Computer Networking
C h a Pte r 3 A Top-Down Approach
\ — = o

Transport Laxer

KUROSE | ROSS

Reti degli Elaboratori Computer

Canale AL . Networking: A Top
Prof.ssa Chiara Petrioli Down Approach

a.a. 2013/2014 6t edition

Jim Kurose, Keith Ross
Addison-Wesley
March 2012

We thank for the support material Prof. Kurose-Ross

All material copyright 1996-2012
© J.F Kurose and K.W. Ross, All Rights Reserved

Transport Layer 3-1

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-2

TCP flow control

application may
remove data from
TCP socket buffers

... Slower than TCP
receiver is delivering
(sender is sending)

flow control
receiver controls sender, so

sender won’ t overflow
receiver s buffer by transmitting
too much, too fast

application
process

|
TCP socket 05

receiver buffers
N\

A

TCP
code

IP
code

|
ey |
I | !
from sender |

receiver protocol stack

Transport Layer 3-3

TCP flow control

G

*

L)

*

D)

L)

>

>

receiver “advertises’ free
buffer space by including
rwnd value in TCP header
of receiver-to-sender
segments

= RevBuffer size set via
socket options (typical default
is 4096 bytes)

" many operating systems
autoadjust RevBuffer
sender Iimits amount of
unacked (in-flight”) data to
receiver' s rwnd value

guarantees receive buffer
will not overflow

to application process

FI_‘

T
RcvBuffer

!

rwn
J_V_

buffered data

free buffer space

1

TCP segment payloads

receiver-side buffering

Transport Layer 3-4

Dynamic window - example
r g Rec. Buffer

sender A recei
—
Exchanged param: MSS=2K, 0 4K
TCP CONN _ sender ISN=2047, WIN=4K EMPTY
SETUP (carried by receiver SYN)
N~—

Application ___)

does a 2K write | (IBKISEER0AEN] |

Application AJ_

does a 3K write ||~ {IN2KiSeq=dgoen |
Sender blocked - ——) Application

does a 2K read

SO
LT

Transport Layer 3-5

Dynamic window - example
r g Rec. Buffer

sender A recei
—
Exchanged param: MSS=2K, 0 4K
TCP CONN _ sender ISN=2047, WIN=4K EMPTY
SETUP (carried by receiver SYN)

~—
Application ___)

does a 2K write | (IBKISEER0AEN] |

Application AJ

does a 3K write ||

Sender blocked —> Application

does a 2K read

Sender unblocks
may send last 1K

Window thus source rate limited by reading speed and buffer size at the receiver

Blocked sender deadlock problem

sender receiver Rec. Buffer

BLOCKED H
" \N\“,-;_\(—p Application read
poK=D ;_1 ii
VA
................... > A
| Since ACK does not
REMAINS carry data, no ack
BLOCKED from sender
FOREVER!! expected....
v v

Transport Layer 3-7

Solution: Persist timer

7 When win=0 (blocked sender), sender starts a “persist” timer
¢ Initially 500ms (but depends on implementation)

7 When persist timer elapses AND no segment received during this
time, sender transmits “probe”

O Probe = 1byte segment; makes receiver reannounce next byte expected
and window size

e this feature necessary to break deadlock
o if receiver was still full, rejects byte
o otherwise acks byte and sends back actual win
7 Persist time management (exponential backoff):
O Doubles every time no response is received
O Maximum = 60s

Transport Layer 3-8

The silly window syndrome

Network loaded with
tinygrams (40bytes
header + 1 payload!!)

Forever!

Anche se il ricevitore e’ veloce

A passare i dati al livello
applicativo inviare segmenti
piccoli in un bulk di dati
ha questo effetto

Fill up buffer until win[=0>

| AckeX,win=t [
[tbyte |}

|| Ackex+t,win=0 [
|| Acksx+t,win=t [

=

Transport Layer 3-9

Silly window solution

% Problem discovered by David Clark (MIT),
1982

< easily solved, by preventing receiver to
send a window update for | byte

<+ rule: send window update when:
* receiver buffer can handle a whole MSS
or

* half received buffer has emptied (if smaller than
MSS)

<+ sender also may apply rule

* by waiting for sending data when win low

Transport Layer 3-10

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-11

Connection Management

before exchanging data, sender/receiver “handshake”:

+ agree to establish connection (each knowing the other willing
to establish connection)

<« agree on connection parameters

application application

o

connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

ZV/ network network
Socket clientSocket = Socket connectionSocket =
newSocket ("hostname" , "port welcomeSocket.accept() ;

number") ;

Transport Layer 3-12

Connection establishment:
simplest approach (non TCP)

Sy

C (]
Onnectjqp, requegg

ﬂ

, -
m

V¥ time

time v

Transport Layer 3-13

Delayed duplicate problem

USER

What is this?
Oh my God!
Too late!!!

BANK

Application:
/\iransactional (sell
1000008 stocks)

Selling other 100000$

Transport Layer 3-14

Solution: three way handshake
Tomlinson 1975

SRC DEST

Onnectj,
1 requeg; (
Sequ)

¥ time

Transport Layer 3-15

Delayed duplicate detection

USER BANK

What is this?
Not too late:

Application:
transactional (selling stocks)

P —

??? What a case: request with
same indicator X? anyway...

What is this??? Should be
SEQ X, ACK Z!!!! STOP...

Ah ah! Got the problem!

Transport Layer 3-16

Three way handshake in TCP

SRC DEST
4 Ohnectijg,, re
Quest (SYN
ACTIVE >
=101)

OPEN (sN=350,AC)

" > PASSIVE

OPEN
Daty Segment¢ (Seq=10
. J
Vv time .
time v

Full duplex connection: opened in both ways
SRC: performs ACTIVE OPEN

DEST: Performs PASSIVE OPEN

Transport Layer 3-17

Initial Sequence Number

% Should change in time

= RFC 793 (but not all implementations are
conforming) suggests to generate ISN as a
sample of a 32 bit counter incrementing at 4us
rate (4.55 hour to wrap around—Maximum
Segment Lifetime much shorter)

% transmitted whenever SYN (Synchronize
sequence numbers) flag active

" note that both src and dest transmit THEIR
initial sequence number (remember: full
duplex)

% Data Bytes numbered from ISN+|
" necessary to allow SYN segment ack Transport Layer 3-18

Forbidden Resion

+ Obiettivo: due sequence number identici non devono trovarsi in rete allo stesso tempo

»
»

Sequence numbers

orbidden region

v

Time
» Aging dei pacchetti=> dopo un certo tempo MSL (Maximum Segment Lifetime) i pacchetti
eliminati dalla rete

« Initial sequence numbers basati sul clock
« Un ciclo del clock circa 4 ore; MSL circa 2 minuti.

+ =2 Se non ci sono crash che fanno perdere il valore dell’ultimo initial sequence number
usato NON ci sono problemi (si riusa lo stesso initial sequence number ogni 4 ore circa,
quando il segmento precedentemente trasmesso con quel sequence number non ¢ piu in
rete) e non si esauriscono in tempo <MSL i sequence number

+ =2 Cosa succede nel caso di crash? RFC suggerisce I'uso di un ‘periodo di silenzio’ in cui
non vengono inviati segmenti dopo il riavvio pari al’MSL (per evitare che pacchetti
precedenti connessioni siano in giro).

TCP Connection Management:Summary

Recall: TCP sender, receiver

establish “connection” before

exchanging data segments
initialize TCP variables:
" seq. #s
= buffers, flow control info
(e.g. RevWindow)
= MSS

client: connection initiator

Socket clientSocket = new
Socket ("hostname" , "port

number") ;

server: contacted by client

Socket connectionSocket =
welcomeSocket.accept() ;

Three way handshake:

Step |: client host sends TCP SYN
segment to server

= specifies initial seq #
" no data

Step 2: server host receives SYN,
replies with SYNACK segment

= server allocates buffers
= specifies server initial seq. #

Step 3: client receives SYNACK,
allocates buffer and
variables,replies with ACK
segment, which may contain data

Problema dei due eserciti

+ L’esercito rosso e’ globalmente piu debole. Se le due pattuglie verdi attaccano
insieme lo sconfiggono, altrimenti perdono. Possono scambiarsi messaggi
relativi allorario in cui attaccheranno e di ACK di un messaggio ricevuto. |
messaggeri che li portano possono pero’ essere catturati e quindi il messaggio
puo non arrivare correttamente a destinazione. Come fanno a mettersi
d’accordo per attaccare insieme!

Transport Layer 3-21

Problema dei due eserciti

+» L’esercito rosso e’ globalmente piu debole. Se le due pattuglie verdi attaccano
insieme lo sconfiggono, altrimenti perdono. Possono scambiarsi messaggi
relativi all’orario in cui attaccheranno e di ACK di un messaggio ricevuto. |
messaggeri che li portano possono pero’ essere catturati e quindi il messaggio
puo non arrivare correttamente a destinazione. Come fanno a mettersi
d’accordo per attaccare insieme?

Pattuglia 2

Pattuglia 1

v

Senza ACK 1 non
Attacchera’ perche’
Non sa se 2 ha ricevuto
Il messaggio

Transport Layer 3-22

Problema dei due eserciti

+» L’esercito rosso e’ globalmente piu debole. Se le due pattuglie verdi attaccano
insieme lo sconfiggono, altrimenti perdono. Possono scambiarsi messaggi
relativi all’orario in cui attaccheranno e di ACK di un messaggio ricevuto. |
messaggeri che li portano possono pero’ essere catturati e quindi il messaggio
puo non arrivare correttamente a destinazione. Come fanno a mettersi
d’accordo per attaccare insieme?

Pattuglia 1 - . Pattuglia 2

Senza ACK del secondo
Messaggio 2 non
attacchera’ perche’
Non sa se 1 ha ricevuto
il messaggio e sa che senza ACK
del primo messaggio 1 non

Attacchera’

Transport Layer 3-23

Problema dei due eserciti

« In generale: se N scambi di messaggi /Ack etc. necessari a raggiungere la
certezza dell’accordo per attaccare allora cosa succede se 'ultimo messaggio

‘necessario’ va perso!

+» —>FE impossibile raggiungere questa certezza. Le due pattuglie non
attaccheranno mai!!

Transport Layer 3-24

Problema dei due eserciti: cosa ha
a che fare con le reti e TCP??

< Chiusura di una connessione. Yorremmo
un accordo tra le due peer entity o

rischiamo di perdere dati.
A B

Connection Request

connected
connected

Disconnection Request (FIN)

A pensa che il secondo pacchetto sia stato ricevuto. La connessione e’
Stata chiusa da B prima che cio avvenisse> secondo pacchetto perso!!!

Transport Layer 3-25

Quando si puo dire che le due peer entity
abbiano raggiunto un accordo???

< Problema dei due eserciti!!!
A B

Connection Request

connected
connected

isconnection Request

Ack

Ma se I’ACK va perso????
Soluzione: si e’ disposti a correre piu’ rischi quando si butta giu’ una connessione
di
quando si attacca un esercito nemico. Possibili malfunzionamenti. Splyzioni di .
recovery’ in questi casi

TCP Connection Management (cont.)

Since it is impossible to solve the proble use simple solution:
two way handshake

Closing a connection: @ client server@

. : close
client closes socket: FIN

clientSocket.close() ;

Step |: client end system sends

P\CK HOS
TCP FIN control segment to o H0sINg
server
K

Step 2: server receives FIN, =
replies with ACK. Closes =
connection, sends FIN. D

£
closed =

Transport Layer 3-27

TCP Connection Management (cont.)

Steg 3: client receives FIN, @ client server@
replies with ACK. _
y , closing
= Enters timed wait - will Fin

respond with ACK to
received FINs

p\C\r< i
: closin
Steg 4: server, receives ACK. / g
Connection closed.
m‘

closed

timed wait |

closed ~

Transport Layer 3-28

TCP Connection Management (examples)

@ client server@ @ client server @

closing - closing

pOK osi y
/ ; OSIng F\N CIOSing
—_ “ ACK \

-*§ —

o NG

Q

_g ‘ FIN

A — closed
closed
\ﬂ(\‘
closed

Transport Layer 3-29

Connection states - Client

wait 30 seconds

CLOSED

TIME_WAIT

A

receive FIN
send ACK

FIN_WAIT_2

receive ACK
send nothing

client application

initiates a TCP connection

send SYN

SYN_SENT

h 4

receive SYN & ACK

send ACK

ESTABLISHED

FIN_WAIT_1

client application

initiates close connection

send FIN

Transport Layer 3-30

Connection States - Server

receive ACK
send nothing

CLOSED

LAST_ACK

send FIN

CLOSE_WAIT

receive FIN
send ACK

server application
creates a listen socket

LISTEN

receive SYNMN
send SYN & ACK

SYN_RCVD

ESTABLISHED

receive ACK
send nothing

Transport Layer 3-31

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-32

Principles of congestion control

congestion:

» informally: “too many sources sending too much
data too fast for network to handle

< different from flow control!
+ manifestations:
" lost packets (buffer overflow at routers)
" long delays (queueing in router buffers)
<+ a top-10 problem!

Transport Layer 3-33

Causes/costs of congestion: scenario |

C/2+

7Lou’r

two senders, two
receivers

one router, infinite
buffers

No retransmission

Host A

Host B

-\, : original data N

unlimited shared
output link buffers

<+ large delays when
congested

< Mmaximum
achievable
throughput

Transport Layer 3-34

Causes/costs of congestion: scenario 2

% one router, finite buffers
+ sender retransmission of lost packet

Host A

A, - original data Mout

A, »original data, plus
retransmitted data

finite shared output
link buffers

Transport Layer 3-35

Causes/costs of congestion: scenario 2

« always we want: 7\ A u(goodput)

/
+ Second step ...retransm|SS|on only when loss: A > A t
in ou
+ retransmission of delayed (not lost) packet makes Iarﬁgr (than second
IN
case) for same A
out
cr24 , cr24 C/2-
5 C/i3
O : -
< s 3 3
E (<]] (< 1
CJ2 5C .6C 5C
i I I
xin — 7\’in 7Lin 7Lin

Caso in cui ciascun pacchetto instradato
Sia trasmesso mediamente due volte dal router

“costs” of congestion:
7 more work (retrans) for given “goodput”
7 unneeded retransmissions: link carries multiple copies of pkt

Causes/costs of congestion: scenario 3

. four senders
multihop paths

- timeout/retransmit n

Host A L.
A, - original data

M\, : original data, plus
retransmitted data

=

finite shared output
lipk buffers

N\

Host B

-

D-B traffic high

Q: what happens as kin
and k; increase ?

]

Transport Layer 3-37

Causes/costs of congestion: scenario 3

C/2

5
O
<

kl
Ig
Another “cost” of congestion:

3 when packet dropped, any “upstream transmission
capacity used for that packet was wasted!

Transport Layer 3-38

Approaches towards congestion control

two broad approaches towards congestion control:

__end-end congestion __ _network-assisted
control: congestion control:
+ no explicit feedback < routers provide
from network feedback to end systems
% congestion inferred = single bit indicating
from end-system congestion (SNA,
observed loss, delay DECDbit, TCP/IP ECN,
<+ approach taken by ATM)
TCP = explicit rate for
sender to send at

Transport Layer 3-39

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-40

TCP congestion control: additive increase

multiplicative decrease
<+ approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs

" additive increase: increase cwnd by | MSS every
RTT until loss detected

* multiplicative decrease: cut cwnd in half after loss

additively increase window size ...
... until loss occurs (then cut window in half)

J

AIMD saw tooth
behavior: probing
for bandwidth

cwnd: TCP sender
congestion window size
L

time
Transport Layer 3-41

TCP Congestion Control: details

sender sequence number space

«— cwnd —>! TCP sending rate:
“"" < roughly: send cwnd

_ bytes, wait RTT for
st bytej \ L st byte ACKS, then send
AKed e aCked S more bytes

1(=|‘i‘g;1_t”) cwnd

+ sender limits transmission: rate = bytes/sec
LastByteSent- < cwnd
LastByteAcked

+» cwnd is dynamic, function
of perceived network
congestion

Transport Layer 3-42

TCP Slow Start

Host B

Host A
+» when connection begins, g
increase rate =

exponentially until first L[—%neseqment
e
|

loss event:
= initially cwnd = | MSS %

" double cwnd every RTT

= done by incrementing
cwnd for every ACK OUr segments

received
% summary: initial rate is
slow but ramps up
exponentially fast

time

Transport Layer 3-43

TCP: detecting, reacting to loss

<+ loss indicated by timeout:
" cwnd set to | MSS;

= window then grows exponentially (as in slow start)
to threshold, then grows linearly

%+ loss indicated by 3 duplicate ACKs: TCP RENO

" dup ACKs indicate network capable of delivering
some segments

* cwnd is cut in half window then grows linearly

+» TCP Tahoe always sets cwnd to | (timeout or 3
duplicate acks)

Transport Layer 3-44

TCP: switching from slow start to CA

Q: when should the

exponential

° . ‘|4_

increase switch to TCP Reno
linear?

A: when cwnd gets
to |/2 of its value
before timeout.

—
N
|

ssthresh

(in segments)

ssthresh

Congestion window

O N A O 00 O
N N (S

1 T T 1T T T T T T T T T T 1
5 6 7 8 9 10 11 12 13 14 15
Transmission round

(@)
—_
N
w
SN

Implementation:
< variable ssthresh

<+ on loss event, ssthresh
is set to |/2 of cwnd just
before loss event

Transport Layer 3-45

S

U

mmary: TCP Congestion Control

duplicate ACK

dupACKcount++

)

A

cwnd =1 MSS
ssthresh = 64 KB
dupACKcount =0 >

;O:QQ\ . </
(¢ {1) timeout
ssthresh = cwnd/2
cwnd =1 MSS

dupACKcount=0
retransmit missing segment

dupACKcount ==

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

new ACK

cwnd = cwnd+MSS
dupACKcount =0

/>transmit new segment(s), as allowed
cwnd > ssthresh

A

v

d
7=

cAQ timeout

(¢ €))ssthresh = cwnd/2
cwnd =1 MSS
dupACKcount =0
A

retransmit missing segment

Q)
1 “,1
timeout(<))

ssthresh = cwnd/2

cwnd = 1

dupACKcount=0
retransmit missing segment

New ACK

cwnd = ssthresh
dupACKcount =0

v
A

duplicate ACK
cwnd = cwnd + MSS

new ACFk

cwnd = cwnd + MSS « (MSS/cwnd)
dupACKcount =0
transmit new segment(s), as allowed

duplicate ACK
dupACKcount++

dupACKcount ==

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

transmit new segment(s), as allowed

Transport Layer 3-46

TCP throughput

+ avg. TCP thruput as function of window size, RTT?

" ignore slow start, assume always data to send

<+ W: window size (measured in bytesy Where loss occurs
= avg. window size (# in-flight bytes) is ¥4 W

" avg. thruput is 3/4WV per RTT

W/2 —

avg TCP thruput =

/

/

ANl

W
RTT bytes/sec

14

/

/

Transport Layer 3-47

TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

ﬂottleneck
q router

capacity R

8 (OC 1,

TCP connection 2

Transport Layer 3-48

Why is TCP fair!?

two competing sessions:
<+ additive increase gives slope of |, as throughout increases
+ multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput 20

Connection 1 throughput R

Transport Layer 3-49

Fairness (more)

Fairness and UDP

% multimedia apps often
do not use TCP

= do not want rate
throttled by congestion
control

< instead use UDP:

= send audio/video at

constant rate, tolerate
packet loss

Fairness, parallel TCP
connections

< application can open
multiple parallel

connhections between two
hosts

<+ web browsers do this

% e.g., link of rate R with 9

existing connections:

" new app asks for | TCP, gets rate
R/10

= new app asks for || TCPs, gets R/2

Transport Layer 3-50

Chapter 3: summary

< principles behind
transport layer services:
" multiplexing,
demultiplexing
" reliable data transfer
* flow control
" congestion control

« Instantiation,
implementation in the
Internet
= UDP
= TCP

next:

<+ leaving the
network
“edge” (application
, transport layers)

< into the network
14 7
core

Transport Layer 3-51

