Network Laxer

Computer Networking
C h a Pte r 4 A Top-Down Approach
\ — = o

KUROSE | ROSS

Reti degli Elaboratori Computer

Canale AL N o AT
Prof.ssa Chiara Petrioli Ds&,moj\i;gféac,f P
a.a. 2013/2014 6 edition

Jim Kurose, Keith Ross
Addison-Wesley
March 2012

We thank for the support material Prof. Kurose-Ross
All material copyright 1996-2012
© J.F Kurose and K.W. Ross, All Rights Reserved

Network Layer 4-1

IPv6: motivation

3 initial motivation: 32-bit address space soon to be
completely allocated.

7 additional motivation:
O header format helps speed processing/forwarding

O header changes to facilitate QoS

IPv6 datagram format:
O fixed-length 40 byte header

O no fragmentation allowed

Network Layer 4-2

|IPv6 datagram format

priority: identify priority among datagrams in flow

flow Label: identify datagrams in same “flow.”
(concept of ‘flow™ not well defined).

next header: identify upper layer protocol for data

flow label
payload len next hdr hop limit

source address
(128 bits)

destination address
(128 bits)

data

A

32 bits >
Network Layer 4-3

Other changes from IPv4

3 checksum: removed entirely to reduce processing
time at each hop

3 options: allowed, but outside of header, indicated
by “Next Header” field

3 ICMPvé: new version of ICMP
O additional message types, e.g. ~ Packet Too Big”

O multicast group management functions

Network Layer 4-4

Transition from IPv4 to IPvé6

T not all routers can be upgraded simultaneously

Ono “flag days”
O how will network operate with mixed IPv4 and
IPvé routers?

3 tunneling: IPv6 datagram carried as payload in 1Pv4
datagram among IPv4 routers

IPv4 header fields IPv6 header fields
IPv4 squrce, dest addr IPv6 source dest addr IPv4 payload
I | \ \\ —

A

IPv6 datagram ———

IPv4 datagram

»
»

Network Layer 4-5

A

Tunneling

IPv4 tunnel
connecting IPv6 routers
logical view: @—H—@
IPv6 IPv6 IPv6 IPv6
A B C D E F
IPv6 IPv6 IPv4 IPv4 IPv6 IPv6

Network Layer

4-6

Tunneling
IPv4 tunnel
connecting IPv6 routers
logical view: @—H—@

IPv6 IPv6 IPv6 IPv6

A B C D E F

IPv6 IPv6 IPv4 IPv4 IPv6 IPv6
flow: X flow: X
src: A src: A
dest: F dest: F
data data
|-POV-6 . B-to-C: B-to-C: I-E)?/-6 |
IPv6 inside IPv6 inside

IPv4 IPv4 Network Layer

4-7

Chapter 4. Network Layer

7 4.1 Introduction

3 4.2 Virtual circuit and
datagram networks

7 4.3 What' s inside a
router

3 4.4 IP: Internet
Protocol
o Datagram format
O IPv4 addressing
o ICMP
o IPv6

3 4.5 Routing algorithms
O Link state
O Distance Vector
O Hierarchical routing

3 4.6 Routing in the
Internet
o RIP
o OSPF
o BGP

7 4.7 Broadcast and
multicast routing

Network Layer 4-8

Interplay between routing, forwarding

routing algorithm

local forwarding table
header value |output link

0100 | 3
0101 | 2
0111 | 2
1001 | 1

value in arriving

packet’ s heade;

3\2

% % Network Layer 4-9

Graph abstraction

Graph: G = (N,E)
N = set of routers ={u, v,w, X, vy, z}

E = set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (X,y), (w,y), (W,z), (y,2) }

Remark: Graph abstraction is useful in other network contexts

Example: P2P, where N is set of peers and E is set of TCP connections

Network Layer 4-10

Graph abstraction: costs

* ¢(x,x") = cost of link (x,x")

-eg., c(w,z)=5

- cost could always be 1, or
inversely related to bandwidth,
or inversely related to
congestion

Cost of path (X, X5, X3,..., Xp) = €(X1,Xz) + €(Xz,X3) + ... + €(X,.1.,X,)

Question: What' s the least-cost path between uand z ?

Routing algorithm: algorithm that finds least-cost path

Network Layer 4-11

Routing Algorithm classification

Global or decentralized
information?
Global:

T all routers have complete
topology, link cost info

3 “link state” algorithms
Decentralized:

I router knows physically-
connected neighbors, link
costs to neighbors

7 iterative process of
computation, exchange of
info with neighbors

7 “distance vector”
algorithms

Static or dynamic?
Static:
T routes change slowly
over time
Dynamic:
7 routes change more
quickly
O periodic update

O in response to link
cost changes

Network Layer 4-12

Chapter 4. Network Layer

3 4.1 Introduction 3 4.5 Routing algorithms
3 4.2 Virtual circuit and O Link state
datagram networks O Distance Vector
9 4.3 What’ s inside a O Hierarchical routing
router 3 4.6 Routing in the
7 4.4 IP: Internet Internet
Protocol O RIP
o Datagram format > OSPF
O IPv4 addressing > BGP
5 TCMP 3 4.7 Broadcast and
5 TPv6 multicast routing

Network Layer 4-13

A Link-State Routing Algorithm

Dijkstra’ s algorithm Notation:
7 net fopology, link costs 3 c(X,y): link cost from node
known to all nodes x toy; = o if not direct
O accomplished via “link neighbors
state broadcast . 3 D(Vv): current value of cost
O G” nOdeS have same |nf0 Of paTh fr-om source to
3 computes least cost paths dest. v
from one node ("source’) 3 p(Vv): predecessor node

to all other nodes

along path from source to v
O gives forwarding table 9P

for that node I N'": set of nodes whose
9 iterative: after k least cost path definitively
iterations, know least cost known
path to k dest.’s 7 c(x.x)=0.

Network Layer 4-14

Dijsktra’s Algorithm

1
2
3
4
)
6
V4
8

~

9

10
11
12
13
14

u5

Initialization:
N = {u}
for all nodes v
if v adjacent to u
then D(v) = c(u,v)
else D(v) = «

Loop

find w not in N' such that D(w) is minimum

add w to N’

update D(v) for all v adjacent to w and not in N' :

u e’ la sorgente

D(v) = min(D(v), D(w) + c(w,v))

/* new cost to v is either old cost to v or known
shortest path cost to w plus cost fromw to v */

until all nodes in N’

Network Layer 4-15

Dijkstra’ s algorithm: example

Step N'_ D(v),p(v) D(w),p(w) D(x),p(x) D(y).,p(y) D(z),p(z)
0 u 2,u 5u 1,.u oo oo
1 2 X o
2 4,y
3 4,y
4 4,y
5

Network Layer 4-16

Dijkstra’s algorithm: example (2)

Resulting shortest-path tree from u:

Sw2

e

Resulting forwarding table in u:

destination

link

N S < X <

(uyv)
(ux)
(ux)
(u,x)

(u,x)

Network Layer 4-17

Dijkstra Algorithm-correctness

Teorema

Se l'algoritmo di Dijkstra € eseguito su un grafo
G=(N,E) diretto e pesato i cui pesi sugli archi sono
tutti non negativi, e con una sorgente s, allora
Dijkstra termina con tutti i vertici w in N con valore
D(w) pari alla lunghezza del cammino minimo da s a w.

Approccio:
- Terminazione banale (perche?)

- Mostriamo che ogni volta che un vertice w ¢ inserito in N' allora
D(w) e pari alla lunghezza del cammino minimo das aw

(dato che il valore di D(w) non viene ad essere mai piu modificato
dopo che w ¢ inserito in N'-v. linea 11 dell'algoritmo- questo
consente di dimostrare l'assunto).

Network Layer 4-18

Dijsktra’s Algorithm

1
2
3
4
)
6
V4
8

~

9

10
11
12
13
14

u5

Initialization:
N = {u}
for all nodes v
if v adjacent to u
then D(v) = c(u,v)
else D(v) = «

Loop

find w not in N' such that D(w) is minimum

add w to N’

update D(v) for all v adjacent to w and not in N' :

u e’ la sorgente

D(v) = min(D(v), D(w) + c(w,v))

/* new cost to v is either old cost to v or known
shortest path cost to w plus cost fromw to v */

until all nodes in N’

Network Layer 4-19

Dijkstra Algorithm-correctness

Mostriamo che ogni volta che un vertice w e inserito in N allora
D(w) & pari alla lunghezza del cammino minimo dasaw

Si dimostra per assurdo.

Sia u il primo nodo inserito in N' che non rispetta la condizione,
ovvero sia u il primo hodo che al momento del suo inserimento in N'
abbia D(u)!=8(s,u), dove d(s,u) denota la lunghezza del percorso
minimo da s a u.

ul=s dato che s ¢ il primo nodo inserito in N' e D(s)=6(s,s)=0.

Ci deve essere un percorso da s a u in G (altrimenti D(u)=infinity, e
D(u)=8(s,u)) e qumdl anche un cammino minimo p da s a u. Prima di
aggiungere u a N' p univa un vertice in N (il vertice s) and un
vertice in N-N' (il vertice u). Siay il primo vertice inp noninN', e
X il suo predecessore.

1 2

Network Layer 4-20

Dijkstra Algorithm-correctness

Mostriamo che ogni volta che un vertice w ¢ inserito in N' allora
D(w) ¢ pari alla lunghezza del cammino minimo das aw

Si dimostra per assurdo.
Siay il primo vertice in p non in N', e x il suo predecessore.

Vogliamo far vedere che D(y)=98(s,y) quando u & stato aggiunto in
N'.

Dato che il primo nodo che & aggiunto in N' senza rispettare
I'assunto e u, e che x e aggiunto prima in N', allora al momento del
suo inserimento D(x)=9(s,x)

Dato che p & uno shortest path da s ad u allora anche il percorso
ply e uno shortest path da s ay (perche??)

Quindi quando é stato aggiunto x in N' e si sono ricalcolate le
distanze dei percorsi per raggiungere s dai vicini di x passando
tramite x, il valore D(y) e stato aggiornato in modo che D(y)=4(s.y)

pl P2,—> u
S — 1 S
X Y Network Layer 4-21

Dijkstra Algorithm-correctness

Mostriamo che ogni volta che un vertice w ¢ inserito in N' allora
D(w) ¢ pari alla lunghezza del cammino minimo das aw

Si dimostra per assurdo.
Vogliamo ora dimostrare che D(u)=5(s,u)

Dato che y viene prima di u in un percorso da s a u e tutti gli archi
hanno pesi hon negativi vale che d(s,y)<=9(s,u) e quindi

D(y)=3(s.y)
<=3(s,u)
<= D(u)

D'altra parte dato che sia u che y erano in N-N' quando u ¢é stato
scelto per essere inserito in N', al momento del suo inserimento

D(u)<=D(y) (per la regola di selezione del vertice da inserire in N')
Quindi: D(y)=3(s,y)=0(s,u)=D(u) ASSURDO C.V.D

pl P2,—> u
S — 1 S
X Y Network Layer 4-22

Dijsktra’s Algorithm

1
2
3
4
)
6
V4
8

~

9

10
11
12
13
14

u5

Initialization:
N = {u}
for all nodes v
if v adjacent to u
then D(v) = c(u,v)
else D(v) = «

Loop

find w not in N' such that D(w) is minimum

add w to N’

update D(v) for all v adjacent to w and not in N' :

u e’ la sorgente

D(v) = min(D(v), D(w) + c(w,v))

/* new cost to v is either old cost to v or known
shortest path cost to w plus cost fromw to v */

until all nodes in N’

Network Layer 4-23

Dijkstra’ s algorithm, discussion

Algorithm complexity: n nodes

7 each iteration: need to check all nodes, w, not in N

3 n(n+1)/2 comparisons: O(n?)

7 more efficient implementations possible: O(nlogn+|E|)
Oscillations possible:

7 e.g., link cost = amount of carried traffic

£ 1@\\1&9 200 A 0 PLE +e 2+e@‘\£@
O + E +
| @// | %@ m Heze
1 &C &C C
[1 1 r r
inie’rially rr'eoclj)Tr:\npgu’re .. recompute .. recompute

Network Layer 4-24

Chapter 4: outline

4.1 introduction 4.5 routing algorithms
4.2 virtual circuit and O link state
datagram networks O distance vector

4.3 what' s inside a router O hierarchical routing

4.4 IP: Internet Protocol 4.6 routing in the Internet

O datagram format > RIP

O |IPv4 addressing o OSPF

5 ICMP > BGP

> IPvé 4.7 broadcast and multicast
routing

Network Layer 4-25

Bellman-Ford

Given a graph 6=(N,E) and a node s finds the shortest path
from s to every node in N.

A shortest walk from s to i subject to the constraint that the walk
contains at most h arcs and goes through node s only once, is denoted
shortest(<=h) walk and its length is Dh..

Bellman-Ford rule:

Initiatilization D";=0, for all h; ¢;, = infinity if (i,k) NOT in E: ¢, =0:;
DO=infinity for all il=s.

Iteration:

D"*L=min [c;) + D"\]
Assumption: non negative cycles (this is the case in a networkl!)
The Bellman-Ford algorithm first finds the one-arc
shortest walk lengths, then the two-arc shortest walk
length, then the three-arc...efc. >distributed version
used for' POUTing Network Layer 4-26

Bellman-Ford

Df*L=min, [Cik + D]

Can be computed locally.
What do I need?

For each neighbor &, I need to know

-the cost of the link to it (known info)

-The cost of the best route from the neighbor & to the destination
(< this is an info that each of my neighbor has to send to me via
messages)

In the real world: I need to know the best routes among each
pair of nodes = we apply distributed Bellman Ford to get the best
route for each of the possible destinations Network Layer 4-27

Distance Vector Routing Algorithm

-Distributed Bellman Ford

Iterative:
7 continues until no
nodes exchange info.

73 self-terminating. no
“signal” to stop

asynchronous:

7 nodes need not
exchange info/iterate
in lock stepl!

Distributed, based on
local info:

7 each node
communicates only with

directly-attached
heighbors

Distance Table data structure
each node has its own

0
0

W

row for each possible destination

column for each directly-
attached neighbor to node

example: in node X, for dest. Y
via neighbor V: what is the cost?

Network Layer 4-28

Distance vector algorithm

Bellman-Ford equation (dynamic programming)

let

d (y) := cost of |least-cost path from x to y

then Info maintained at v. Min must
be communicated

d(y) = min {c(x,v) +d,(y) }

I
cost from neighbor v to destination y
cost to neighbor v

min taken over all neighbors v of x

Network Layer 4-29

Bellman-Ford example

clearly, d (z) =5, d,(z) =3, d,(z) =3

<73 B-F equation says:
5 dy(z) = min { c(u,v) + d,(z),
: c(u,x) +d,(2),
c(u,w) +d,(2) }
=min {2 + 5,
1+ 3,
5+3} =4

node achieving minimum is next
hop in shortest path, used in forwarding table

Network Layer 4-30

Distance vector algorithm

3 D,_(y) = estimate of least cost from x to y
O x maintains distance vector D, = [D,(y): y e N]

7 node x:
O knows cost to each neighbor v: c(x,v)

O maintains its neighbors’ distance vectors. For
each neighbor v, x maintains

D,=[D,(y):yeN]

Network Layer 4-31

Distance vector algorithm
key idea:

7 from time-to-time, each node sends its own
distance vector estimate to neighbors

7 when x receives new DV estimate from neighbor,
it updates its own DV using B-F equation:

D.(y) — min{c(x,v) + D (y)} for each nodey €N

+ under minor, natural conditions, the estimate D (y)
converge to the actual least cost d, (y)

Network Layer 4-32

Distance vector algorithm

iterative, asynchronous:
each local iteration
caused by:

3 local link cost change
T DV update message from
neighbor

distributed:

T each node notifies
neighbors only when its
DV changes

O neighbors then notify their
neighbors if necessary

each node:

'
wait for (change in local link

cost or msg from neighbor)

recompute estimates

if DV to any dest has
changed, notify neighbors

Network Layer 4-33

Network Layer 4-34

i D,(z) = min{c(x,y) +
Dx -] + D ’ ’ + Dz
) nl' ',‘ﬁf,fi‘zi% , 71%): Cz(x2)) D,(2), c(x,z) + D(z)}
= min{2+1 , 7+0} = 3

node x cost to

table |x y z X
XO/Z 7 x|[(0 2 3
Y| oo sY[2 0 1
EZ|lww w Z|710

node y

table o 1
X
5y 7
Z

node z costto

table | X y z

X | 0 o0 ©0

[~ 9]

o0 o0

from
N <<

» time
Network Layer 4-35

node x
table

D,(y) = min{c(xy) + D,(y), c(x,z) + D,(y)}
= min{2+0 , 7+1} = 2

cost to
Xy z

X
y
z

from

node y
table

02 7

from
N < X

node z
table

cost to
Xy z

from
N <<

o0 o0 o0

[~ 9]

o0 o0

N < X

D,(z) = min{c(x,y) +
D,(z), c(x,z) + D,(z)}
= min{2+1 , 7+0} = 3

cost to
Xy z

N < X

02 3

from
N < X

(@)
AON"<8..
O -~ W NO

N
—_—

Network Layer 4-36

Distance vector: link cost changes

link cost changes: i

% node detects local link cost change ;: %%% :
<+ updates routing info, recalculates

distance vector 50
<+ if DV changes, notify neighbors

“sood to: y detects link-cost change, updates its DV, informs its
News heighbors.

trav”els t;: zreceives update from y, updates its table, computes
fast new least cost to x, sends its neighbors its DV.

1,: y receives Z s update, updates its distance table. y's least
costs do not change, so y does not send a message to z.

Network Layer 4-37

Distance vector: link cost changes

link cost changes: 60

% node detects local link cost change :

= bad news travels slow - “count to @; S
infinity” problem! 50

% 44 iterations before algorithm
stabilizes: see text

boisoned reverse:

+ If Z routes throughY to get to X:

= ZtellsY its (Z's) distance to X is infinite (soY won’ t route
to X via Z)

+ will this completely solve count to infinity problem?

Network Layer 4-38

Distributed Bellman Ford-Count to Infinity
(we will now use a slightly different notation-

lightweigh)

Distance Table data structure
each node has its own
3 row for each possible destination

3 column for each directly-attached
heighbor to node

7 example: in node X, for dest. Y via

heighbor Z:
Cost associated to the (X,Z) link

\ distance from X to
D>(<Y,Z) =\ 'Y, via Z as next hop

_ o(X,Z) + minW{DZ(Y,w)}

/

Info maintained at Z. Min must
be communicated

39

Distance Vector: link cost changes

60

Link cost changes: 1
- good news travels fast
- bad news travels slow - "count to

50
infinity" problem!

DY| xViaz D| X Z D| X z DJ| X Z DY| X_Z dlgorithm
x!@s x!so@ xlso@ x|60 x!eso continues

DZ|xViaY] x v XY/DZ|XY] x v
x| 0B x|500G) x!so@ x!so@ x|5o@

c(X,Y)
change

time

t t t t
0 Y detects link cost 1 = 3 4
Increase but think can

Reach X through Z at a R The path is Y-Z-Y-X

total cost of 6 (wrong!l) 40

Count-to-infinity - an everyday life example

Which is the problem here?

the info exchanged by the protocol!l ‘the best route to X I have
has the following cost..” (no additional info on the route)

A Roman example...

-assumption: there is only one route going from Colosseo to

Altare della Patria: Via dei Fori Imperiali. Let us now consider a

network, whose nodes are Colosseo., Altare della Patria, Piazza del
Popolo

Covm " Cena

41

Count-to-infinity — everyday life example (2/2)

Lo " a0

The Colosseo. and Alt. Patria nodes exchange the following info

* Colosseo says ‘the shortest route from me to P. Popolo is 2 Km’

» Alt. Patria says ‘the shortest path from me to P. Popolo is 1Km’

Based on this exchange from Colosseo you go to Al. Patria, and from there
fo

Piazza del Popolo OK Now due to the big dig they close Via del Corso
(Al. Patria—P.Popolo)

* Al. Patria thinks ‘I have to find another route from me to P.Popolo.
Look there is a route from Colosseo to P.Popolo that

takes 2Km, I can be at Colosseo in 1IKm = I have found

a 3Km route from me to P.Popolo!l’ Communicates the new cost to
Colosseo that updates ‘OK I can go to P.Popolo via Al. Patria in 4Km’
VERY WRONG!! Why is it so? I didn’t know that the route from
Colosseo to P.Popolo was going through Via del Corso from Al.Patria
to P.Popolo (which is closed)!!

42

Distance vector: link cost changes

link cost changes: 60

% node detects local link cost change :

= bad news travels slow - “count to @; S
infinity” problem! 50

% 44 iterations before algorithm
stabilizes: see text

boisoned reverse:

+ If Z routes throughY to get to X:

= ZtellsY its (Z's) distance to X is infinite (soY won’ t route
to X via Z)

+ will this completely solve count to infinity problem?

Network Layer 4-43

Comparison of LS and DV algorithms

message complexity

A LS: with n nodes, E links, O(nE)
msgs sent

T DV: exchange between neighbors
only

O convergence time varies

speed of convergence
3 LS: O(n?) algorithm requires
O(nE) msgs
O may have oscillations
@ DV: convergence time varies
O may be routing loops

O count-to-infinity problem

robustness: what happens if
router malfunctions?

LS:

O node can advertise incorrect
link cost

O each node computes only its
own table

DV:
O DV node can advertise

incorrect path cost

O each node’ s table used by
others
- error propagate thru
network

Network Layer 4-44

