Computer Networking
C h a Pte r 3 A Top-Down Approach

TransEort Laxer

KUROSE | ROSS

Reti degli Elaboratori Computer

Canale AL . Networking:A Top
Prof.ssa Chiara Petrioli Down Approach

a.a. 2019/2020 6 edition

Jim Kurose, Keith Ross
Addison-Wesley
March 2012

We thank for the support material Prof. Kurose-Ross

All material copyright 1996-2012
© J.F Kurose and K.W. Ross, All Rights Reserved

Transport Layer 3-1

TCP: Overview Recs: 793,1122,1323, 2018, 2581

< point-to-point: < full duplex data:

" one sender, one receiver * bi-directional data flow
<+ reliable, in-order byte In same connection

steam: = MSS: maximum segment
“ size
" N0 message . .
boundaries” % connection-oriented:

+ pipelined: * handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

< flow controlled:

= sender will not
overwhelm receiver

" TCP congestion and
flow control set window
size

Transport Layer 3-2

TCP segment structure

32 bits

A

URG: urgent data

(generally not used)™_ source port # | dest port #

ACK: ACK #
valid

v

counting

by bytes

of data

(not segments!)

. Sequence number
\olqmwledgement number

PSH: push data now
(generally not used) —]

head
len wEAIEJBSF receive window

7

bytes

Urg data pointer rovr willing

RST SYN, FIN:/

to accept

op/(s (variable length)

connection estab
(setup, teardown
commands)

Internet/

checksum
(as in UDP)

/ application

data
(variable length)

Transport Layer 3-3

TCP seq. numbers, ACKs

outgoing segment from sender

Sequence numbers: source port # dest port #
i “ ’ sequence number
" b)’te stream number’ of acknowledgement number
. . ’
first byte in segment’s [| rwnd
checksum urg pointer
data
window size
acknowledgements: N
expected from other side
sender sequence number space

= cumulative ACK
. . sent sent not- usable not
Q: how receiver handles ACKed yet ACKed butnot usable
out-of-order segments (“in- yetsent
, flight™)

" A: TCP spec doesn t say, incoming segment to sender

- UP to |mplementor~ source port# | dest port #

sequence number

llll acknowledgement number

A rwnd

checksum urg pointer

Transport Layer 3-4

TCP seq. numbers, ACKs

Seq=42, ACK=79, data = ‘C’
host ACKs

receipt of
/ ‘C’ , eChoes
Seq=79, ACK=43, data = ‘C’ .,
host ACKs back ‘C

receipt

of echoed ~—___
C Seq=43, ACK=80___

simple telnet scenario

Transport Layer 3-5

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-6

TCP reliable data transfer

« TCP creates rdt service
on top of IP" s unreliable

service
" pipelined segments ,
= cumulative acks let s initially consider
 single retransmission simplified TCP sender:
timer " ignore duplicate acks
% retransmissions " ignore flow control,
triggered by: congestion control

" timeout events
" duplicate acks

Transport Layer 3-7

TCP sender events:

data rcvd from app:

% create segment with
seq #

% seq # is byte-stream
number of first data
byte in segment

» start timer if not
already running
= think of timer as for

oldest unacked
segment

= expiration interval:
TimeOutInterval

&

timeout;

% retransmit segment
that caused timeout

< restart timer
ack revd:

<+ if ack acknowledges
previously unacked
segments

" update what is known
to be ACKed

" start timer if there are
still unacked segments

Transport Layer 3-8

TCP sender (simplified)

data received from application above

create segment, seq. #: NextSegNum

pass segment to IP (i.e., “send”)
NextSegNum = NextSegNum + length(data)
if (timer currently not running)

A T start timer
NextSegqNum = InitialSeqNum

SendBase = InitialSeqNum

timeout

retransmit not-yet-acked segment
with smallest seq. #
start timer

ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y
[* SendBase—1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

}

Transport Layer 3-9

TCP: retransmission scenarios

Host A Ho
B/
4“:&’
\
Seq=92, 8 bytes of data
/
ACK=100

e—— timeout —*

S

x/

Seq=92, 8 bytes of data

/

ACK=100

—

lost ACK scenario

-

Host A

e ——

SendBase=92

—— timeout ——

SendBase=100
SendBase=120

SendBase=120

N/

Seq=92, 8 bytes of data

\

Seq=100, 20 bytes of dat

ACK=10/

ACK=120

/

Seq=92, 8
bytes of data\

/

ACK=120

\

premature timeout

Transport Layer 3-10

TCP: retransmission scenarios

I
(®)
n
~t
>

i

———— timeout —*

Host B
\
=
\
Seq=92, 8 bytes of data
\ \

Seq=100, 20 bytes of da

ACK=100
X
ACK=120

it

\

Seq=120, 15 bytes of data

/

cumulative ACK

Transport Layer 3-11

TCP round trip time, timeout

Q: how to set TCP Q how to estimate RTT?

timeout value? +» SampleRTT: measured
. time from segment
« longer than RTT transmission until ACK
= but RTT varies receipt
< too short: premature " [gnore retransmissions
timeout, unnecessary %~ SampleRTT wLII vary, want
retransmissions estimated RTT "smoother

. I] I . " average several recent
< 100 Iong: slow reaction measurements, not just

to segment loss current SampleRTT

Transport Layer 3-12

TCP round trip time, timeout

EstimatedRTT = (1- o) *EstimatedRTT + oa*SampleRTT

+ exponential weighted moving average
<+ influence of past sample decreases exponentially fast
+ typical value:a =0.125

RTT (milliseconds)

350 +

300

250

200 -

150

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr,

& sampleRTT

EstimatedRTT

8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconds) Transport Layer 3-13

TCP round trip time, timeout

% timeout interval: EstimatedRTT plus “safety margin~
" large variation in EstimatedRTT -> larger safety margin

<« estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-PB)*DevRTT +
B* | SampleRTT-EstimatedRTT |

(typically, B = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Transport Layer 3-14

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver TCP receiver action
arrival of in-order segment with delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,

expected seq # already ACKed send ACK

arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-15

TCP fast retransmit

% time-out period often
relatively long:

* long delay before
resending lost packet

+ detect lost segments
via duplicate ACKs.

= sender often sends

many segments back-
to-back

" if segment is lost, there

will likely be many
duplicate ACKs.

— JTCP fast retransmit —

if sender receives 3
ACKSs for same data

(“triple duplicate ACKs"),
resend unacked
segment with smallest
seq #

" |ikely that unacked

segment lost, so don ' t
wait for timeout

Transport Layer 3-16

TCP fast retransmit

Host A Host B
e S

— Seq=92, 8 bytes of data

Seq= 100%%
\X

|_ACK=100

timeout

TSeq=100, 20 bytes of data

A A

v

fast retransmit after sender

receipt of triple duplicate ACK
Transport Layer 3-17

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-18

TCP flow control —_—

application
application may process
remove data from S
TCP socket buffers FV | E_]Ep_“f‘—it'_o_n
TCP socket OS
receiver buffers
... slower than TCP N\
receiver is delivering —|—— ‘
(sender is sending) TCP
code
[l _ |
- IP
ﬂOW control code \
receiver controls sender, so T
sender won’ t overflow , R | =
receiver s buffer by transmitting from sender:
too much, too fast _
receiver protocol stack

Transport Layer 3-19

TCP flow control

. 11 o b4
» receiver advertises free

buffer space by including to application process
rwnd value in TCP header rlj
of receiver-to-sender f
segments RcvBuffer buffered data
= RevBuffer size set via
socket options (typical default rwn_i
is 4096 bytes) g / ///

" many operating systems
autoadjust RcvBuffer
< sender I|m|ts amount of
unacked (in-flight”) data to
receiver s rwnd value

TCP segment payloads

receiver-side buftfering

guarantees receive buffer
will not overflow

Transport Layer 3-20

Dynamic window - example

sender A
B Exchanged param: MSS=2K,
TCP CONN _ sender ISN=2047, WIN=4K
SETUP (carried by receiver SYN)
N~—

Application __}

does a 2K write

Application ——

does a 3K write

Sender blocked

|| Ack=4096, win=2048 |
[2K.seq=4096 |]

receiver

B Rec. Buffer

0 4K
EMPTY

O
LT

.‘._} Application

does a 2K read

Transport Layer 3-21

Dynamic window - example

sender A receiver o Rec. Buffer
B Exchanged param: MSS=2K, 0 4K
TCP CONN _ sender ISN=2047, WIN=4K EMPTY
SETUP (carried by receiver SYN)
N—

Application

does a 2K write | EKISEEZEI] |

Application ——

does a3Kwite]|~ [ZKIScaA0semm |
Sender blocked - —— Application

does a 2K read

1"

Sender unblocks i
may send last 1K

Wlndow thus source rate limited by reading speed and buffer size at the receiver

N

Blocked sender deadlock problem

sender receiver Rec. Buffer
- » Application read
ezt
okt W 0 ii
VA
..................... . A
| Since ACK does not
REMAINS carry data, no ack
BLOCKED from sender
FOREVER!! expected....
v v

Transport Layer 3-23

Solution: Persist timer

3 When win=0 (blocked sender), sender starts a “persist” timer
o Initially 500ms (but depends on implementation)

3 When persist timer elapses AND no segment received during this

time, sender transmits “probe”
O Probe = 1byte segment; makes receiver reannounce next byte expected
and window size

o this feature necessary to break deadlock
e if receiver was still full, rejects byte
o otherwise acks byte and sends back actual win

3 Persist time management (exponential backoff):

O Doubles every time no response is received
O Maximum = 60s

Transport Layer 3-24

The silly window syndrome

Network loaded with
tinygrams (40bytes
header + 1 payload!!)

Forever!

Anche se il ricevitore e’ veloce
A passare i dati al livello
applicativo inviare segmenti
piccoli in un bulk di dati

ha questo effetto

Fill up buffer until win

=o>

Transport Layer 3-25

Silly window solution

% Problem discovered by David Clark (MIT),
1982

<+ easily solved, by preventing receiver to
send a window update for | byte

+ rule: send window update when:
* receiver buffer can handle a whole MSS
or

* half received buffer has emptied (if smaller than
MSS)

% sender also may apply rule

* by waiting for sending data when win low

Transport Layer 3-26

