Chapter 4 Network Layer We thank for the support material Prof. Kurose-Ross All material copyright 1996-2012 © J.F Kurose and K.W. Ross, All Rights Reserved KUROSE ROSS Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 # Chapter 4: outline - 4.1 introduction - 4.2 virtual circuit and datagram networks - 4.3 what's inside a router - 4.4 IP: Internet Protocol - datagram format - IPv4 addressing - ICMP - IPv6 - 4.5 routing algorithms - link state - distance vector - hierarchical routing - 4.6 routing in the Internet - RIP - OSPF - BGP - 4.7 broadcast and multicast routing ## The Internet network layer host, router network layer functions: # IP datagram format IP protocol version 32 bits total datagram number length (bytes) header length head. type of length (bytes) service len for "type" of data fragment 16-bit identifier | flgs fragmentation/ offset reassembly max number time to upper header remaining hops layer live checksum (decremented at 32 bit source IP address each router) 32 bit destination IP address upper layer protocol to deliver payload to e.g. timestamp, options (if any) record route data taken, specify how much overhead? (variable length, list of routers typically a TCP or UDP segment) - 20 bytes of TCP - 20 bytes of IP - = 40 bytes + app layer overhead to visit. # IP fragmentation, reassembly - network links have MTU (max.transfer size) largest possible link-level frame - different link types, different MTUs - large IP datagram divided ("fragmented") within net - one datagram becomes several datagrams - "reassembled" only at final destination - IP header bits used to identify, order related fragments # IP fragmentation, reassembly # Chapter 4: outline - 4.1 introduction - 4.2 virtual circuit and datagram networks - 4.3 what's inside a router - 4.4 IP: Internet Protocol - datagram format - IPv4 addressing - ICMP - IPv6 - 4.5 routing algorithms - link state - distance vector - hierarchical routing - 4.6 routing in the Internet - RIP - OSPF - BGP - 4.7 broadcast and multicast routing ### IP addressing: introduction - IP address: 32-bit identifier for host, router interface - interface: connection between host/router and physical link - router's typically have multiple interfaces - host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11) - IP addresses associated with each interface ### IP addressing: introduction Q: how are interfaces actually connected? A: we'll learn about that in chapter 5, 6. A: wired Ethernet interfaces connected by Ethernet switches For now: don't need to worry about how one interface is connected to another (with no intervening router) ## Subnets #### *IP address: - subnet part high order bits - host part low order bits #### *what 's a subnet ? - device interfaces with same subnet part of IP address - can physically reach each other without intervening router network consisting of 3 subnets # Subnets #### recipe - to determine the subnets, detach each interface from its host or router, creating islands of isolated networks - each isolated network is called a subnet subnet mask: /24 ## Subnets how many? # IP addressing: CIDR #### CIDR: Classless InterDomain Routing - subnet portion of address of arbitrary length - address format: a.b.c.d/x, where x is # bits in subnet portion of address 200.23.16.0/23 # IP addresses: how to get one? Q: How does a host get IP address? - hard-coded by system admin in a file - Windows: control-panel->network->configuration->tcp/ip->properties - UNIX: /etc/rc.config - DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server - "plug-and-play" ### DHCP: Dynamic Host Configuration Protocol goal: allow host to dynamically obtain its IP address from network server when it joins network - can renew its lease on address in use - allows reuse of addresses (only hold address while connected/"on") - support for mobile users who want to join network (more shortly) #### **DHCP** overview: - host broadcasts "DHCP discover" msg [optional] - DHCP server responds with "DHCP offer" msg [optional] - host requests IP address: "DHCP request" msg - DHCP server sends address: "DHCP ack" msg #### DHCP client-server scenario ### DHCP client-server scenario ### DHCP: more than IP addresses # DHCP can return more than just allocated IP address on subnet: - address of first-hop router for client - name and IP address of DNS sever - network mask (indicating network versus host portion of address) #### DHCP: example - connecting laptop needs its IP address, addr of first-hop router, addr of DNS server: use DHCP - DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802. I Ethernet - Ethernet demuxed to IP demuxed, UDP demuxed to DHCP #### DHCP: example - DCP server formulates DHCP ACK containing client's IP address, IP address of first-hop router for client, name & IP address of DNS server - encapsulation of DHCP server, frame forwarded to client, demuxing up to DHCP at client - client now knows its IP address, name and IP address of DSN server, IP address of its first-hop router # DHCP: Wireshark output (home LAN) Message type: Boot Request (1) Hardware type: Ethernet Hardware address length: 6 request Hops: 0 Transaction ID: 0x6b3a11b7 Seconds elapsed: 0 Bootp flags: 0x0000 (Unicast) Client IP address: 0.0.0.0 (0.0.0.0) Your (client) IP address: 0.0.0.0 (0.0.0.0) Next server IP address: 0.0.0.0 (0.0.0.0) Relay agent IP address: 0.0.0.0 (0.0.0.0) Client MAC address: Wistron 23:68:8a (00:16:d3:23:68:8a) Server host name not given Boot file name not given Magic cookie: (OK) Option: (t=53,l=1) **DHCP Message Type = DHCP Request** Option: (61) Client identifier Length: 7; Value: 010016D323688A; Hardware type: Ethernet Client MAC address: Wistron 23:68:8a (00:16:d3:23:68:8a) Option: (t=50,l=4) Requested IP Address = 192.168.1.101 Option: (t=12,I=5) Host Name = "nomad" **Option: (55) Parameter Request List** Length: 11: Value: 010F03062C2E2F1F21F92B 1 = Subnet Mask; 15 = Domain Name 3 = Router: 6 = Domain Name Server 44 = NetBIOS over TCP/IP Name Server Message type: Boot Reply (2) reply Hardware type: Ethernet Hardware address length: 6 Hops: 0 Transaction ID: 0x6b3a11b7 Seconds elapsed: 0 Bootp flags: 0x0000 (Unicast) Client IP address: 192.168.1.101 (192.168.1.101) Your (client) IP address: 0.0.0.0 (0.0.0.0) Next server IP address: 192.168.1.1 (192.168.1.1) Relay agent IP address: 0.0.0.0 (0.0.0.0) Client MAC address: Wistron 23:68:8a (00:16:d3:23:68:8a) Server host name not given Boot file name not given Magic cookie: (OK) Option: (t=53,I=1) DHCP Message Type = DHCP ACK **Option:** (t=54,l=4) **Server Identifier = 192.168.1.1** Option: (t=1,I=4) Subnet Mask = 255.255.255.0 Option: (t=3,l=4) Router = 192.168.1.1 **Option: (6) Domain Name Server** Length: 12; Value: 445747E2445749F244574092; IP Address: 68.87.71.226; IP Address: 68.87.73.242; IP Address: 68.87.64.146 Option: (t=15,l=20) Domain Name = "hsd1.ma.comcast.net." # IP addresses: how to get one? Q: how does network get subnet part of IP addr? A: gets allocated portion of its provider ISP's address space | ISP's block | 11001000 | 00010111 | 00010000 | 00000000 | 200.23.16.0/20 | |----------------|-----------------|----------|------------------|----------|--| | Organization 1 | 11001000 | 00010111 | 0001001 | 00000000 | 200.23.16.0/23
200.23.18.0/23
200.23.20.0/23 | | | | | | | | | Organization 7 | <u>11001000</u> | 00010111 | <u>0001111</u> 0 | 0000000 | 200.23.30.0/2 | ### Hierarchical addressing: route aggregation hierarchical addressing allows efficient advertisement of routing information: #### Hierarchical addressing: more specific routes #### ISPs-R-Us has a more specific route to Organization I ### IP addressing: the last word... - Q: how does an ISP get block of addresses? - A: ICANN: Internet Corporation for Assigned Names and Numbers http://www.icann.org/ - allocates addresses - manages DNS - assigns domain names, resolves disputes