
Transport Layer 3-1

Chapter 3
Transport Layer

Computer
Networking: A Top
Down Approach

6th edition
Jim Kurose, Keith Ross

Addison-Wesley
March 2012

Reti degli Elaboratori
Canale AL
Prof.ssa Chiara Petrioli
a.a. 2019/2020

We thank for the support material Prof. Kurose-Ross
All material copyright 1996-2012

J.F Kurose and K.W. Ross, All Rights Reserved

Transport Layer 3-2

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

v full duplex data:
§ bi-directional data flow

in same connection
§ MSS: maximum segment

size
v connection-oriented:

§ handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange

v flow controlled:
§ sender will not

overwhelm receiver

v point-to-point:
§ one sender, one receiver

v reliable, in-order byte
steam:
§ no “message

boundaries”
v pipelined:

§ TCP congestion and
flow control set window
size

Transport Layer 3-3

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

receive window

Urg data pointerchecksum
FSRPAUhead

len
not

used

options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Transport Layer 3-4

TCP seq. numbers, ACKs
sequence numbers:
§byte stream “number” of
first byte in segment’s
data

acknowledgements:
§seq # of next byte
expected from other side

§cumulative ACK
Q: how receiver handles
out-of-order segments
§A: TCP spec doesn’t say,
- up to implementor source port # dest port #

sequence number
acknowledgement number

checksum
rwnd

urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not
yet sent

not
usable

window size
N

sender sequence number space

source port # dest port #

sequence number
acknowledgement number

checksum
rwnd

urg pointer

outgoing segment from sender

Transport Layer 3-5

TCP seq. numbers, ACKs

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Transport Layer 3-6

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
§ segment structure
§ reliable data transfer
§ flow control
§ connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-7

TCP reliable data transfer

v TCP creates rdt service
on top of IP’s unreliable
service
§ pipelined segments
§ cumulative acks
§ single retransmission

timer
v retransmissions

triggered by:
§ timeout events
§ duplicate acks

let’s initially consider
simplified TCP sender:
§ ignore duplicate acks
§ ignore flow control,

congestion control

Transport Layer 3-8

TCP sender events:
data rcvd from app:
v create segment with

seq #
v seq # is byte-stream

number of first data
byte in segment

v start timer if not
already running
§ think of timer as for

oldest unacked
segment

§ expiration interval:
TimeOutInterval

timeout:
v retransmit segment

that caused timeout
v restart timer
ack rcvd:
v if ack acknowledges

previously unacked
segments
§ update what is known

to be ACKed
§ start timer if there are

still unacked segments

Transport Layer 3-9

TCP sender (simplified)

wait
for

event

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

L

create segment, seq. #: NextSeqNum
pass segment to IP (i.e., “send”)
NextSeqNum = NextSeqNum + length(data)
if (timer currently not running)

start timer

data received from application above

retransmit not-yet-acked segment
with smallest seq. #

start timer

timeout

if (y > SendBase) {
SendBase = y
/* SendBase–1: last cumulatively ACKed byte */
if (there are currently not-yet-acked segments)

start timer
else stop timer

}

ACK received, with ACK field value y

Transport Layer 3-10

TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xtim
eo

ut

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

tim
eo

ut

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

Transport Layer 3-11

TCP: retransmission scenarios

X

cumulative ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=120

Transport Layer 3-12

TCP round trip time, timeout

Q: how to set TCP
timeout value?

v longer than RTT
§ but RTT varies

v too short: premature
timeout, unnecessary
retransmissions

v too long: slow reaction
to segment loss

Q: how to estimate RTT?
v SampleRTT: measured

time from segment
transmission until ACK
receipt
§ ignore retransmissions

v SampleRTT will vary, want
estimated RTT “smoother”
§ average several recent

measurements, not just
current SampleRTT

Transport Layer 3-13

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T

(m
illi

se
co

nd
s)

SampleRTT Estimated RTT

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT

v exponential weighted moving average
v influence of past sample decreases exponentially fast
v typical value: a = 0.125

TCP round trip time, timeout

RT
T

(m
illi

se
co

nd
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT
EstimatedRTT

time (seconds)

Transport Layer 3-14

v timeout interval: EstimatedRTT plus “safety margin”
§ large variation in EstimatedRTT -> larger safety margin

v estimate SampleRTT deviation from EstimatedRTT:
DevRTT = (1-b)*DevRTT +

b*|SampleRTT-EstimatedRTT|

TCP round trip time, timeout

(typically, b = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Transport Layer 3-15

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative
ACK, ACKing both in-order segments

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer 3-16

TCP fast retransmit

v time-out period often
relatively long:
§ long delay before

resending lost packet
v detect lost segments

via duplicate ACKs.
§ sender often sends

many segments back-
to-back

§ if segment is lost, there
will likely be many
duplicate ACKs.

if sender receives 3
ACKs for same data
(“triple duplicate ACKs”),
resend unacked
segment with smallest
seq #
§ likely that unacked

segment lost, so don’t
wait for timeout

TCP fast retransmit

(“triple duplicate ACKs”),

Transport Layer 3-17

X

fast retransmit after sender
receipt of triple duplicate ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

tim
eo

ut ACK=100

ACK=100
ACK=100

TCP fast retransmit

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

Transport Layer 3-18

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
§ segment structure
§ reliable data transfer
§ flow control
§ connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-19

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

application
OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering
(sender is sending)

from sender

receiver controls sender, so
sender won’t overflow
receiver’s buffer by transmitting
too much, too fast

flow control

Transport Layer 3-20

TCP flow control

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process
v receiver “advertises” free

buffer space by including
rwnd value in TCP header
of receiver-to-sender
segments
§ RcvBuffer size set via

socket options (typical default
is 4096 bytes)

§ many operating systems
autoadjust RcvBuffer

v sender limits amount of
unacked (“in-flight”) data to
receiver’s rwnd value

v guarantees receive buffer
will not overflow

receiver-side buffering

Transport Layer 3-21

Dynamic window - example
sender receiver Rec. Buffer

EMPTY
Exchanged param: MSS=2K,
sender ISN=2047, WIN=4K
(carried by receiver SYN)

0 4K
TCP CONN

SETUP
Application
does a 2K write 2K, seq=2048 0 4K

2K
Ack=4096, win=2048

Application
does a 3K write 2K, seq=4096

Sender blocked Ack=6144, win=0

0 4K
FULL

Application
does a 2K read

A B

Transport Layer 3-22

Dynamic window - example
sender receiver Rec. Buffer

EMPTY
Exchanged param: MSS=2K,
sender ISN=2047, WIN=4K
(carried by receiver SYN)

0 4K
TCP CONN

SETUP
Application
does a 2K write 2K, seq=2048 0 4K

2K
Ack=4096, win=2048

Application
does a 3K write 2K, seq=4096

Sender blocked Ack=6144, win=0

0 4K
FULL

Application
does a 2K readAck=6144, win=2048

0 4K
2K

Sender unblocks
may send last 1K 1K, seq=6144

Piggybacked in a packet sent from B to A

A B

Window thus source rate limited by reading speed and buffer size at the receiver

Transport Layer 3-23

Blocked sender deadlock problem
sender receiver Rec. Buffer

0 4K
FULL

Application read
0 4K

2K

BLOCKED

ACK=X, WIN=2K

REMAINS
BLOCKED
FOREVER!!

Since ACK does not
carry data, no ack
from sender
expected….

Transport Layer 3-24

Solution: Persist timer
r When win=0 (blocked sender), sender starts a “persist” timer

• Initially 500ms (but depends on implementation)
r When persist timer elapses AND no segment received during this

time, sender transmits “probe”
m Probe = 1byte segment; makes receiver reannounce next byte expected

and window size
• this feature necessary to break deadlock
• if receiver was still full, rejects byte
• otherwise acks byte and sends back actual win

r Persist time management (exponential backoff):
m Doubles every time no response is received
m Maximum = 60s

Transport Layer 3-25

The silly window syndrome

Ack=X, win=1
1 byte read

1 byte read

Network loaded with
tinygrams (40bytes

header + 1 payload!!)

Forever!

1 byte
Buffer FULLAck=X+1, win=0

Ack=X+1, win=1

Buffer FULL
1 byte

Ack=X+2, win=0

Buffer FULLFill up buffer until win=0

Anche se il ricevitore e’ veloce
A passare i dati al livello

applicativo inviare segmenti
piccoli in un bulk di dati

ha questo effetto

Transport Layer 3-26

Silly window solution
v Problem discovered by David Clark (MIT),

1982
v easily solved, by preventing receiver to

send a window update for 1 byte
v rule: send window update when:

• receiver buffer can handle a whole MSS
or

• half received buffer has emptied (if smaller than
MSS)

v sender also may apply rule
• by waiting for sending data when win low

