

Receive window

cheeksum

bytes

Urg data prter revr willing

RST, SYN, FIN:—|
connection estab

Op'r/iar{s (variable length)

to accept

(setup, teardown

commands) application
Internet data
checksum (variable length)
(as in UDP)

Transport Layer 3-70

Source port

| Destination port

32 bit Sequence number

32 bit acknowledgement number

Header 6 bit BIAIE RIS} i 7
length | Reserved Elﬁl%l?l%lﬁ Window size
checksum Urgent pointer

O Sequence number:

O Sequence number of the firstbyte in the segment.
O When reaches 232-1, next wraps back to 0

O Acknowledgement number:
O valid only when ACK flag on

O Contains the next byte sequence number that the host expects to
receive (= last successfully received byte of data + 1)

O grants successful reception for all bytes up to ack# - 1 (cumulative)
O When seq/ack reach 232-1, next wrap back to O

Transport Layer 3-71

TCP data transfer management

0 Full duplex connection

O data flows in both directions, independently
O To the application program these appear as two unrelated data

streams

0 each end point maintains a sequence number
O Independent sequence numbers at both ends

O Measured in bytes

O acks often carried on top of reverse flow data

segments (piggybacking)

O But ack packets alone are possible

Transport Layer 3-72

Byte-oriented

Example: 1 Kbyte message — 1024 bytes

Lo]1]..].[roo] [s38] ..]..] .. hood
/%(—/

Example: segment size = 536 bytes =2 2 segments: 0-535; 536-1023

sender receiver

Pipelining - cumulative ack

Example: 1024 bytes msg; seg_size = 536 bytes > 2 segments: 0-535; 536-1023

Lo]1]..].[roo]..] .. [s38] ..] .. . o3
d receiver
senaer seq=o ‘ecelvel
m = Cumulative ack

%’
Ac\(=536

% |

M

2> No explicit segment size
indication
= Seq = first byte number

= Returning Ack = last byte
number + 1
= Segment size = Ack-seq#

= ACK = all previous bytes
correctly received!

= E.g. ACK=1024: all bytes 0-1023
received
= Other names of pipelining:
= Go-Back-N ARQ mechanisms

time time = Sliding window mechanisms
time time Why pipelining? Dramatic improvement in efficiency!
Transport Layer 3-73 Transport Layer 3-74
16
Multiple acks; Piggybacking e TCP data transfer
Bl 1. .
~:bidirectional example
Bytes 19g o
-199, seg= L 9 |
4 seq‘100, 8
L |
s
Immediate ack, 0 L5 [s size=6 >
k=20 g (115 |
no payload gneTY A Data in reverse] 14
direction,carries 2 < gment size = 4 [EEER
previous ack L1 [112]
Time0: ([Sea=1,NO q=112, NOack [T[T]
2189 200245, seq-ang Timet: [T St
232200, ack=56 . ' ‘
t [semsameris>
CLIENT Next segment, SERVER ,
piggybacked ack Time 3:

Transport Layer 3-75

Seq=119, ack=17

Transport Layer 3-76

TCP seq. #'s and ACKs

Seq. #'s:
O byte stream
“number” of first User

L ' SBQ=42, A
byte in segment’s types CK=79, darg
& o
data host ACKs

ACKs:
O seq # of next byte

3 da\afc 'C', echoes
expected from Sque,l\o = back 'C
other side

O cumulative ACK host ACKs
Q: how receiver handles receipt goo_
out-of-order segments
O A: TCP spec doesn't
say, - up to
implementor

of echoed \

receipt of

time

simple telnet scenario l

Transport Layer 3-77

Performance issues with/without
pipelining

Transport Layer 3-78

Link delay computation

= Transmission delay:
=>C [bit/s] = link rate

O Router 3B [bif = packet size
ﬁ%{ _"‘"i =transmission delay = B/C [sec]
e 2>Example:
sender receiver =>512 bytes packet
=>64 kbps link
T"Bd/z'aVI Prop transmission delay = 512*8/64000 = 64ms
delay

>Propagation delay - constant depending on
Txdelay =>Link length

BIC =>Electromagnetig waves propagation speed in

considered media
=>200 km/s for copper links
=300 km/s in air

time time 3 other delays neglected

=>Queueing
=>processing
Transport Layer 3-79

Stop-and-wait performance

Router 1 Router 2
D s § TR
<7 1 U
Start tx A 28.8 Kbps 1024 Kbps 28.8 Kbps
1ms . 30ms 1ms propt
tx1
prop2
tx2
prop3

tx3

/ Completion time (neglecting processing & queueing) =
Approx Tx1 + Prop1 + Tx2 + Prop2 + Tx3 + Prop3 +
Ack_Tx1 + Prop1 + Ack_Tx2 + Prop2 +

Half tctime (N Ack_Tx3 + Prop3 +
[same computation x remaining segment]
time time time time

Transport Layer 3-80

Stop-and-wait performance
Numerical example

Router 1 Router 2

£ 3 5 £
<2 288Kops 1024 Kops ¥ eskors &
1ms 30ms 1ms
O Message: => Segment 1: => Acks:
° ;024 by*fi = Tx1 =576'8/28,8 = = Txl=Tx3=
O 2 segments: * -
536+488 bytes 160ms 40*8/28,8 = 11,1ms
> Overhead: 20 bytes = Tx3=Tx1 = Tx2 =408/1024 =
TCP + 20 bytes IP = Tx2 = 576*8/1024 = 0,3ms
O ACK = 40 bytes
(header only) 45ms RESULT:
=> Segment 2:
= Tx1 =528+8/28,8 = D =667 (tx total) + 2*RTT =
146,7ms =795 ms
= Tx3=Tx1

= Tx2 = 528'8/1024 = THR =1024*8/795 =
4,1 ms =10,3 kbps

Transport Layer 3-81

Stop-and-wait performance
Numerical example

Router 1 Router 2
With e oy EBJ,
ISDN? <<5% 128 kops a Kbps W ks SE
1ms 30 ms 1ms
=> Segment 1: => Acks:
= Tx1=Tx3= = Tx1=Tx3=
576*8/128 = 36ms 40*8/128 =25 ms on Gbps fiber optics?
= Tx2=576*8/1024 = = Tx2 =40"8/1024 =
45ms 0,3ms D = negligible + 2*RTT =
=> Segment 2: RESULT: =128 ms
= Tx1=Tx3= L
528°9/128=33m5 | b - 1519 (i total) + 2RTT =| | 1~ 10248128 =
= Tx2 =528*8/1024 = =279,9 ms =64 kbps
41ms
THR = 1024*8/279,9 =
=29,3 kbps

Transport Layer 3-82

Pipelining performance

Router 1 Router 2)
£ U Uy <
Start tx 4 256 Kbps 1024 Kbps 256 Kbps e
1 ms 50.ms 1ms prop
tx1
prop2
x2
prop3

%3

Completion time (neglecting processing & queueing) =
Tx1 + Prop1 + Tx2 + Prop2 + Tx3 + Prop3 + Tx_bottleneck

// Ack_Tx1 + Prop1 + Ack_Tx2 + Prop2 +

. Ack_Tx3 + Prop3 (that’s it!)
time time time time

Transport Layer 3-83

full tx time

Pipelining performance
numerical example

On 28,8 kbps links On 128 kbps ISDN links

D = 347 (tx segm1+ack) + RTT + D = 81,8 (tx segm1+ack) + RTT +

+ 160 (segm2 bottleneck) = + 33 (segm2 bottleneck) =
=571 ms =178,8 ms
THR = 1024*8/571 = THR = 1024*8/178,8 =
=14,3 kbps = 45,8 kbps
on Gbps fiber optics?

D = negligible + RTT = 64 ms

THR = 1024*8/64 = 128 kbps

Transport Layer 3-84

Simplified performance model

C bits/sec

Approximate analysis, much simpler than multi-hop
Typically, C = bottleneck link rate

MSS = segment size (ev. ignore overhead)
MSIZE = message size
Ignore ACK transmission time
No loss of segments
W = number of outstanding segments
W=1: stop-and-wait
W>1: go-back-N (sliding window)
This is a highly dynamic parameter in TCP!!
For now, consider W fixed
Transport Layer 3-85

W=1 case (stop-and-wait)

sender receiver

One way delay

MSS/C
RTT

MSS

throughput = ———
RTT +MSS/C

REMARK: throughput always lower than
Available link rate!

time time

Transport Layer 3-86

client

Start TC! H
oo “l*atency in TCP

RTT retrieval model

Latency: time elapsing between TCP connection
request Request, and last bit received at client
ject
ATt MSIZE | MSIZE
latency =2RTT + + —1|RTT
v C MSS
Number of segments
In which message
is split
time time

Transport Layer 3-87

W=1 case (stop-and-wait)

MSS = 1500 bytes
——(=28,8 kbps

100% 1 128 kbps
90% W T CeBlons
80%

0% \ \|\ \ C=10 mbps
60% \\ \\
50%

Utilization

40% - \ \\ 0
30%
20% | \‘\A\ ‘\-
10%

0% ‘

RTT (ms)
Under-utilization with: 1) high capacity links, 2) large RTT links

Transport Layer 3-88

Pipelining (W>1) analysis

two cases

RTT
(+1tx)

W=10

time time

WINDOW SIZING that allows
CONTINUOUS TRANSMISSION
UNDER-SIZED WINDOW:
THROUGHPUT INEFFICIENCY

Transport Layer 3-89

Continuous transmission

Condition in which link rate is fully utilized

W MSS o MSS

C C
Time to transmit Time to receive
W segments Ack of first segment

We may elaborate:

W-MSS >RIT-C+MSS =RITT -C

This means that full link utilization is possible when window size (in bits) is
Greater than the bandwidth (C bit/s) delay (RTT s) product!

Transport Layer 3-90

Bandwidth-delay product

> Network: like a pipe
= C [bit/s] x D [s] 64Kbps
= number of bits “flying” in the
network
= number of bits injected in the
network by the tx, before that the A 15360 (64000x0.240) bits

first bit is rxed “worm” in the air!!

bandwidth-delay product = no of bytes that saturate network pipe

Transport Layer 3-91

Long Fat Networks
LFNs (el-ef-an(t)s): large bandwidth-delay product

NETWORK RTT (ms) | rate (kbps) BxD (bytes)
Ethernet 3 10.000 3.750
T1, transUS 60 1.544 11.580
T1 satellite 480 1.544 92.640
T3 transUS 60 45.000 337.500
Gigabit transUS 60 1.000.000 7.500.000

The 65535 (16 bit field in TCP header) maximum window size W
may be a limiting factor!

Transport Layer 3-92

Pipelining (W>1) analysis

. W -MSS
w thr=min| C,——
RTT RTT +MSS/C
(+1tx)
Delay analysis (for TCP object retrieval) -
Non continuous transmission

latency =2RTT + MSIZE

c
[MSIZE | pr (W —DMSS
W - MSS c

+

Continuous transmission case:

v
latency =2RTT + MSIZE

Transport Layer 3-93

Throughput for pipelining

MSS = 1500 bytes

1 Mbps link speed

1200
@ 1000 a=0——n ——W=1
(=
; “ ~a=\=2
E
(=
=
>
S
2
=
-
0 100 200 300 400 500 600
RTT (ms)

Transport Layer 3-94

Maximum achievable throughput

(assuming infinite speed line...)

—_
o
o
o

W = 65535 bytes

100

—_
o

Throughput (Mbps)

1 T T T T
0 100 200 300 400 500

RTT (ms)

Transport Layer 3-95

TCP seq. #'s and ACKs
Seq. #'s: @ Host A Hosz@

O byte stream
“humber” of first User _ Seq,
byte in segment's types W
g <o
ack data host ACKs
S: receipt of
— G
O seq # of next byte _sa,0a8=—"" C, echoes
expected from LY back'C
other side
O cumulative ACK host ACKs
Q: how receiver handles receipt S ys
out-of-order segments °f e,‘éh“d ACk<go
O A: TCP spec doesn't
say, - up to
implementor time
simple telnet scenario l

Transport Layer 3-96

TCP Round Trip Time and Timeout

Q: how to set TCP Q: how to estimate RTT?

timeout value? 0 SampleRTT: measured time from
O longer than RTT segment transmission until ACK
O but RTT varies I"eC.elpT o
O too short: premature O ignore retransmissions
timeout O SampleRTT will vary, want
O unnecessary estimated RTT “smoother”
retransmissions O average several recent

measurements, not just

3 too long: slow reaction
current SampleRTT

to segment loss

Transport Layer 3-97

TCP Round Trip Time and Timeout

EstimatedRTT = (1- o) *EstimatedRTT + O*SampleRTT
0 Exponential weighted moving average

O influence of past sample decreases exponentially fast
O typical value: o0 = 0.125

Transport Layer 3-98

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350

RTT (milliseconds)

150

100
1 8 15 22 29 3 43 50 5 64 71 78 8 92 99 106

time (seconnds)

—+—SampleRTT —=— Estimated RTT

Transport Layer 3-99

TCP Round Trip Time and Timeout

Setting the timeout

O EstimtedRTT plus "safety margin”
O large variation in EstimatedRTT -> larger safety margin

O first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-f)*DevRTT +
B* | SampleRTT-EstimatedRTT |

(typically, B = 0.25)

Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

Transport Layer 3-100

Understanding TCP connection
management

Transport Layer 3-101

Chapter 3 outline

0 3.1 Transport-layer 0 3.5 Connection-oriented
services transport: TCP
0 3.2 Multiplexing and © segment structure

demultiplexing O reliable data transfer
o flow control
O connection management

0 3.6 Principles of
congestion control

0 3.7 TCP congestion
control

0 3.3 Connectionless
transport: UDP

0 3.4 Principles of
reliable data transfer

Transport Layer 3-102

TCP connection

Application “Logical” connection Application
(client) only end hosts are aware! (server)
‘ Socket ‘ TCP ‘ Socket ‘
TCP software /\K\ /y\ > TCP software
INTERNET
State variables:
- conn status
- Mss
- windows
.. Connection described by client&server status
buffer space Connection SET-UP duty:
normally 4 to 16 Kbytes 1) initializes state variables | Transmission control
64+ Kbytes possible 2) reserves buffer space block

Contains also info on: sockets, pointers to the users' send and receive b%ﬁ%ﬁor‘r Layer 3-103
to the refransmit queue and to the current segment

Connection establishment:
simplest approach (non TCP)

time

time

Transport Layer 3-104

Delayed duplicate problem

USER

BANK

Solution: three way handshake

Tomlinson 1975

SRC DEST

Application: a
1 /_\/\d/\/\/\/" ,_tlransactional (sell Coﬂ“ecﬁo“ grante
{(:ZE 100000$ stocks)
What is this?
1 < .
Oh my God! By \ Selling other 100000$ time i
Too late!!! stocks!!! ime
Transport Layer 3-105 Transport Layer 3-106
Delayed dupl ICClTe deTeCTlon Source port | Destination port
USER BANK 32 bit Sequence number
\ 32 bit acknowledgement number
Header 6 bit s [SIRE: : 7
ﬂﬂﬁ : length | Reserved |§1§|-§|§|1§ Window size
checksum Urgent pointer

What is this?
Not too late:

$E e |
SIVASS

Application:
,_tlransactionaI (selling stocks)

??? What a case: request with
same indicator X? anyway...

What is this??? Should be
SEQ X, ACK Z!!!! STOP...

Ah ah! Got the problem!

Transport Layer 3-107

O SYN (synchronize sequence numbers): used to open
connection
O SYN present: this host is setting up a connection
O SEQ with SYN: means initial sequence number (ISN)
O data bytes humbered from ISN+1.
g FIN: no more data to send
O used to close connection
..more later about connection closing...

Transport Layer 3-108

Three way handshake in TCP

SR DEST

ACTIVE
OPEN

PASSIVE
OPEN

time

time
Full duplex connection: opened in both ways

SRC: performs ACTIVE OPEN
DEST: Performs PASSIVE OPEN

Transport Layer 3-109

Initial Sequence Number

O Should change in time
o RFC 793 (but not all implementations are conforming)
suggests to generate ISN as a sample of a 32 bit
counter incrementing at 4us rate
O transmitted whenever SYN (Synchronize
sequence numbers) flag active
O note that both src and dest transmit THEIR initial
sequence number (remember: full duplex)
0 Data Bytes numbered from ISN+1
O necessary to allow SYN segment ack

Transport Layer 3-110

Forbidden Region

o0 Obiettivo: due sequence number identici non devono trovarsi in rete allo
stesso tempo

Sequence numbers

Forbidden region

O Aging dei pacchetti> dopo un-lzg‘liro tempo MSL (Maximum Segment
Li?eﬂme) i pacchetti eliminati dalla rete

0 Sequence numbers basati sul clock

T Unciclo del clock circa 4 ore; MSL circa 2 minuti.

O -> Se non ci sono crash che fanno perdere il valore dell'ultimo sequence
number usato NON ci sono problemi (si riusa lo stesso sequence humber ogni
4 ore circa, quando il segmento precedentemente trasmesso con quel
sequence number hon & pitl in rete)

O - Cosa succede nel caso di crash? RFC suggerisce |'uso di un ‘periodo di
silenzio' in cui non vengono inviati segmenti dopo il riavvio P‘W@xr%um%!ryzr 3111

Maximum Segment Size - MSS

O Announced at setup by both ends.

O Lower value selected.

O MSS sent in the Options header of the SYN
segment

O clearly cannot (=ignored if happens) send MSS in a non
SYN segment, as connection has been already setup

© when SYN has no MSS, default value 536 used
0 goal: the larger the MSS, the better...
O until fragmentation occurs
O e.g. if host is on ethernet, sets M55=1460
+ 1500 max ethernet size - 20 IP header - 20 TCP header

Transport Layer 3-112

MSS advertise

CLIENT (C_MSS) SERVER (S_MSS)

Conp
requegt (C;MSS, SYN, g
2 3€4=C_IsN,

If (S_MSS<C_MSS)
MSS = S_MSS;

Use
recv
MSS

time

time
Does not avoid fragmentation to occur WITHIN the network!!

Transport Layer 3-113

else MSS = C_MSS;

TCP Connection Management

Recall: TCP sender, receiver Three way handshake:
establish "connection”

before exchanging data Step L: client host sends TCP
segments SYN segment to server
O initialize TCP variables: O specifies initial seq #
O seq. #s O no data
o buffers, flow control Step 2: server host receives

info (e.g. Reviindow) SYN, replies with SYNACK
O client: connection initiator segment

Socket clientSocket = new ~
Socket ("hostnane”, "port O server allocates buffers

number") ; o zggc;;ies server initial

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

O server: contacted by client
Socket connectionSocket =
welcomeSocket.accept () ;

Transport Layer 3-114

Problema dei due eserciti

O L'esercito rosso e’ globalmente pitl debole. Se le due pattuglie verdi
attaccano insieme lo sconfiggono, altrimenti perdono. Possono
scambiarsi messaggi relativi all'orario in cui attaccheranno e di ACK
di un messaggio ricevuto. I messaggeri che li portano possono pero’
essere catturati e quindi il messaggio pud non arrivare
correttamente a destinazione. Come fanno a mettersi d'accordo per
attaccare insieme?

Transport Layer 3-115

Problema dei due eserciti

0

Pattuglia 1 Pattuglia 2

Senza ACK 1 non
Attacchera’ perche’
Non sa se 2 ha ricevuto
II messaggio

Transport Layer 3-116

Problema dei due eserciti

]

Pattuglia 1

- Pattuglia 2

Senza ACK del secondo
Messaggio 2 non
attacchera’ perche’

Non sa se 1 ha ricevuto
il messaggio e sa che senza ACK
del primo messaggio 1 non
Attacchera’

Transport Layer 3-117

Problema dei due eserciti

O Ingenerale: se N scambi di messaggi /Ack etc. necessari a
raggiungere la certezza dell'accordo per attaccare allora cosa
sucecde se |'ultimo mesaggio 'necessario’ va perso?

O -F impossibile raggiungere questa certezza. Le due pattuglie non
attaccheranno mail!

Transport Layer 3-118

Problema dei due eserciti: cosa ha
a che fare con le reti e TCP??

3 Chiusura di una connessione. Vorremmo un
accordo tra le due peer entity o rischiamo
di perdere dati.

A

Connection Request

connected
connected

Disconnection Request

A pensa che il secondo pacchetto sia stato ricevuto. La connessione e’
Stata chiusa a B prima che cié avvenisse> secondo pacchetto persolll
Transport Layer 3-119

Quando si pud dire che le due peer
entity abbiano raggiunto un accordo???

O Problema dei due esercitilll
A B

Connection Request

connected
connected

isconnection Request

Ack

Ma se I'ACK va perso????
Soluzione: si e’ disposti a correre piu’ rischi quando si butta giu’ una connessione di
quando si attacca un esercito nemico. Possibili malfunzionamenti. Soluzioni per la
recovery in questi casi Transport Layer 3-120

Connection closing in TCP
since it is impossible problem, use simples
solution (two way handshake)

. Applicafion close FIN
3 Since connection #un = \ qDeIiver EOF

duplex, necessary two half- to application

closes (each a two-way ACK of FIN
handshake) originating by —
both sides ‘} 4= Application

0 close notified with FIN close
flag on m‘

o FIN segment ACK-ed as
usual

Transport Layer 3-121

TCP Connection Management (cont.)

Closing a connection: @ client server@

client closes socket: close Fin

clientSocket.close();

Step 1: client end system oK
sends TCP FIN control . close
segment to server £

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

Ack

d wait

Q. time

close

Transport Layer 3-122

TCP Connection Management (cont.)

Step 3: client receives FIN, @ client Server@

replies with ACK. closing y
o Enters "timed wait" - N
will respond with ACK
to received FINs pOK .
closing
. N
Step 4: server, receives o
ACK. Connection closed.
-‘g‘, Ack
3 closed
£
5
closed

Transport Layer 3-123

Half close
may close one direction only - seldomly used

Application c1ose ma) FIN
7 Supported by T m) EOF to app

system call
shutdown instead

ACK of FIN
of close

‘_da} - Appwrite

App read
- Ack of data

FIN
EOFtoapp ¢ml— {m App close

ACK of Fl

TIME_WAIT
(30s - 2m)

Transport Layer 3-124

Connection states - Client

client application
initiates 2 TCP connection

wait 30 seconds

send SN

SYN_SENT

TIME_WAIT

receive FIN receive SYN & ACK
send ACK send ACK

FIN_WAIT_2 ESTABLISHED

client application
initiates close connection

send FIN

receive ACK
send nothing

FIN_WAIT_1

Transport Layer 3-125

Connection States - Server

server application
creates a listen socket

CLOSED

receive ACK
send nothing

LISTEN

LAST_ACK

receive SYMN
send FIN send SYN & ACK

h 4
SYN_RCVD

CLOSE_WAIT

receive ACK

send nothing
receive FIN

send ACK

ESTABLISHED

Transport Layer 3-126

Why TIME_WATIT?

0 MSL (Maximum Segment Lifetime): maximum time a
segment can live in the Internet
* no timers on IP packets! Only hop counter

+ RFC 793 specifies MSL=2min, but each implementation has its own
value (from 30s to 2min)

0 TIME_WAIT state: 2 x MSL

O allows to “clean” the network of delayed packets belonging to the
connection

O 2xMSL because a lost FIN_ACK implies a new FIN from server
0 during TIME_WALIT conn sock pair reserved

O many implementations even more restictive (local port non reusable)

O clearly this may be a serious problem when restarting server daemon
(must pause from 1 to 4 minutes...)

Transport Layer 3-127

Source port | Destination port

32 bit Sequence number

32 bit acknowledgement number

Header| _ 6bit [U[A[ETR[S[F . 2
length | Reserved |51§|‘?‘|§|111 Window size

checksum Urgent pointer

O RST (Reset)

O sent whenever a segment arrives and does not apparently belong to
the connection

O typical RST case: connection request arriving to port not in use
0 Sending RST within an active connection:
O allows aborting release of connection (versus orderly release)
+ any queued data thrown away
+ receiver of RST can notify app that abort was performed at other end

Transport Layer 3-128

Chapter 3 outline

3 3.1 Transport-layer 0 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and O segment structure
demultiplexing O reliable data transfer

7 3.3 Connectionless o flow control
transport: uDP O connection management

0 3.4 Principles of 0 3.6 Principles of

reliable data transfer congestion control
0 3.7 TCP congestion

control

Transport Layer 3-129

TCP reliable data transfer

0 TCP creates rdt O Retransmissions are
service on top of IP's triggered by:
unreliable service O timeout events

O Pipelined segments O duplicate acks

o Cumulative acks O Initially consider

o TCP uses single simplified TCP sender:

refransmission timer o ignore duplicate acks
O ignore flow control,

congestion control

Transport Layer 3-130

TCP sender events:

data rcvd from app:

O Create segment with
seq #

0 seq # is byte-stream
number of first data
byte in segment

O start timer if not
already running (think
of timer as for oldest
unacked segment)

0 expiration interval:
TimeOutInterval

timeout:

O retransmit segment
that caused timeout

O restart timer

Ack revd:

0 If acknowledges
previously unacked
segments

O update what is khown to
be acked

O start timer if there are
outstanding segments

Transport Layer 3-131

NextSegNum = InitialSegNum
SendBase = InitialSeqNum

loop (forever) { TCP

switch(event) sender‘
event: data received from application above D —

create TCP segment with sequence number NextSeqgNum (SlmEI Ifled)

if (timer currently not running)

start timer
pass segment to IP Comment:
NextSegNum = NextSegNum + length(data) WdBase-l: last
event: timer timeout cumulatively
retransmit not-yet-acknowledged segment with ack'ed byte
smallest sequence number Example:
start timer + SendBase-1=71;
y= 73, so the rcvr
event: ACK received, with ACK field value of y wants 73+ ;
if (y > SendBase) { y> SendBase, so
SendBase = y that new data is
if (there are currently not-yet-acknowledged segments)
start timer acked

}

} /* end of loop forever */

Transport Layer 3-132

TCP: retransmission scenarios

@Hos‘r A Host B@

Seqe
9=92, 8 byteg data
0
‘y
S

loss

Segsg
=92,
. 8 byteg data
0.
;xOV\‘N
SendBase

=100

+~— timeout——

time
lost ACK scenario

92 Timeouf—»l

Sendbase
=100
SendBase
=120

92 timeout—y+— Seq

eq=

("2}
SendBase
=120 i

premature timeout
time

Transport Layer 3-133

TCP retransmission scenarios (more)

B viost Host 8 | [l

Seq-.
9292, 8 bytes doty

A0
Seq=1 9, 2 p\O\/\

timeout ——

X S datg
loss
0
P\G\gﬁ\’l

time
Cumulative ACK scenario

SendBase
=120

Transport Layer 3-134

TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver

TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Immediately send single cumulative
ACK, ACKing both in-order segments

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Arrival of segment that
partially or completely fills gap

Immediate send ACK, provided that
segment startsat lower end of gap

Transport Layer 3-135

Fast Retransmit

0 Time-out period often
relatively long:

O long delay before
resending lost packet

O Detect lost segments
via duplicate ACKs.

O Sender often sends
many segments back-to-
back

O If segment is lost,
there will likely be many
duplicate ACKs.

0 If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:

o fast retransmit: resend
segment before timer
expires

Transport Layer 3-136

Fast retransmit algorithm:

if (y > SendBase) {
SendBase =y

start timer

}

else {

event: ACK received, with ACK field value of y

if (there are currently not-yet-acknowledged segments)

increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

}

resend segment with sequence number y

a duplicate ACK for

fast retransmit

already ACKed segment

Transport Layer 3-137

Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

0 3.4 Principles of
reliable data fransfer

o 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
0 3.6 Principles of
congestion control
0 3.7 TCP congestion
control

Transport Layer 3-138

TCP Flow Control

3 receive side of TCP
connection has a
receive buffer:

$— RoviWindow —f

data from
P

uthe
i
#——— RovBuffer ———

O app process may be
slow at reading from
buffer

application
process

~flow control
sender won't overflow
receiver's buffer by
transmitting too much,
too fast

O speed-matching
service: matching the
send rate to the
receiving app’s drain
rate

Transport Layer 3-139

TCP Flow control: how it works

b— RevWindow —f

O Revr advertises spare
room by including value
of RevWindow in
segments

0 Sender limits unACKed
data to ReviWindow

O guarantees receive
buffer doesn't overflow

application

//; i ;/4—’ process
i
{'7 RevBuffer 44
(Suppose TCP receiver
discards out-of-order
segments)
O spare room in buffer
RcvWindow

RcvBuffer-[LastByteRcvd -
LastByteRead]

data from
iy

Transport Layer 3-140

