
P2P Applications
Reti di Elaboratori

Corso di Laurea in Informatica
Sapienza – Università di Roma

Versione originale delle slides fornita da Dora Spenza e Marco Barbera

●  Late 80’s
●  Became popular in 1999-2001 thanks to
●  Napster was shut down by court order in 2001 due to

copyright violation
●  New P2P clients were developed: Gnutella, Kazaa, BitTorrent
●  As of today, 43-70% of Internet traffic is generated by P2P

applications (Feb 2009)

P2P Paradigm

Peer-to-peer (P2P) networks

●  A type of network in which each
workstation (peer) has equivalent
capabilities and responsibilities

●  Differs from client/server architectures,

in which some computers are
dedicated to serving the others

Server-based Network

P2P Network

Peer-to-peer (P2P) networks
●  Each peer can act as a server or as

client
●  Each peer does not necessarily have

to be always active, see for example
BitTorrent

●  Peers join and leave the network
continuously

●  P2P networks are very dynamic
networks!!

Server-based Network

P2P Network

P2P networks: Goal
Server-based Network

P2P Network

●  Increase scalability
●  Increase resources availability
●  Increase fault-tolerance
●  Cost reduction
●  Increase peer privacy
●  Provide a framework for dynamic

scenarios

P2P networks: Challenges

Server-based Network

P2P Network

●  Peers are not reliable (e.g.,
disconnections, low bandwidth)

●  Peers are heterogeneous, with
different computational power and
storage capacity

●  Resource discovery
●  Security and resource integrity

●  P2P networks available today come in different flavours
●  They can be classified depending on how the overlay network of peers is

organized
●  Unstructured networks (e.g., GNUTella, Kazaa): do not impose any

topology on the overlay network (i.e., peers connect randomly to each
other). Searching is performed by flooding the network with queries

●  Structured networks (e.g., Kad, certain flavours of BitTorrent): typically a
Distributed Hash Table (DHT) allowing distributed and efficient search of
peers with specific content

P2P Flavours

●  Hybrid P2P networks, that mix P2P and client/server architectures:
○  to simplify the join to the network of a new peer (bootstrap problem)
○  to improve resource discovery

●  Example: A (set of) server(s) provide a centralized resource index (e.g.,
Napster):
○  Resource discovery is straightforward, but…
○  Single point of failure
○  Performance bottleneck and infrastructure cost

P2P Flavours

●  Hierarchical P2P networks (e.g., Skype)
●  There are special peers called super-peer with additional functionalities

○  Usually selected among the more “powerful” peer nodes
○  Useful to simplify resource discovery
○  Each peer is connected to a super-peer that manage a local resource

index
○  If a peer requests a resource and the resource is not on the local

index, the super-peer forwards the request in flooding to other super-
peers

○  Flooding limited between super-peers à greater efficiency…
○  …and local index improves searching performances!!

P2P Flavours

An alternative to content delivery: CDN
●  A Content Delivery Networks (CDN) is a system of servers

distributed across the Internet
●  Goal: provide third-party contents to end-users with high

availability and cost
●  Key idea: content replication close to end-users
●  Example: Akamai

○  170000 servers in 102 countries
○  Akamai delivers between 15-30% of all Web traffic
○  Akamai delivers over 2 trillion daily Internet interactions

Example: P2P vs CDN
●  Lower costs
●  More scalable
●  P2P networks can take advantage of the

upload bandwidth capacity of the clients
(peers) that are downloading a given content

●  Peers in a P2P network become part of a
big, decentralized (and potentially very
efficient) CDN

●  However, a P2P network is not always easy
to manage and QoS can be a problem

Server-based Network

P2P Network

Understanding P2P protocols

BitTorrent
●  P2P file distribution system
●  Designed and implemented (Python) by

Bram Cohen in 2001
●  Dozen of free clients
●  January 2012: 150 million active users
●  Used to distribute large amounts of data over

the Internet: not only media content, but also
Linux distributions, scientific data sets, ...

BitTorrent overview

●  A separate torrent for each file
●  Peers simultaneously upload and download

pieces of file within the torrent
●  The set of all active peers in a torrent

is called the swarm

Two types of peers
For each torrent the set of active peers is divided
into:

Seeds: clients that have a complete copy of
the file and that continue to serve other peers

Leechers: clients that are still downloading
the file (Alice)

How to download a file?
●  Users need to discover which peers hold a copy

of the file (at least a seeder!)
●  Search for a .torrent file on the Web
●  Torrent file include the address of a centralized

server (the tracker) that helps peers finding
each other

●  Connect to the tracker and receive the list of
peers having a copy of the file

Discovering peers for a file F

Download torrent

Tracker server

Get tracker IP address from torrent and
connect to tracker

Search the Web and find a .torrent file for file F

Alice

Tracker sends back list of peers (50)

.torrent

The Tracker
●  Not involved in the actual distribution of files!
●  Keeps information about peers currently

active
●  Peers report their state to the tracker every

30 minutes, and when joining or leaving the
network

●  New clients receive from the tracker the IP
address of 50 randomly chosen active peers

Contacting peers
●  Once received the list of IP addresses from

the tracker, Alice tries to establish a TCP
connection with each of them

●  Peer set: peers to which Alice is connected
●  It changes over time!
●  If nodes in the peers set become less than

20, Alice contacts the tracker again to obtain
a new list

File chunks
●  In BitTorrent files are divided into pieces (chunks) of size between

64 KB and 1 MB (typically 256 Kb)

●  When Alice enters the torrent for file F, she has no chunks
●  Each peer in the peers set have a subset of chunks from F
●  Alice periodically asks each node in the peers set for the list of

chunks they have

File F

Peer 3

Peer 2

Peers send their chunks list to Alice

Peers set

Alice

A

whole file: A, B, C, D

B, C

Peer 1

Peer 3

Peer 2

Multiple simultaneous downloads

Peers set

Alice

Send me A

Send me C, D

Send me B

Peer 1

Downloading chunks
●  Alice downloads chunks from multiple peers

and keeps track of the download rate from each
of them

●  In which order file chunks are downloaded?
●  (Local) rarest first: based on the chunks list

received by her peers set, Alice determines
which chunk (among those she does not have)
is the rarest one in her peers set

Downloading rarest first
●  Chunks that are more common are left for later
●  By replicating the rarest chunks as quickly as possible,

the risk of getting them completely lost as current peers
leave the torrent is minimized

Exception
●  Random first: when a new user joins the torrent, the

first chunks to download are randomly selected, as rare
chunks, being usually present on only one peer, would
be downloaded more slowly

Uploading chunks
●  As soon as Alice downloads her first chunk,

she can start uploading to other peers
●  Alice has a limited number of upload slots to

allocate to other peers
●  How to choose which peers to serve?
●  Tit for tat: exchanging upload bandwidth for

download bandwidth

Trading chunks
●  Alice continuously measures her download

rate from the other peers
●  She uploads chunks to the 4 peers from

which she is downloading at the highest rate
●  Every 10 seconds she recalculates the four

top peers
●  In addition, every 30 seconds she picks a

peer at random and uploads chunks to her

Choking & Unchoking
●  The five peers to which Alice uploads are said to be

unchoked
●  All the other peers in the swarm are choked, i.e., they

do not receive any chunk from Alice
●  Unchoking a random peer every 30 seconds (optimistic

unchoking):
○  ensures that newcomers get a chance to join the

swarm
○  allows to potentially discover better partners

Optimistic unchoking

1.  Alice

optimistically
unchokes Bob

2.  Alice becomes
one of Bob’s top
4

3.  Bob sends data
to Alice

4.  Alice becomes
one of Bob’s top
4

BitTorrent Pros and Cons
Pros:
●  Proficiently uses partially downloaded files
●  Discourages free-loading by rewarding fast uploaders
●  Works well for hot content

Cons:
●  High latency and overhead for small files
●  Less useful for unpopular content
●  Does not support streaming
●  Leech problem
●  Not a pure P2P protocol: single point of failure (the tracker)

Understanding P2P protocols

Spotify: Overview

●  Spotify is a peer-assisted on-demand
music streaming service

●  Active users: Over 60 million
●  Number of songs: Over 30 million
●  Number of songs added per day: Over

20,000
●  Available in more than 58 countries
●  Efficient: Only ~ 250ms playback latency

on average!

Spotify: Overview

●  Spotify uses a proprietary protocol, but:
○  some of its internals have been described

by researchers working at Spotify
 (http://www.csc.kth.se/~gkreitz/spotify-p2p10/)
○  a third-party OSS alternative client has

been released (http://despotify.sourceforge.net/)
○  … but since September 2013, Despotify

is not compatible anymore with Spotify :-(

Spotify: Architecture

●  Spotify uses a hybrid content distribution method,
combining:
○  a client-server access model
○  a P2P network of clients

●  Main advantage: only ~ 8.8% of music data comes
from the spotify servers! The rest is shared among
the peers (although mobile devices do not participate
to the P2P network)

●  Possible drawbacks:
○  playback latency (i.e., the time the user has to

wait before the track starts playing)
○  (potentially) complex design

Spotify: P2P Network
●  Spotify uses an unstructured P2P overlay topology.

○  the network is built and maintained by means of trackers (similar to BitTorrent)
○  no super peers with special maintenance functions (as opposite to Skype)
○  no Distributed Hash Table to find peers/content (as opposite to Kad)
○  Discovery messages get forwarded to other peers for two hops at most

●  Advantages:
○  keeps the protocol simple
○  keeps the bandwidth overhead on clients low
○  reduces latency

●  This is possible because Spotify can leverage on a centralized and fast CDN in the
backend (as opposite to the completely distributed P2P networks)

Spotify: Caching
●  Spotify clients store the already played tracks in a cache. By default, the cache

uses at most 10% of disk space (capped to 10GB, but never less than 50MB).
●  Around 56% of clients have a maximum cache size of 5GB.

○  advantage: increases the chances that a client can get a track from the P2P
network (lower load on the Spotify servers).

○  advantage: reduces the chances that a client has to re-download already
played tracks.

○  drawback: impacts on the users’ disk
■  an LRU cache-eviction policy is used that removes the Least Recently

Used (i.e., played) track.
■  caches are large (as compared to the typical track size), so this is not a

big deal.

Spotify: Sharing Tracks

●  A client cannot upload a track to its peers unless it has the whole track
○  advantage: this choice greatly simplifies the protocol and keeps the

overhead low, as clients do not have to communicate (to their peers or
to the server) what parts of a track they have.

○  drawback: reduces the number of peers a client can download a track
from (i.e., slower downloads).
■  tracks are small though (few MB each), so this has a limited effect

Spotify: Locating Peers

●  There are two ways a client can locate the peers:
○  ask the tracker servers
○  ask the other peers

●  To balance the load among its tracker servers a peer randomly selects which
server to connect to.

●  Each server is responsible for a separate and independent P2P network of
clients.
○  advantage: does not require to manage inconsistencies between the

servers’ view of the P2P network
○  advantage: the architecture scales up nicely (at least in principle). If more

users join Spotify and the servers get clogged, just add a new server (and
a new P2P network)

●  To keep the discussion simple, we assume there is only one server.

Spotify: Locating Peers (tracker)

Spotify: Locating Peers (tracker)
●  The server maintains a tracker, similarly to BitTorrent.

○  as opposite to other systems, however, the server does not keep
track of all the peers who can serve each track

○  rather, it keeps a list of the ~ 20 most recent clients that played each
track

○  clients do not report to the server the content of their caches!
●  Advantages:

○  less resources on the server side
○  simplifies the implementation of the tracker

●  Drawback: only a fraction of the peers can be located through the tracker
○  this is not a big issue, since clients can ask the other peers (next slide)

Spotify: Locating Peers (P2P)
●  Each client is connected to a set of neighbors (other clients) in the P2P

network.
○  these are the peers the client has previously uploaded a track to, or

has previously downloaded a track from
●  When a new track has to be downloaded, a client can search its

neighborhood for peers that have stored the track in their cache
●  The peers can, in turn, forward the search request to their own peers in the

network
○  the process stops at hop distance 2 in the overlay network

●  each query has a unique ID, to allow ignoring duplicate queries

Spotify: Locating Peers (P2P)

neighborhood
two-hops-distant peers

client

other peers

Spotify: Neighborhood Maintenance
●  A client uploads to at most 4 peers at any given time

○  helps Spotify behaving nicely with concurrent application streams (e.g., browsing)
●  Connections to peers do not get closed after a download/upload

○  advantage: reduces time to discover new peers when a new track has to be played
○  drawback: keeping the state required to maintain a large number of TCP

connections to peers is expensive (in particular for home routers acting as stateful
firewall and Network Address Translation (NAT) devices)

●  To keep the overhead low, clients impose both a soft and a hard limit to the number of
concurrent connections to peers (set to 50 and 60 respectively)
○  when the soft limit is reached, a client stops establishing new connections to other

peers (though it still accepts new connections from other peers)
○  when the hard limit is reached, no new connections are either established or

accepted

Spotify: Neighbor Maintenance

●  When the soft limit is reached, the client starts pruning its connections, leaving some
space for new ones.

●  To do so, the client computes an utility of each connected peer by considering,
among the other factors:
○  the number of bytes sent (received) from the peer in the last 60 (respectively

10) minutes
○  the number of other peers the peer has helped discovering in the last 10

minutes
●  Peers are sorted by their utility, and the peers with the least total scores are

disconnected.

Spotify: Playing a Track
●  The main objective is to keep the playback latency low

○  playback latency: time to wait before the track can be played smoothly
(like buffering time on Youtube)

●  Around 61% of tracks are played in a predictable order (i.e., the previous
track has finished, or the user has skipped to the next track)
○  playback latency can be reduced by predicting what is going to be

played next.
●  The remaining 39% are played in random order (e.g., the user suddenly

changes album, or playlist)
○  predicting what the user is going to play next is too hard. Playback

latency may be higher

Spotify: Random Access

●  When tracks are played in an unpredictable (random) order, fetching them
just using the P2P network would negatively impact the playback delay.

●  Why?
○  searching for peers who can serve the track takes time (mostly

because of multiple messages need to be exchanged with each peer)
○  some peers may have poor upload bandwidth capacity (or may be

busy uploading the track to some other client)
○  a new connection to a peer requires some time before start working at

full rate (check out the lectures about TCP congestion control)

○  P2P connections are unreliable (e.g., may fail at any time)

Spotify: Random Access

●  How to solve the problem?
●  Possible solution: use the fast Spotify Content Delivery Network (CDN)

○  drawback: more weight on the Spotify CDN (higher monetary cost for
Spotify.. and possibly to its users too)

●  Better solution: use the Spotify CDN asking for the first 15 seconds of the track
only.
○  advantage: this buys a lot of time the client can use to search the peer-to-

peer network for peers who can serve the track.
○  advantage: the Spotify CDN is used just to recover from a critical situation

(in this case, when the user has started playing a random track)

Spotify: Sequential Access
●  When users listen to tracks in a predictable order (i.e., a playlist, or an album), the

client has plenty of time to prefetch the next track before the current one finishes.
●  Problem: you don’t really know whether the user is actually going to listen to the next

track or not. If the user plays a random track instead of the predicted one, you end up
having wasted bandwidth resources.

●  Solution: start prefetching the next track only when the previous track is about to
finish, as Spotify has experimentally observed that:
○  when the current track has only 30 seconds left, the user is going to listen to the

following one in 92% of the cases.
○  when 10 seconds are left, the percentage rises to 94%

●  The final strategy is:
○  30 seconds left: start searching for peers who can serve the next track
○  10 seconds left: if no peers are found (critical scenario!), use the Spotify CDN

Spotify: Regular Streaming
●  The client continuously monitors the playout buffer (i.e., the portion of the

song that has been downloaded so far but not already played)
●  If the buffer becomes too low (< 3 seconds) the client enters an

emergency mode, where:
○  it stops uploading to the other peers

■  this is especially useful in asymmetric connections (e.g., aDSL),
whose download capacity is negatively affected by concurrent
uploads (check out the lectures on TCP)

○  it uses the Spotify CDN
■  this helps in the case the client fails to find a reliable and fast set

of peers to download the chunks from

Spotify: Regular Streaming
●  Tracks are split in 16KB chunks.
●  A track can be simultaneously downloaded from the CDN and the P2P

network.
●  If both CDN and P2P are used, the client never downloads from the Spotify

CDN more than 15 seconds ahead of the current playback point.
●  To select the peers to request the chunks from, the client sorts them by

their expected download times and greedily requests the most urgent
chunk from the top peer.
○  expected download times are computed using the average download

speed received from the peers
○  if a peer happens to be too slow, another peer is used

Spotify: Conclusions
●  Spotify is a nice example of modern system for content distribution

○  it uses a CDN for centralized content delivery (recently switched to
Amazon Cloudfront, a relatively new competitor of Akamai)

○  its data centers are backed up by Amazon S3 (a popular choice of
many other systems too, such as Dropbox)

●  Mixing a centralized and a P2P network helps keeping the monetary cost
low (bandwidth does not come for free!)

●  The P2P network is very simple, thanks to the extremely efficient CDN that
backs it up

●  A few good key design choices help getting the most of the P2P network,
limiting the typical problems that may affect it (e.g., latency, reliability)

Spotify: Conclusions
●  Spotify probably keeps evolving as the number of users increase. e.g., it

recently switched to Amazon CloudFront:
○  https://aws.amazon.com/solutions/case-studies/spotify/,
○  https://d36cz9buwru1tt.cloudfront.net/aws-media-summit-2011/

aws_spotify_summit_pavley_SW_2.pdf

●  As any closed system, it is hard to get a clear and up-to-date view of its
internals. As a consequence, some of the internals we presented in this
overview may have been changed. Still, is a very interesting case study, from
which a number of lessons can be learned

●  A more complete technical overview of Spotify, and other interesting studies
can be found on G. Kreitz’s homepage: http://www.csc.kth.se/~gkreitz/

Want to know more?

Incentives Build Robustness in BitTorrent, Bram Cohen
Workshop on Economics of Peer-to-Peer Systems, June 2003

●  A journey inside BitTorrent:
https://www.youtube.com/watch?v=GTDRgzuW_No

●  Technical seminar by Bram Cohen on BitTorrent Live:
https://www.youtube.com/watch?v=VfbRhSrJ4qA

●  A Measurement Study of the Wuala On-line Storage Service:
http://www.eurecom.fr/en/publication/3772/download/rs-publi-3772.pdf

●  Kademilia a Peer-to-peer Information System based on the XOR metric:
http://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf

Want to know more?

