SOCKET

The Problem

1 Communication between computers connected to a
network

Network applications

A set of processes distributed over a network that
communicate via messages

Ex: Browser Web, BitTorrent, ecc...
Processes communicate via services offered by the
operating system

What kind of services?! TCP, UDP and IP protocols...

Most famous network application architecture:
client/server

Client/server model

Network application has two components: client and server

Client:

Initiates communication

Requests a service

Es: Chrome sends a request for a
Web site:

Network
Server:

Waits a request

Provides the service

Es: Web server providing an html
page

Peer-to-Peer model
S

See previous lesson!

Two main problems

Network addressing: how to unambiguously
identify the process running on a remote host

Data transport: how to transfer bits to the
destination

Reply

Addressing and data transport in TCP /IP

Addressing based on two components

IP address: identifies the remote host (actually the
network interface)

Port number: identifies the running process

Data transport based on two protocols

TCP: connection oriented, stream oriented, reliable data
transfer

UDP: message oriented, no connection, no reliable data
transfer

How to interact with TCP /UDP

Protocols run “inside” the operating system
OSs usually implement the protocol stack TCP/IP

Our applications run “outside” the operating system

Result: our applications need to interact with the OS
to send data to TCP/IP

Interaction is possible using a set of interfaces
called Application Programming Interface (API)

Application Programming Interfaces (API)

They standardize interaction with the OS specifying:
Function prototypes

Input /output parameters

Socket: Internet API

Originated with the BSD Unix operating system in 1983
and developed in C

Now available on many OSs

The Python interface is a straightforward transliteration
of the Unix interface for sockets implemented in C

Socket

It is a “door” between application and transport
protocols (TCP o UDP)

Allows to send /receive data from the network
It represents the communication
A socket is owned by the application

It provides to developers a high level interface to
transport protocols

Socket

Controlled by

application
— developer
Controlled by Process
operating system '
TCP
Network

Socket in Python

Socket creation:

import socket
s = socket.socket(addr_family, type, protocol)

It is the first function executed both by the client and the
server

The OS initializes all the resources needed to manage data
transfer

It returns the socket...

or raises an exception if something goes wrong

Socket in Python

addr_family : the protocol family
socket.AF_INET: IPv4 protocol

socket.AF_INET®6: IPv6 protocol

socket.AF_UNIX: to manage communication between
processes on the same host

type : the communication type
socket.SOCK_STREAM: stream (connection) oriented
socket.SOCK_DGRAM: message oriented
socket.SOCK_RAW: provide access to the network layer

protocol : a specific protocol

If set to O (or omitted) the default protocol defined by the
couple addr_family + type will be used

Es: socket.AF_INET + socket.SOCK_STREAM = TCP

Connection oriented communication
S

socket()
v
bmf() socket()
listen() *
; connect()
accipt() l
reciv() Selld()
send() reclvo
v
recv() close()

¢ communication

Bind a socket to an address

socket.bind(address)

Thanks to the bind() function the OS will forward
the received packets to the correct process!

address is a tuple (host, port) for the AF_INET
address family

host is a string representing either a hostname in Internet
domain notation like “www.repubblica.it” or an IPv4 address

like “213.92.16.191”

port is an integer

Socket addresses in Python

host = “” (i.e., an empty string) specifies all local network
interfaces

host = “localhost” specifies the loopback interface

A virtual network interface used to manage communication between
processes running on the same machine

Bypasses local network interface hardware and lower layers of the
protocol stack

Useful for testing and development
“localhost” corresponds to the reserved IP address 127.0.0.1

Example:

import socket

sock = socket.socket(AF_INET, SOCK_STREAM)
sock.bind(("",9000))
sock.bind(("localhost",9000))
sock.bind(("192.168.2.1",9000))

A note on port numbers

Managed by Internet Assigned Numbers Authority (IANA)

maintains the official assignments of port numbers for specific uses

Well-known ports (range 0-1023)

Used by system processes that provide widely used network services
21 -> FTP, 23 -> Telnet, 25 -> SMTP (Mail), 80 -> HTTP (Web)

On Unix OS a process needs root privileges to be able to bind on
these ports

Registered ports (range 1024-49151)

The IANA registers uses of these ports as a convenience to the Internet
community

1863 -> MSNP, 3074 -> Xbox LIVE,
Registered ports can be used by ordinary users

Dynamic ports (range 49152—-65535)

They cannot be registered with IANA
Used for custom or temporary purposes

listen() function

socket.listen(backlog)

Tells the OS to start listening for connections on the
socket

backlog argument specifies the maximum number of
queued connections

the maximum value is system-dependent

On Linux it refers to the established connections (3-way
handshake completed)
Security reason: SYN flood attack

If backlog is full, new connection requests can be
ignored or refused by the OS

3-way handshake completely managed by the OS

Example: a simple server (to be cont’d)

import socket

“ Create
HOST = socket
PORT = 1060 |
sock = socket.socket(AF_INET, SOCK_STREAM)
sock.bind((HOST,PORT))
sock.listen(5) Bind to the
S specified
Start listening for address

connections on
the socket

connect() function

socket.connect(address)

Connects to a remote socket at address.

If a TCP socket is used, connect() tells the OS to start the
3-way handshake

address is a tuple (host, port) (for the AF_INET
address family)

Example:

import socket

sock = socket(AF_INET, SOCK_STREAM)
sock.connect(("www.python.org", 80))

accept() function

sock, address = socket.accept()

It allows the server to take the first established
connection from the backlog

If backlog is empty, accept() blocks until a connection is
received

Return values:
address is the address of the client that connected

Sock is a new socket, the one actually used to transfer data with
the connected client

Passive and active sockets

Server uses two different sockets for each client
connection

The passive socket, created by socket()

Holds the “socket name” (i.e., the address and port number) at
which the server is ready to receive connections

No data can ever be received or sent by this kind of port
It does not represent any actual network conversation

Used to listen to incoming connections (using listen() function)

The active socket, returned by accept()
It has the same “socket name” of the passive socket
It is bound to one particular remote conversation partner

It can be used only for talking back and forth with that partner

Passive and active sockets

1 Problem: there can be YXactive sockets that all
share the same |IP add (€559 pd port number
® Ex: a busy web server h a thousand clients have

made HTTP connections ave a thousand active sockets
all bound to its pyk N at port 80
!ique is a four-tuple:

&_ip, remote_port)

1 What makes an a

(local_ip, locqlé

the operating system
2 TCP connection

01 It is this four-tupl
names and manad

Example: a simple server (cont’d)

import socket

Start an infinite
ERR\VY//
HOST = loop to serve all

PORT = 1060 clients requests

—

sock = socket.socket(AF_INET, SOCK_STREAM)
sock.bind((HOST,PORT)) "Accept a new
sock.listen(5)

while 1: ¥

client
connection

sock_cli, addr = sock.accept()

SERVE THE REQUEST

Send data

numBytesSent = socket.send(string[, flags])

string represents the data to be sent
numBytesSent represents the number of bytes sent
NB: applications are responsible for checking that
all data have been sent

if only some of the data were transmitted, the application
needs to attempt delivery of the remaining data.

TCP considers your outgoing and incoming data as
streams, with no beginning or end

It feels free to split them up into packets however it wants!

Send data

After a TCP send(), networking stack will face one of
three situations

The data can be immediately accepted by the system

send() returns immediately, and it will return the length of your
data string

The network card is busy and outgoing internal data buffer
for this socket is full

send() , pausing your program until the data can be
accepted

The outgoing buffer is almost full

send() completes immediately and returns the number of bytes
accepted from the beginning of your data string, but leaves the
rest of the data unprocessed

Send data

send() is usually called inside a loop like this...

bytes_sent = 0
while bytes_sent < len(message):

message_remaining = message[bytes_sent:]
bytes_sent += sock.send(message_remaining)

...or it is replaced by:

socket.sendall(string[, flags])

It continues to send data from string until either all data
have been sent or an error occurs

It is more efficient than the above example, because it is
implemented in C

Example: sock.sendall(message)

Receive data

data = socket.recv(bufsize[, flags])

bufsize is an integer that specifies the maximum
amount of data to be received at once

data is a string representing the data received

NB: similarly to send(), applications are
responsible for checking that all data have been
received!

Unfortunately, we do not have a function similar to

sendall()

Receive data

The operating system’s implementation of recy() is
similar to that of send():

If no data are available, then recy() and your program
pauses until the data arrive

If plenty of data are available in the incoming buffer, then
recv() returns #bufsize bytes

If the buffer contains a bit of data, but less than #bufsize,
then you are immediately returned the available data, even
if they are not as much as the requested data

recv() returns empty string if there are no more data

This means that the other end of the connection has been
closed (see next slides)

Receive data
)

1 Problem: how can we understand if we have
received all the data?

Receive data: examples
N

We read data until the
other end of the

def recv_all(sock, length):
data ="
while 1:
read_data = sock.re
if read_data == "";
break
data += read_data
return data

connection has been

Receive data: examples

. We keep reading until
we receive #length
bytes

def recv_all(sock, length):
data ="
while len(data) < length:

read_data = sock.recv(length - len(data))
if read_data =="":

raise EOFEr
data += read_data
return data

'socket closed’)

If the connection is

closed unexpectedly we

raise an error

Example: a simple server

import socket

HOST ="
PORT = 1060

sock = socket.socket(AF_INET, SOCK_STREAM)
sock.bind((HOST,PORT))
sock.listen(5)

while 1:
sock_cli, addr = sock.accept()

message = recv_all(sock_cli, 16)
print 'The incoming sixteen-octet message says', repr(message)

sock_cli.sendall("Hello World!")

sock_cli.close()
print 'Reply sent, socket closed'

Close a connection

socket.close()

Close the socket
All future operations on the socket object will fail

Releases the resource associated with a connection
but does not necessarily close the connection
immediately

Operating system first sends data that are still in the buffer

Close a connection

socket.shutdown(how)

Shut down one or both halves of the connection

Shut down communication in one direction but without
destroying the socket itself

how can be set to:
SHUT_RD, further receives are disallowed
SHUT_WR, further sends are disallowed

SHUT _RDWR: further sends and receives are
disallowed

NB: It is different from close()

Socket options

socket.setsockopt(/evel, optname, value)

There are many options that can be set to sockets

level specify the protocol level
SOL_SOCKET: generic socket options

SOL_TCP: TCP socket options
optname is the name of the option

SO_KEEPALIVE: enables the periodic transmission of messages
on a connected socket

SO REUSEADDR: enables local address reuse
SO_SNDTIMEQ: set timeout value for output
SO_RCVTIMEQ: set timeout value for input

value is the option value (it is option dependant)

Example: TCP ECHO server!

Connectionless communication
S

socket()
v
bind() socket()
v

connect()

sendto()
q recvfrom() Send recuest

recvfrom()

Sendto() Receive response

Send data

numBytesSent = socket.sendto(string/, flags],
address)

string represents the data to be sent

address represents the address of remote host

Communication is connectionless!!
numBytesSent represents the number of bytes sent
NB: communication is not reliablel

There are no guarantees that the packet is
successfully delivered to remote host

Receive data

string, address = socket.recvfrom(bufsize[, flags])

bufsize is the maximum amount of data to be
received

string represents the received data

address represents the address of remote host

Communication is connectionless!!

NB: receives packets from any remote host

Example: a simple server

import socket

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

MAX = 65535
PORT = 1060

sock.bind(('127.0.0.1", PORT))

while True:
msg, address = sock.recvfrom(MAX)
print 'The client at', address, 'says’, repr(msg)
response = 'The msg was %d bytes long' % len(msg)
sock.sendto(response, address)

Connecting UDP sockets

We can use the connect() function with UDP
sockets!

We can avoid to specify every time the server
address when we call sendto()

Client is not susceptible to receiving packets from
other senders

NB: using connect() on an UDP socket does not
send any data over the network!!

Unblock functions

socket.settimeout(value)

Problem: What if the response sent by the server is lost?

We do not want to block the client forever...

...but it is not easy to understand why the packet has not arrived:
The reply is only taking a long time to come back
The reply (or the request!) is lost

Server is down
Solution: use a timeout!

if #value seconds elapse since the process is blocked,
the OS raises a socket.timeout exception

Example: settimeout()

sock.connect((HOST, PORT))
delay = 0.1
while True:
sock.send('Send this message!’)
sock.settimeout(delay)
try:
data = sock.recv(MAX)
except socket.timeout:
delay *= 2 # Exponential backoff
if delay > 2.0:
raise RuntimeError('Maybe the server is down')
else:
break # we are done

Example: UDP server!

Want to know more?

Book:

Foundations of Python Network Programming, by
Brandon Rhodes and John Goerzen

Python official documentation:
https: / /docs.python.org /2 /library /socket.html
https: / /docs.python.org /2 /howto /sockets.html

