Traffic Measurement and Inference for IP Networks

Prof. Francesco Lo Presti

Dipartimento di Informatica Università di Roma "Tor Vergata"

Thanks to: M. Grossglauser & J. Rexford (AT&T Labs)

Motivation: Network Operations

Multi-homed customer

Link Failure

Routing change alleviates congestion

New route overloads a link

Summary of the Examples

How to detect that a link is congested?

- » Periodic polling of link statistics
- » Active probes measuring performance
- » Customer complaints

How to diagnose the reason for the congestion?

- » Change in user behavior
- » Denial of service attack
- » Router/link failure or policy change
- How to *fix* the problem???
 - » Interdomain routing change
 - » Installation of packet filters
 - » Intradomain routing change

Network measurement plays a key role in each step!

The Role of Traffic Measurement

Operations (control)

- » Generating reports for customers and internal groups
- » Diagnosing performance and reliability problems
- » Tuning the configuration of the network to the traffic
- » Planning outlay of new equipment (routers, proxies, links)
- Application (performance and reliability)
 - » Choose among several servers/replicas (CDN)
- Science (discovery)
 - » End-to-end characteristics of delay, throughput, and loss
 - » Verification of models of TCP congestion control
 - » Workload models capturing the behavior of Web users
 - » Understanding self-similarity/multi-fractal traffic

Measurement Challenges

Network-wide view

- » Crucial for evaluating control actions
- » Multiple kinds of data from multiple locations
- 🖵 Large scale
 - » Large number of high-speed links and routers
 - » Large volume of measurement data
- Poor state-of-the-art
 - » Working within existing protocols and products
 - » Technology not designed with measurement in mind
- The "do no harm" principle
 - » Don't degrade router performance
 - » Don't require disabling key router features
 - » Don't overload the network with measurement data

Active Measurement

Definition:

- » Injecting measurement traffic into the network
- » Computing metrics on the received traffic
- Scope
 - » Closest to end-user experience
 - » Least tightly coupled with infrastructure
 - » Comes first in the detection/diagnosis/correction loop
- Outline
 - » Tools for active measurement: probing, traceroute
 - » Operational uses: intradomain and interdomain
 - » Inference methods: peeking into the network
 - » Standardization efforts

□ICMP-echo request-reply

Advantage: wide availability (in principle, any IP address)

Drawbacks:

» pinging routers is bad! (except for troubleshooting)

• delay measurements very unreliable/conservative

Tools: Traceroute

Exploit TTL (Time to Live) feature of IP

» When a router receives a packet with TTL=1, packet is discarded and ICMP_time_exceeded returned to sender

Operational uses:

- » Can use traceroute towards own domain to check reachability
 - list of traceroute servers: http://www.traceroute.org
- » Debug internal topology databases
- » Detect routing loops, partitions, and other anomalies

Tools: Traceroute

Operational Uses: Intradomain

- Types of measurements:
 - » loss rate
 - » average delay
 - » delay jitter
- Various homegrown and off-the-shelf tools
 - » Ping, host-to-host probing, traceroute,...
- Operational tool to verify network health, check service level agreements (SLAs)
 - » Promotional tool for ISPs:
 - » advertise network performance

Example: AT&T

Operational Uses: Interdomain

Infrastructure efforts:

- » NIMI (National Internet Measurement Infrastructure)
 - measurement infrastructure for research
 - shared: access control, data collection, management of software upgrades, etc.
- » RIPE NCC (Réseaux IP Européens Network Coordination Center)
 - infrastructure for interprovider measurements as service to ISPs
 - interdomain focus
- Main challenge: Internet is large, heterogeneous, changing
 - » How to be representative over space and time?

Inference Methods

- □ICMP-based
 - » Pathchar: variant of traceroute, more sophisticated inference
- Multicast-based inference
 - » MINC: infer topology, link loss, delay
 - » Also extended to Unicast-based inference

Pathchar

Similar basic idea as traceroute

» Sequence of packets per TTL value

Infer per-link metrics

- » Loss rate
- » Propagation + queueing delay
- » Link capacity

Operator

- » Detecting & diagnosing performance problem
- » Measure propagation delay (this is actually hard!)
- » Check link capacity

Pathchar (cont.)

$$rtt(i+1) = rtt(i) + d + L/c + \varepsilon$$

i : initial TTL value *c* : link capacity *L* : packet size

Three delay components:

d: propagation delay L/c: transmission delay ε: queueing delay + noise How to infer d,c?

- MINC (Multicast Inference of Network Characteristics)
- 🖵 General idea:
 - » A multicast packet "sees" more of the topology than a unicast packet
 - » Observing at all the receivers
 - » Analogies to tomography

The MINC Approach

- 1. Sender multicasts packets with sequence number and timestamp
- 2. Receivers gather loss/delay traces
- Statistical inference based on loss/delay correlations

Standardization Efforts

IETF IPPM (IP Performance Metrics) Working Group

- » Defines standard metrics to measure Internet performance and reliability
 - o connectivity
 - delay (one-way/two-way)
 - loss metrics
 - bulk TCP throughput (draft)

Traffic Engineering

Goal: domain-wide control & management to

- » Satisfy performance goals
- » Use resources efficiently
- 🖵 Knobs:
 - » Configuration & topology: provisioning, capacity planning
 - » Routing: OSPF weights, MPLS tunnels, BGP policies,...
 - » Traffic classification (diffserv), admission control,...
- Measurements are key: closed control loop
 - » Understand current state, load, and traffic flow
 - » Ask what-if questions to decide on control actions
 - » Inherently coarse-grained

End-to-End Traffic & Demand Models

Ideally, captures all the information about the current network **state and behavior**

path matrix = bytes per path

Ideally, captures all the information that is **invariant** with respect to the network state

demand matrix = bytes per sourcedestination pair

Domain-Wide Traffic & Demand Models

predicted control action: impact of intradomain routing

current state &

traffic flow

predicted control action: impact of interdomain routing

fine grained: path matrix = bytes per path

intradomain focus: traffic matrix = bytes per ingress-egress

interdomain focus: demand matrix = bytes per ingress and set of possible egresses

Traffic Representations

Network-wide views

- » Not directly supported by IP (stateless, decentralized)
- » Combining elementary measurements: traffic, topology, state, performance
- » Other dimensions: time & time-scale, traffic class, source or destination prefix, TCP port number
- Challenges
 - » Volume
 - » Lost & faulty measurements
 - » Incompatibilities across types of measurements, vendors
 - » Timing inconsistencies
- 🖵 Goal
 - » Illustrate how to populate these models: data analysis and inference
 - » Disease for new types of measurements

Outline

- Path matrix
- Traffic matrix
 - » Network tomography
- Demand matrix
 - » Combining flow and routing data

Path Matrix: Operational Uses

Congested link

- » Problem: easy to detect, hard to diagnose
- » Which traffic is responsible?
- » Which customers are affected?
- Customer complaint
 - » Problem: customer has insufficient visibility to diagnose
 - » How is the traffic of a given customer routed?
 - » Where does it experience loss & delay?
- Denial-of-service attack
 - » Problem: spoofed source address, distributed attack
 - » Where is it coming from?

Path Matrix

Measuring the Path Matrix

Packet or flow measurement on every link

- » Combine records to obtain paths
- » Drawback: excessive overhead, difficulties in matching up flows

Combining packet/flow measurements with network state

- » Measurements over cut set (e.g., all ingress routers)
- » Dump network state
- » Map measurements onto current topology

Path Matrix through Indirect Measurement

Outline

Path matrix

- Traffic matrix
 - Network tomography
- Demand matrix
 - » Combining flow and routing data

Traffic Matrix: Operational Uses

Short-term congestion and performance problems

- » Problem: predicting link loads and performance after a routing change
- » Map traffic matrix onto new routes

Long-term congestion and performance problems

- » Problem: predicting link loads and performance after changes in capacity and network topology
- » Map traffic matrix onto new topology
- Reliability despite equipment failures
 - » Problem: allocating sufficient spare capacity after likely failure scenarios
 - » Find set of link weights such that no failure scenario leads to overload (e.g., for "gold" traffic)

Obtaining the Traffic Matrix

Tomography:

- » Assumption: routing is known (paths between ingress-egress points)
- » Input: multiple measurements of link load (e.g., from SNMP interface group)
- » Output: statistically inferred traffic matrix

Network Tomography

Matrix Representation

Single Observation is Insufficient

□ Linear system is underdetermined » Number of links $r \approx O(n)$ » Number of OD pairs $c \approx O(n^2)$ » Dimension of solution sub-space at least c-r□ Multiple observations are needed » Stochastic model to bind them

Network Tomography

- [Y. Vardi, Network Tomography, JASA, March 1996]
- Inspired by road traffic networks, medical tomography
- Assumptions: **> OD counts:** $X_{j}^{(k)} \equiv \text{Poisson}(\lambda_{j})$
 - » OD counts i.i.d.
 - » K independent observations $Y^{(1)}, \ldots, Y^{(K)}$
- MLE Estimators
- Method of Moments

How Well does it Work?

Outline

Path matrix

- Traffic matrix
 - » Network tomography
- Demand matrix
 - Combining flow and routing data

Traffic Demands

Coupling between Inter and Intradomain

• IP routing: first interdomain path (BGP), then determine intradomain path (OSPF,IS-IS)

Intradomain Routing

Change in internal routing configuration changes flow exit p 12/06/11 (hot-potato routing)

Demand Model: Operational Uses

Coupling problem with traffic matrix-based approach:

Traffic matrix Traffic matrix Traffic Engineering / Traffic Engineering Improved Routing Improved Routing - traffic matrix changes after changing intradomain routing! Definition of demand matrix: # bytes for every (in, {out_1,...,out_m}) » ingress link (in) >> set of possible egress links ({out_1,...,out_m}) Demand matrix

Traffic Engineering

Ideal Measurement Methodology

Measure traffic where it enters the network

- » Input link, destination address, # bytes, and time
- » Flow-level measurement (Cisco NetFlow)
- Determine where traffic can leave the network
 - » Set of egress links associated with each destination address (forwarding tables)
- Compute traffic demands
 - » Associate each measurement with a set of egress links

Traffic Engineering: Summary

- Traffic engineering requires domain-wide measurements + models
 - » Path matrix (per-path): detection, diagnosis of performance problems; denial-of-service attacks
 - » Traffic matrix (point-to-point): predict impact of changes in intradomain routing & resource allocation; what-if analysis
 - » Demand matrix (point-to-multipoint): coupling between interdomain and intradomain routing: multiple potential egress points

Conclusion

IP networks are hard to measure by design

- » Stateless and distributed
- \gg Measurement support often an afterthought \rightarrow insufficient, immature, not standardized

Network operations critically rely on measurements

- » Short time-scale: detect, diagnose, fix problems in configuration, state, performance
- » Long time-scale: capacity & topology planning, customer acquisition, ...
- There is much left to be done!
 - » Instrumentation support; systems for collection & analysis; procedures