
Computer
Networking: A Top
Down Approach

All material copyright 1996-2016
J.F Kurose and K.W. Ross, All Rights Reserved

7th edition
Jim Kurose, Keith Ross
Pearson/Addison Wesley
April 2016

Chapter 8
Security

8-1Security

Gabriele Saturni

saturni@di.uniroma1.it

These slides are adapted from the slides provided by Kurose-Ross Book

Chapter 8 roadmap

8.1 What is network security?
8.2 Principles of cryptography
8.3 Message integrity, authentication
8.4 Securing TCP connections: SSL
8.5 Network layer security: IPsec

8-2Security

What is network security?

8-3Security

What is network security?

8-4Security

What is network security?

8-5Security

What is network security?

confidentiality: only sender, intended receiver should
“understand” message contents
• sender encrypts message
• receiver decrypts message

authentication: sender, receiver want to confirm identity of
each other

message integrity: sender, receiver want to ensure message
not altered (in transit, or afterwards) without detection

non repudiation: a sender cannot deny having sent a
message

access and availability: services must be accessible and
available to users

8-6Security

Friends and enemies: Alice, Bob, Trudy
§ well-known in network security world
§ Bob, Alice (lovers!) want to communicate “securely”
§ Trudy (intruder) may intercept, delete, add messages

secure
sender s

secure
receiver

channel data, control
messages

data data

Alice Bob

Trudy

8-7Security

Who might Bob, Alice be?

§ … well, real-life Bobs and Alices!
§ Web browser/server for electronic transactions

(e.g., on-line purchases)
§ on-line banking client/server
§ DNS servers
§ routers exchanging routing table updates
§ other examples?

8-8Security

There are bad guys (and girls) out there!

Q: What can a “bad guy” do?
A: A lot! See section 1.6

• eavesdrop: intercept messages
• actively insert messages into connection
• impersonation: can fake (spoof) source address in

packet (or any field in packet)
• hijacking: “take over” ongoing connection by

removing sender or receiver, inserting himself in
place

• denial of service: prevent service from being used
by others (e.g., by overloading resources)

8-9Security

Chapter 8 roadmap

8.1 What is network security?
8.2 Principles of cryptography
8.3 Message integrity, authentication
8.4 Securing TCP connections: SSL
8.5 Network layer security: IPsec

8-10Security

The language of cryptography

m plaintext message
KA(m) ciphertext, encrypted with key KA

m = KB(KA(m))

plaintext plaintextciphertext

KA

encryption
algorithm

decryption
algorithm

Alice’s
encryption
key

Bob’s
decryption
key

KB

8-11Security

Breaking an encryption scheme

§ cipher-text only attack:
Trudy has ciphertext she
can analyze

§ two approaches:
• brute force: search

through all keys
• statistical analysis

§ known-plaintext attack:
Trudy has plaintext
corresponding to ciphertext
• e.g., in monoalphabetic

cipher, Trudy determines
pairings for a,l,i,c,e,b,o,

§ chosen-plaintext attack:
Trudy can get ciphertext for
chosen plaintext

8-12Security

Symmetric key cryptography

symmetric key crypto: Bob and Alice share same (symmetric)
key: K

§ e.g., key is knowing substitution pattern in mono alphabetic
substitution cipher

Q: how do Bob and Alice agree on key value?

plaintextciphertext

K S

encryption
algorithm

decryption
algorithm

S

K S

plaintext
message, m

K (m)
S

m = KS(KS(m))

8-13Security

Caesar cipher scheme

Simple encryption scheme

substitution cipher: substituting one thing for another
§ monoalphabetic cipher: substitute one letter for another

plaintext: abcdefghijklmnopqrstuvwxyz

ciphertext: mnbvcxzasdfghjklpoiuytrewq

Plaintext: bob. i love you. alice
ciphertext: nkn. s gktc wky. mgsbc

e.g.:

Encryption key: mapping from set of 26 letters
to set of 26 letters

8-15Security

Simple encryption scheme

substitution cipher: substituting one thing for another
§ monoalphabetic cipher: substitute one letter for another

plaintext: abcdefghijklmnopqrstuvwxyz

ciphertext: mnbvcxzasdfghjklpoiuytrewq

Plaintext: bob. i love you. alice
ciphertext: nkn. s gktc wky. mgsbc

e.g.:

Easy to break! These cipher does not change the
properties of the plaintext. Repeated letters in the
plaintext will correspond to repeated letters in the
ciphertext.

8-16Security

A more sophisticated encryption approach

§ n substitution ciphers, M1,M2,…,Mn

§ cycling pattern:
• e.g., n=4: M1,M3,M4,M3,M2; M1,M3,M4,M3,M2; ..

§ for each new plaintext symbol, use subsequent
substitution pattern in cyclic pattern
• dog: d from M1, o from M3, g from M4

Encryption key: n substitution ciphers, and cyclic
pattern

• key need not be just n-bit pattern

8-17Security

Symmetric key crypto: DES

DES: Data Encryption Standard
§ US encryption standard [NIST 1993]
§ 56-bit symmetric key, 64-bit plaintext input
§ block cipher with cipher block chaining
§ how secure is DES?

• DES Challenge: 56-bit-key-encrypted phrase decrypted
(brute force) in less than a day

• no known good analytic attack
§ making DES more secure:

• 3DES: encrypt 3 times with 3 different keys

8-18Security

Symmetric key
crypto: DES

initial permutation
16 identical “rounds” of

function application,
each using different 48
bits of key

final permutation

DES operation

8-19Security

AES: Advanced Encryption Standard

§ symmetric-key NIST standard, replaced DES
(Nov 2001)

§ processes data in 128 bit blocks
§ 128, 192, or 256 bit keys
§ brute force decryption (try each key) taking 1 sec

on DES, takes 149 trillion years for AES

8-20Security

Public Key Cryptography

symmetric key crypto
§ requires sender, receiver

know shared secret key
§ Q: how to agree on key in

first place (particularly if
never “met”)?

public key crypto
§ radically different

approach [Diffie-
Hellman76, RSA78]

§ sender, receiver do not
share secret key

§ public encryption key
known to all

§ private decryption key
known only to receiver

8-21Security

Public key cryptography

plaintext
message, m

ciphertextencryption
algorithm

decryption
algorithm

Bob’s public
key

plaintext
messageK (m)

B
+

K
B
+

Bob’s private
key

K
B
-

m = K (K (m))
B
+

B
-

8-22Security

Public key encryption algorithms

need K () and K () such that
B B
. .

given public key K , it should be
impossible to compute private
key K B

B

requirements:

1

2

RSA: Rivest, Shamir, Adelson algorithm

+ -

K (K (m)) = m
BB

- +

+

-

8-23Security

Prerequisite: modular arithmetic

§ x mod n = remainder of x when divide by n
§ facts:

[(a mod n) + (b mod n)] mod n = (a+b) mod n
[(a mod n) - (b mod n)] mod n = (a-b) mod n
[(a mod n) * (b mod n)] mod n = (a*b) mod n

§ thus
(a mod n)d mod n = ad mod n

§ example: x=14, n=10, d=2:
(x mod n)d mod n = 42 mod 10 = 6
xd = 142 = 196 xd mod 10 = 6

8-24Security

RSA: getting ready

§ message: just a bit pattern
§ bit pattern can be uniquely represented by an

integer number
§ thus, encrypting a message is equivalent to

encrypting a number
example:
§ m= 10010001 . This message is uniquely represented by

the decimal number 145.
§ to encrypt m, we encrypt the corresponding number,

which gives a new number (the ciphertext).

8-25Security

RSA: Creating public/private key pair

1. choose two large prime numbers p, q.
(e.g., 1024 bits each)

2. compute n = pq, z = (p-1)(q-1)

3. choose e (with e<n) that has no common factors
with z (e, z are “relatively prime”).

4. choose d such that ed-1 is exactly divisible by z.
(in other words: ed mod z = 1).

5. public key is (n,e). private key is (n,d).

K B
+ K B

-

8-26Security

RSA: encryption, decryption

0. given (n,e) and (n,d) as computed above

1. to encrypt message m (<n), compute
c = m mod ne

2. to decrypt received bit pattern, c, compute
m = c mod nd

m = (m mod n)e mod ndmagic
happens! c

8-27Security

Why does RSA work?

§ must show that cd mod n = m
where c = me mod n

§ fact: for any x and y: xy mod n = x(y mod z) mod n
• where n= pq and z = (p-1)(q-1)

§ thus,
cd mod n = (me mod n)d mod n

= med mod n
= m(ed mod z) mod n
= m1 mod n
= m

8-28Security

RSA: another important property

The following property will be very useful later:

K (K (m)) = m
BB

- +
K (K (m))BB

+ -
=

use public key first,
followed by
private key

use private key
first, followed by

public key

result is the same!

8-29Security

follows directly from modular arithmetic:

(me mod n)d mod n = med mod n
= mde mod n
= (md mod n)e mod n

K (K (m)) = m BB
- +

K (K (m))BB
+ -

=Why ?

8-30Security

Why is RSA secure?
§ suppose you know Bob’s public key (n,e). How

hard is it to determine d?
§ essentially need to find factors of n without

knowing the two factors p and q
• fact: factoring a big number is hard

8-31Security

Chapter 8 roadmap

8.1 What is network security?
8.2 Principles of cryptography
8.3 Message integrity, authentication
8.4 Securing TCP connections: SSL
8.5 Network layer security: IPsec

8-32Security

Message Integrity

§ In the previous slides we saw how encryption can
be used to provide confidentiality.

§ Now, we turn to the equally important
cryptography topic of providing message
authentication (or integrity).

§ Recall: message integrity means that a message m
was not compromised.

8-33Security

Cryptography Hash functions

§ A cryptography hash function H is required to
have the following property:

• It is computationally infeasible to find any two different
message x and y such that H(x) = H(y)

8-34Security

Dear Alice
Oh, how I have missed
you. I think of you all the
time! …(blah blah blah)

Hash
function

bvefjkhbvherbvhwi
erbvhewvhejwrbvj
hewrbvherwbvhew
rbvherwbvhberwvi

hw

Hash function algorithms
§ MD5 hash function widely used (RFC 1321)

• computes 128-bit message digest in 4-step process.
• arbitrary 128-bit string x, appears difficult to construct msg m

whose MD5 hash is equal to x
§ SHA-1 is also used

• US standard [NIST, FIPS PUB 180-1]
• 160-bit message digest

§ SHA-2 (better than SHA-1)
• US standard [NIST, FIPS PUB 180-2]
• stronger than SHA-1
• 256-bit message digest

§ SHA-3
• the stronger version of SHA algorithms
• US future standard [NIST, FIPS PUP 202]
• 384-bit message digest

8-35Security

Message Authentication Code
(MAC)

§ Based on hash function for guarantee message
integrity.

8-36Security

Digital signatures

§ In the previous slides we saw how encryption can be used
to provide confidentiality and message integrity.

§ Now, we turn to the equally important cryptography
topic of providing non-repudiation. The property that
ensure that a sender can not deny having sent a particular
message.

§ Digital Signature ensures this property.

8-37Security

Digital signatures

cryptographic technique analogous to hand-written
signatures:

§ sender (Bob) digitally signs document, establishing
he is document owner/creator.

§ verifiable, nonforgeable: recipient (Alice) can prove to
someone that Bob, and no one else (including Alice),
must have signed document

8-38Security

simple digital signature for message m:
§ Bob signs m by encrypting with his private key KB,

creating “signed” message, KB(m)-
-

Dear Alice
Oh, how I have missed
you. I think of you all the
time! …(blah blah blah)

Bob

Bob’s message, m

Public key
encryption
algorithm

Bob’s private
key

K B
-

Bob’s message,
m, signed

(encrypted) with
his private key

m,K B
- (m)

Digital signatures

8-39Security

-

Alice thus verifies that:
§ Bob signed m
§ no one else signed m
§ Bob signed m and not m‘

non-repudiation:
ü Alice can take m, and signature KB(m) to court and

prove that Bob signed m

-

Digital signatures
§ suppose Alice receives msg m, with signature: m, KB(m)

§ Alice verifies m signed by Bob by applying Bob’s public key KB

to KB(m) then checks KB(KB(m)) = m.

§ If KB(KB(m)) = m, whoever signed m must have used Bob’s
private key.

-

--

+

+ +

8-40Security

§ What we had showed:
ü how guarantee the confidentiality.
ü how guarantee the integrity.
ü An entity that sent a message can not entity

can not deny it.

§ But… still… what can be done for
authenticate the entity?

Entity authentication

8-41Security

Messages

Authentication

Goal: Bob wants Alice to “prove” her identity to him

Protocol ap1.0: Alice says “I am Alice”

Failure scenario??
“I am Alice”

8-42Security

in a network,
Bob can not “see” Alice,
so Trudy simply declares

herself to be Alice“I am Alice”

Authentication

Goal: Bob wants Alice to “prove” her identity to him

Protocol ap1.0: Alice says “I am Alice”

8-43Security

Authentication: another try

Protocol ap2.0: Alice says “I am Alice” in an IP packet
containing her source IP address

Failure scenario??

“I am Alice”Alice’s
IP address

8-44Security

Trudy can create
a packet
“spoofing”

Alice’s address“I am Alice”Alice’s
IP address

Authentication: another try

Protocol ap2.0: Alice says “I am Alice” in an IP packet
containing her source IP address

8-45Security

Protocol ap3.0: Alice says “I am Alice” and sends her
secret password to “prove” it.

Failure scenario??

“I’m Alice”Alice’s
IP addr

Alice’s
password

OKAlice’s
IP addr

Authentication: another try

8-46Security

playback attack: Trudy
records Alice’s packet

and later
plays it back to Bob

“I’m Alice”Alice’s
IP addr

Alice’s
password

OKAlice’s
IP addr

“I’m Alice”Alice’s
IP addr

Alice’s
password

Protocol ap3.0: Alice says “I am Alice” and sends her
secret password to “prove” it.

Authentication: another try

8-47Security

Authentication: yet another try

Protocol ap3.1: Alice says “I am Alice” and sends her
encrypted secret password to “prove” it.

Failure scenario??

“I’m Alice”Alice’s
IP addr

encrypted
password

OKAlice’s
IP addr

8-48Security

record
and

playback
still works!

“I’m Alice”Alice’s
IP addr

encrypted
password

OKAlice’s
IP addr

“I’m Alice”Alice’s
IP addr

encrypted
password

Authentication: yet another try

Protocol ap3.1: Alice says “I am Alice” and sends her
encrypted secret password to “prove” it.

8-49Security

Goal: avoid playback attack

Failures, drawbacks?

nonce: number (R) used only once-in-a-lifetime
ap4.0: to prove Alice “live”, Bob sends Alice nonce, R. Alice

must return R, encrypted with shared secret key

“I am Alice”

R

K (R)A-B
Alice is live, and
only Alice knows

key to encrypt
nonce, so it must

be Alice!

Authentication: yet another try

8-50Security

Authentication: ap5.0
ap4.0 requires shared symmetric key and … how they

agree on that key?
§ can we authenticate using public key techniques?
ap5.0: use nonce, public key cryptography

“I am Alice”
R

Bob computes

K (R)A
-

“send me your public key”

K A
+

(K (R)) = RA
-

K A
+

and knows only Alice
could have the private
key, that encrypted R

such that
(K (R)) = RA

-
K A

+

8-51Security

ap5.0: security hole
man (or woman) in the middle attack: Trudy poses as Alice

(to Bob) and as Bob (to Alice)

I am Alice I am Alice
R

T
K (R)-

Send me your public key

TK
+

AK (R)-

Send me your public key

AK +

TK (m)
+

T
m = K (K (m))+

T
-

Trudy gets

sends m to Alice
encrypted with

Alice’s public key

AK (m)
+

A
m = K (K (m))+

A
-

R

8-52Security

difficult to detect:
§ Bob receives everything that Alice sends, and vice versa.

(e.g., so Bob, Alice can meet one week later and recall
conversation!)

§ problem is that Trudy receives all messages as well!

ap5.0: security hole
man (or woman) in the middle attack: Trudy poses as Alice (to

Bob) and as Bob (to Alice)

8-53Security

Public-key certification
§ motivation: Trudy plays pizza prank on Bob

• Trudy creates e-mail order:
Dear Pizza Store, Please deliver to me four pepperoni
pizzas. Thank you, Bob

• Trudy signs order with her private key
• Trudy sends order to Pizza Store
• Trudy sends to Pizza Store her public key, but says it’s

Bob’s public key
• Pizza Store verifies signature; then delivers four

pepperoni pizzas to Bob
• Bob doesn’t even like pepperoni

8-54Security

Certification authorities
§ certification authority (CA): binds public key to particular

entity, E.
§ E (person, router) registers its public key with CA.

• E provides “proof of identity” to CA.
• CA creates certificate binding E to its public key.
• certificate containing E’s public key digitally signed by CA – CA

says “this is E’s public key”

Bob’s
public

key K B
+

Bob’s
identifying

information

digital
signature
(encrypt)

CA
private

key K CA
-

K B
+

certificate for
Bob’s public key,

signed by CA

8-55Security

§ when Alice wants Bob’s public key:
• gets Bob’s certificate (Bob or elsewhere).
• apply CA’s public key to Bob’s certificate, get Bob’s

public key

Bob’s
public

key K B
+

digital
signature
(decrypt)

CA
public

key
K CA

+

K B
+

Certification authorities

8-56Security

Chapter 8 roadmap

8.1 What is network security?
8.2 Principles of cryptography
8.3 Message integrity
8.4 Securing TCP connections: SSL
8.5 Network layer security: IPsec

8-57Security

SSL: Secure Sockets Layer
§ widely deployed security

protocol
• supported by almost all

browsers, web servers
• https
• billions $/year over SSL

§ mechanisms: [Woo 1994],
implementation: Netscape

§ variation -TLS: transport layer
security, RFC 2246

§ provides
• confidentiality
• integrity
• authentication

§ original goals:
• Web e-commerce

transactions
• encryption (especially

credit-card numbers)
• Web-server authentication
• optional client

authentication
• minimum problems in

doing business with new
merchant

§ available to all TCP
applications
• secure socket interface

8-58Security

SSL and TCP/IP

Application

TCP

IP

normal application

Application

SSL

TCP

IP

application with SSL

§ SSL provides application programming interface
(API) to applications

§ C and Java SSL libraries/classes readily available

8-59Security

Toy SSL: a simple secure channel

§ handshake: Alice and Bob use their certificates,
private keys to authenticate each other and
exchange shared secret

§ key derivation: Alice and Bob use shared secret to
derive set of keys

§ data transfer: data to be transferred is broken up
into series of records

§ connection closure: special messages to securely
close connection

8-60Security

Toy: a simple handshake

MS: master secret
EMS: encrypted master secret

hello

public key certificate

KB
+(MS) = EMS

8-61Security

Toy: key derivation
§ considered bad to use same key for more than one

cryptographic operation
• use different keys for message authentication code (MAC) and

encryption
§ four keys:

• Kc = encryption key for data sent from client to server
• Mc = MAC key for data sent from client to server
• Ks = encryption key for data sent from server to client
• Ms = MAC key for data sent from server to client

§ keys derived from key derivation function (KDF)
• takes master secret and (possibly) some additional random data

and creates the keys

8-62Security

Toy: data records
§ why not encrypt data in constant stream as we write it to

TCP?
• where would we put the MAC? If at end, no message integrity

until all data processed.
• e.g., with instant messaging, how can we do integrity check over

all bytes sent before displaying?
§ instead, break stream in series of records

• each record carries a MAC
• receiver can act on each record as it arrives

§ issue: in record, receiver needs to distinguish MAC from
data
• want to use variable-length records

length data MAC

8-63Security

Toy: sequence numbers

§ problem: attacker can capture and replay record
or re-order records

§ solution: put sequence number into MAC:
§ MAC = MAC(Mx, sequence||data)
§ note: no sequence number field

§ problem: attacker could replay all records
§ solution: use nonce

8-64Security

Toy: control information

§ problem: truncation attack:
• attacker forges TCP connection close segment
• one or both sides thinks there is less data than there

actually is.
§ solution: record types, with one type for closure

• type 0 for data; type 1 for closure
§ MAC = MAC(Mx, sequence||type||data)

length type data MAC

8-65Security

Toy SSL: summary

hello

certificate, nonce

KB
+(MS) = EMS

type 0, seq 1, data
type 0, seq 2, data

type 0, seq 1, data

type 0, seq 3, data
type 1, seq 4, close

type 1, seq 2, close

en
cr

yp
te

d

bob.com

8-66Security

Real SSL: handshake (1)

Purpose
1. server authentication
2. negotiation: agree on crypto algorithms
3. establish keys
4. client authentication (optional)

8-67Security

Real SSL: handshake (2)
1. client sends list of algorithms it supports, along with

client nonce
2. server chooses algorithms from list; sends back:

choice + certificate + server nonce
3. client verifies certificate, extracts server’s public

key, generates pre_master_secret, encrypts with
server’s public key, sends to server

4. client and server independently compute encryption
and MAC keys from pre_master_secret and nonces

5. client sends a MAC of all the handshake messages
6. server sends a MAC of all the handshake messages

8-68Security

Real SSL: handshaking (3)

last 2 steps protect handshake from tampering
§ client typically offers range of algorithms, some

strong, some weak
§ man-in-the middle could delete stronger algorithms

from list
§ last 2 steps prevent this

• last two messages are encrypted

8-69Security

Real SSL: handshaking (4)

§ why two random nonces?
§ suppose Trudy sniffs all messages between Alice

& Bob
§ next day, Trudy sets up TCP connection with

Bob, sends exact same sequence of records
• Bob (Amazon) thinks Alice made two separate orders

for the same thing
• solution: Bob sends different random nonce for each

connection. This causes encryption keys to be different
on the two days

• Trudy’s messages will fail Bob’s integrity check

8-70Security

SSL record protocol

data

data
fragment

data
fragmentMAC MAC

encrypted
data and MAC

encrypted
data and MAC

record
header

record
header

record header: content type; version; length

MAC: includes sequence number, MAC key Mx

fragment: each SSL fragment 214 bytes (~16 Kbytes)
8-71Security

SSL record format

content
type SSL version length

MAC

data

1 byte 2 bytes 3 bytes

data and MAC encrypted (symmetric algorithm)

8-72Security

handshake: ClientHello

handshake: ServerHello

handshake: Certificate

handshake: ServerHelloDone

handshake: ClientKeyExchangeChangeCipherSpec

handshake: Finished

ChangeCipherSpec

handshake: Finished

application_data

application_data

Alert: warning, close_notify

Real SSL
connection

TCP FIN follows

everything
henceforth

is encrypted

8-73Security

Key derivation
§ client nonce, server nonce, and pre-master secret input

into pseudo random-number generator.
• produces master secret

§ master secret and new nonces input into another
random-number generator: “key block”

§ key block contains:
• client MAC key
• server MAC key
• client encryption key
• server encryption key
• client initialization vector (IV) (used by the encryption schema

initialization)
• server initialization vector (IV) (used by the encryption schema

initialization)

8-74Security

