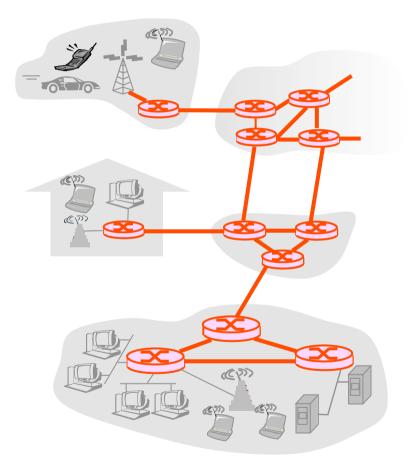


Reti di Elaboratori

Corso di Laurea in Informatica Università degli Studi di Roma "La Sapienza" Canale A-L <u>Prof.ssa Chiara Petrioli</u>

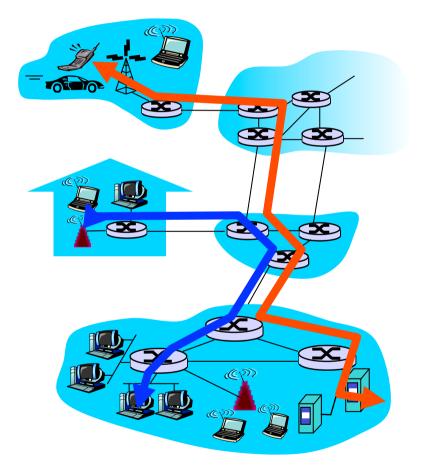
Parte di queste slide sono state prese dal materiale associato al libro *Computer Networking: A Top Down Approach ,* 5th edition. All material copyright 1996-2009 J.F Kurose and K.W. Ross, All Rights Reserved Thanks also to Antonio Capone, Politecnico di Milano, Giuseppe Bianchi and Francesco LoPresti, Un. di Roma Tor Vergata

Chapter 1: roadmap


- 1.1 What *is* the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - □ circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security
- 1.7 History

The Network Core

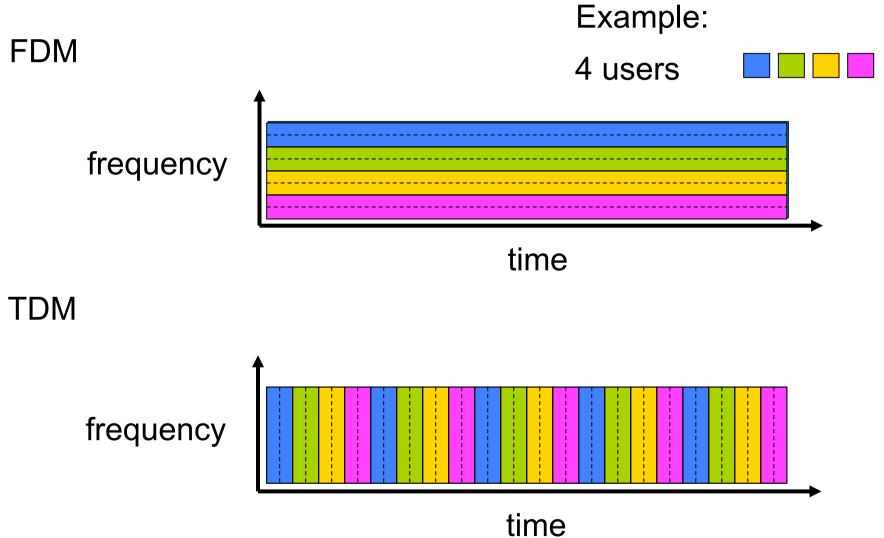
- mesh of interconnected routers
- the fundamental question: how is data transferred


through net?

- o circuit switching:
 - dedicated circuit per call: telephone net
- packet-switching: data sent thru net in discrete "chunks"

Network Core: Circuit Switching

- End-end resources reserved for "call"
- link bandwidth, switch capacity
- dedicated resources: no sharing
- circuit-like (guaranteed) performance
- call setup required


Network Core: Circuit Switching

network resources (e.g., bandwidth) divided into "pieces"

- pieces allocated to calls
- resource piece *idle* if not used by owning call (no sharing)

- dividing link bandwidth into "pieces"
 - frequency division
 - time division

Circuit Switching: FDM and TDM

Numerical example

How long does it take to send a file of 640,000 bits from host A to host B over a circuit-switched network?

○ All links are 1.536 Mbps

- Each link uses TDM with 24 slots/sec
- 500 msec to establish end-to-end circuit

Let's work it out!

..Numerical example

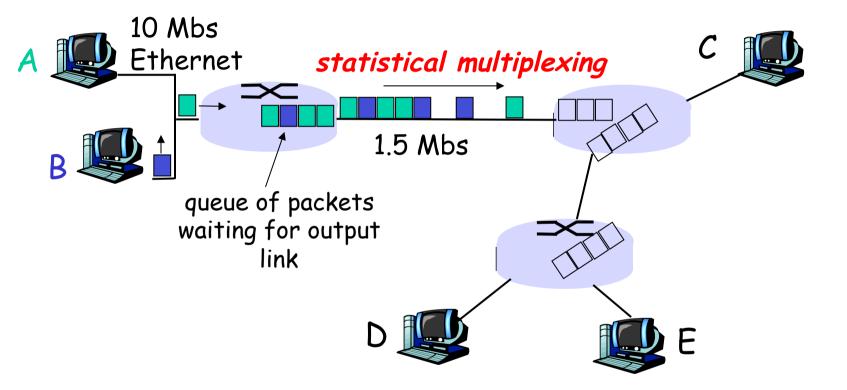
Each circuit has a transmission rate of (1,536Mbps)/24=64Kbps

G40000/64000=10s

 \Box Plus the circuit establishment \rightarrow 10,5s

Network Core: Packet Switching

each end-end data stream divided into *packets*


- user A, B packets share network resources
- each packet uses full link bandwidth
- resources used as needed

resource contention:

- aggregate resource demand can exceed amount available
- congestion: packets queue, wait for link use
- store and forward: packets move one hop at a time
 - Node receives complete packet before forwarding

Packet Switching: Statistical Multiplexing

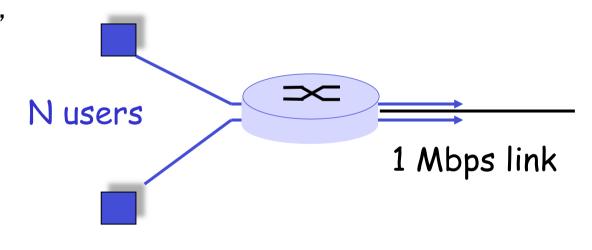
Sequence of A & B packets does not have fixed pattern **statistical multiplexing**.

In TDM each host gets same slot in revolving TDM frame.

Network Core: Packet Switching

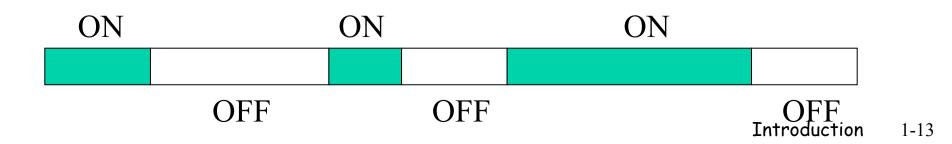
each end-end data stream divided into *packets*

- user A, B packets share network resources
- each packet uses full link bandwidth
- resources used as needed


resource contention:

- aggregate resource demand can exceed amount available
- congestion: packets queue, wait for link use
- store and forward: packets move one hop at a time
 - Node receives complete packet before forwarding

Packet switching versus circuit switching


Packet switching allows more users to use network!

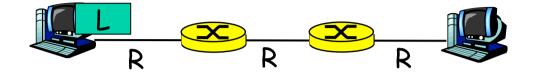
- 1 Mbit link
- each user:
 - 100 kbps when "active"
 - o active 10% of time
- **circuit-switching**:
 - o 10 users
- packet switching:
 - with 35 users, probability > 10 active less than .0004

Source types

- Constant Bit Rate (e.g. encoded voice without silence suppression → voice packets have fixed size and are trasmitted periodically. Required bit rate: 64Kbps)
- Variable Bit Rate (e.g. Video encoding, voice with silence suppression, file downloading etc.)
 - The bit rate varies with time
 - Source behavior characterized by min/max transmission rate, and average bit rate. Source burstiness = max bit rate/ average bit rate.
 - Example: CBR ON/OFF

Packet switching versus circuit switching

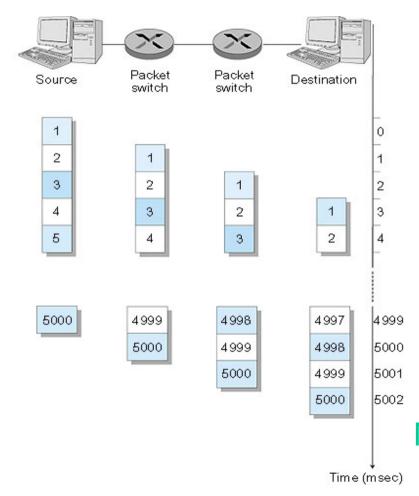
Is packet switching a "slam dunk winner?"


- Great for bursty data
 - resource sharing
 - simpler, no call setup
- Excessive congestion: packet delay and loss
 - protocols needed for reliable data transfer, congestion control

Perche' dividere i messaggi trasmessi dall'applicazione in pacchetti di dimensione limitata.

○ Nelle prossime slides pro e contro....

Packet-switching: store-and-forward



- Takes L/R seconds to transmit (push out) packet of L bits on to link or R bps
- Entire packet must arrive at router before it can be transmitted on next link: store and forward
- \Box delay = 3L/R

Example:

- □ L = 7.5 Mbit
- □ R = 1.5 Mbps
- □ delay = 15 sec
- (only transmission delay considered here)

Packet Switching: Message Segmenting

- Now break up the message into 5000 packets
 - □ Each packet 1,500 bits
 - 1 msec to transmit packet on one link
 - pipelining: each link works in parallel
- Delay reduced from 15 sec to 5.003 sec

Message switching iff dim pacchetti= dim. messaggio originale applicativo

See packet-switching vs. message switching (no segmentation) and the effect of queueing delay through the Java applets on the Kurose-Ross website. Introduction 1-17

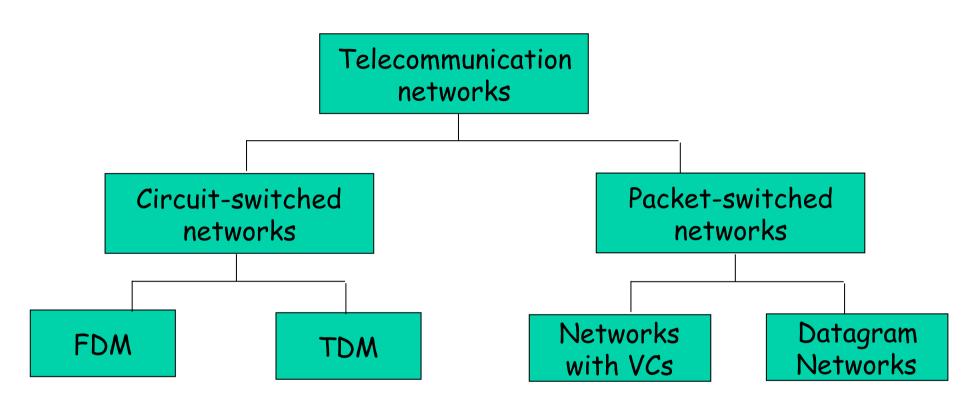
Effect of packet sizes

Packet format

- A longer packet (more data transmitted in a single packet) leads to a lower overhead
- Longer packets result in a higher chance to be corrupted (critical especially for wireless transmission)
- When a packet is corrupted all the data are lost and need to be retransmitted
- Longer packets might decrease the parallellsm of transmission

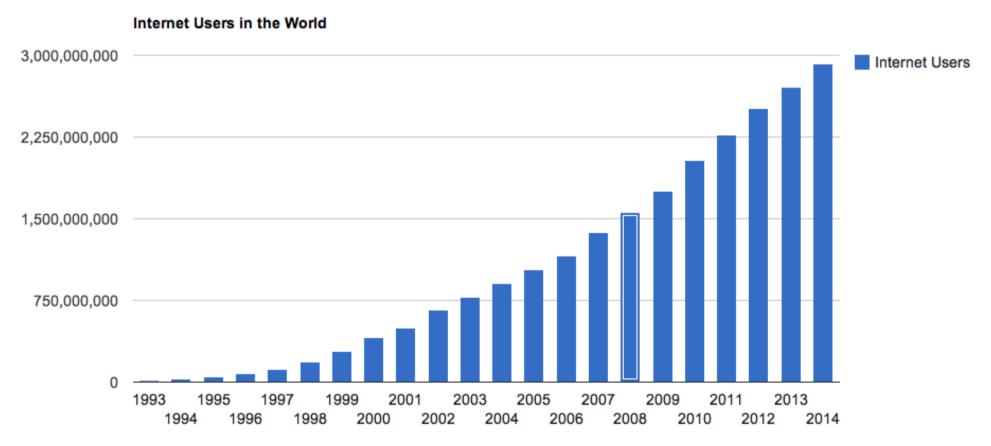
Packet-switched networks: forwarding

<u>Goal</u>: move packets through routers from source to destination
 we'll study several path selection (i.e. routing)algorithms (chapter 4)

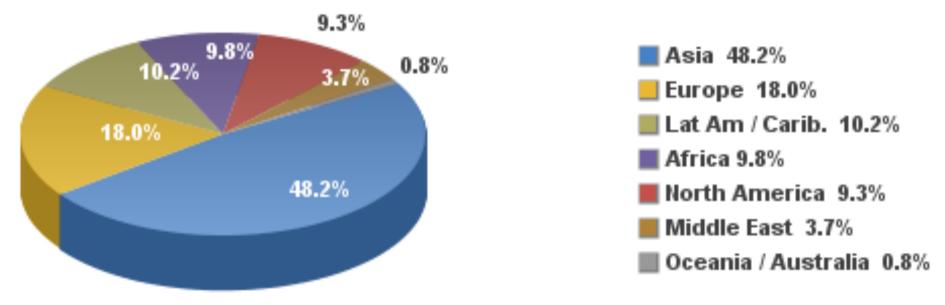

- datagram network:
 - o destination address in packet determines next hop
 - routes may change during session
 - analogy: driving, asking directions

virtual circuit network:

- o each packet carries tag (virtual circuit ID), tag determines next hop
- fixed path determined at *call setup time*, remains fixed thru call; <u>VC share</u> <u>network resources</u>
- routers maintain per-call state (the link on which a packet with a VC tag arriving to a given inbound link has to be forwarded and its VC tag on the next hop)
- Virtual circuit number changes from hop to hop. Each router has to map incoming interface, incoming VC # in outgoing interface, outgoing VC #
 - Why? (what would be the size of the VC number field and the complexity of the VC number assignment in case the same VC # had to be used over the whole path??)


Internet L3 protocol: IP

Network Taxonomy


To conclude general introduction: Why is Internet So Important-- Some Statistics

Today: over 3 billions

Year (as of July 1)

Internet Users in the World by Regions November 2015

Source: Internet World Stats - www.internetworldstats.com/stats.htm Basis: 3,366,261,156 Internet users on November 30, 2015 Copyright © 2015, Miniwatts Marketing Group

To conclude general introduction: Why is **Internet So Important-- Some Statistics**

List of Countries by Internet Usage (2014)

Show 10 + entries

Rank	Country	🖢 Internet Users 🍦	1 Year Growth %	1 Year User Growth	Total Country Population	1 Yr Population Change (%)	Penetration (% of Pop. with Internet)	Country's share of World Population	Country's share of World Internet Users
1	<u>China</u>	641,601,070	4%	24,021,070	1,393,783,836	0.59%	46.03%	19.24%	21.97%
2	United States	279,834,232	7%	17,754,869	322,583,006	0.79%	86.75%	4.45%	9.58%
3	India	243,198,922	14%	29,859,598	1,267,401,849	1.22%	19.19%	17.50%	8.33%
4	Japan	109,252,912	8%	7,668,535	126,999,808	-0.11%	86.03%	1.75%	3.74%
5	Brazil	107,822,831	7%	6,884,333	202,033,670	0.83%	53.37%	2.79%	3.69%
6	<u>Russia</u>	84,437,793	10%	7,494,536	142,467,651	-0.26%	59.27%	1.97%	2.89%
7	Germany	71,727,551	2%	1,525,829	82,652,256	-0.09%	86.78%	1.14%	2.46%
8	<u>Nigeria</u>	67,101,452	16%	9,365,590	178,516,904	2.82%	37.59%	2.46%	2.30%
9	United Kingdom	57,075,826	3%	1,574,653	63,489,234	0.56%	89.90%	0.88%	1.95%
10	France	55,429,382	3%	1,521,369	64,641,279	0.54%	85.75%	0.89%	1.90%
Showing 1 to 10 of 198 entries					evious 1	2 3	4 5	20	Next

Search:

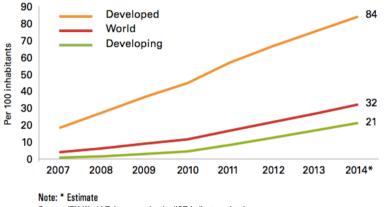
To conclude general introduction: Why is Internet So Important-- Some Statistics

List of Countries by Internet Usage (2014)

Show 10 ÷ entries

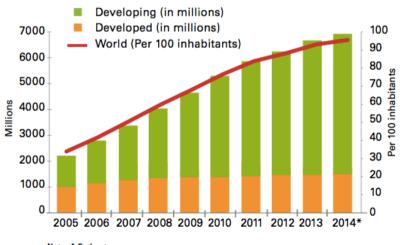
Rank	Country	₹	Internet Users		1 Year Growth %	1 Year User Growth [⊕]	Total Country Population		1 Yr opulation ange (%)	Penetration (% of Pop. with Internet)	Country's share of World Population	Country's share of World Internet Users
11	Mexico		50,923,06	60	7%	3,423,153	123,799,215	5	1.20%	41.13%	1.71%	1.74%
12	South Korea		45,314,24	8	8%	3,440,213	49,512,020	5	0.51%	91.52%	0.68%	1.55%
13	Indonesia		42,258,82	4	9%	3,468,057	252,812,245	5	1.18%	16.72%	3.49%	1.45%
14	Egypt		40,311,56	52	10%	3,748,271	83,386,739	Э	1.62%	48.34%	1.15%	1.38%
15	Viet Nam		39,772,42	4	9%	3,180,007	92,547,959	Э	0.95%	42.97%	1.28%	1.36%
16	Philippines		39,470,84	5	10%	3,435,654	100,096,496	5	1.73%	39.43%	1.38%	1.35%
17	<u>Italy</u>		36,593,96	i9	2%	857,489	61,070,224	4	0.13%	59.92%	0.84%	1.25%
18	Turkey		35,358,88	88	3%	1,195,610	75,837,020	D	1.21%	46.62%	1.05%	1.21%
19	<u>Spain</u>		35,010,27	3	3%	876,986	47,066,402	2	0.30%	74.38%	0.65%	1.20%
20	<u>Canada</u>		33,000,38	31	7%	2,150,061	35,524,732	2	0.98%	92.89%	0.49%	1.13%
Showi	ng 11 to 20 of	198 er	ntries			Pr	evious 1	2	3	4 5	20	Next

Search:

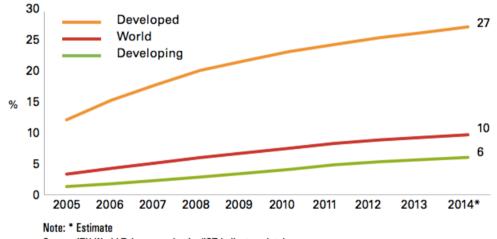

<u>Some</u> <u>Statistics</u>

WORLD INTERNET USAGE AND POPULATION STATISTICS NOVEMBER 30, 2015 - Update								
World Regions	Population (2015 Est.)	Population % of World	Internet Users 30 Nov 2015	Penetration (% Population)	Growth 2000-2015	Users % of Table		
Africa	1,158,355,663	16.0 %	330,965,359	28.6 %	7,231.3%	9.8 %		
Asia	4,032,466,882	55.5 %	1,622,084,293	40.2 %	1,319.1%	48.2 %		
Europe	821,555,904	11.3 %	604,147,280	73.5 %	474.9%	18.0 %		
Middle East	236,137,235	3.3 %	123,172,132	52.2 %	3,649.8%	3.7 %		
North America	357,178,284	4.9 %	313,867,363	87.9 %	190.4%	9.3 %		
Latin America / Caribbean	617,049,712	8.5 %	344,824,199	55.9 %	1,808.4%	10.2 %		
Oceania / Australia	37,158,563	0.5 %	27,200,530	73.2 %	256.9%	0.8 %		
WORLD TOTAL	7,259,902,243	100.0 %	3,366,261,156	46.4 %	832.5%	100.0 %		

NOTES: (1) Internet Usage and World Population Statistics updated as of November 30, 2015. (2) CLICK on each world region name for detailed regional usage information. (3) Demographic (Population) numbers are based on data from the <u>US Census</u> <u>Bureau</u>, <u>Eurostats</u> and from local census agencies. (4) Internet usage information comes from data published by <u>Nielsen Online</u>, by the <u>International Telecommunications Union</u>, by <u>GfK</u>, by local ICT Regulators and other reliable sources. (5) For definitions, disclaimers, navigation help and methodology, please refer to the <u>Site Surfing Guide</u>. (6) Information in this site may be cited, giving the due credit and placing a link to <u>www.internetworldstats.com</u>. Copyright © 2001 - 2016, Miniwatts Marketing Group. All rights reserved worldwide.


<u>A changing Internet...</u>

Active mobile broadband subscription


Source: ITU World Telecommunication/ICT Indicators database

Mobile cellular subscription

Note: * Estimate Source: ITU World Telecommunication/ICT Indicators database

Wired broadband subscription (for 100 users)

Source: ITU World Telecommunication/ICT Indicators database

<u>A changing</u> <u>Internet...</u>

CISCO forecasting

IP Traffic, 2013-2018							
	2013	2014	2015	2016	2017	2018	CAGR 2013- 2018
By Type (Petabytes [PE	3] per Mon	th)					
Fixed Internet	34,952	42,119	50,504	60,540	72,557	86,409	20%
Managed IP	14,736	17,774	20,898	23,738	26,361	29,305	15%
Mobile data	1,480	2,582	4,337	6,981	10,788	15,838	61%
By Segment (PB per Mo	onth)						
Consumer	40,905	50,375	61,439	74,361	89,689	107,958	21%
Business	10,263	12,100	14,300	16,899	20,016	23,595	18%
By Geography (PB per	Month)						
Asia Pacific	17,950	22,119	26,869	32,383	39,086	47,273	21%
North America	16,607	20,293	24,599	29,377	34,552	40,545	20%
Western Europe	8,396	9,739	11,336	13,443	16,051	19,257	18%
Central and Eastern Europe	3,654	4,416	5,443	6,666	8,332	10,223	23%
Latin America	3,488	4,361	5,318	6,363	7,576	8,931	21%
Middle East and Africa	1,074	1,546	2,174	3,027	4,108	5,324	38%
Total (PB per Month)							
Total IP traffic	51,168	62,476	75,739	91,260	109,705	131,553	21%

Source: Cisco VNI, 2014

<u>A changing</u> <u>Internet...</u>

CISCO forecasting

Table 10. Global Consumer Internet Traffic, 2013-2018

Consumer Internet Tra	ffic, 2013-2	2018					
	2013	2014	2015	2016	2017	2018	CAGR 2013- 2018
By Network (PB per M	onth)						
Fixed	27,882	33,782	40,640	48,861	58,703	70,070	20%
Mobile	1,189	2,102	3,563	5,774	8,968	13,228	62%
By Subsegment (PB p	er Month)						
Internet video	17,455	22,600	29,210	37,783	48,900	62,972	29%
Web, email, and data	5,505	6,706	8,150	9,913	11,827	13,430	20%
File sharing	6,085	6,548	6,803	6,875	6,856	6,784	2%
Online gaming	26	30	41	64	88	113	34%

Changes in trends: Multimedia support Network devices reconfigurability and virtualization Cloud vs. Edge computing

Chapter 1: roadmap

1.1 What *is* the Internet?

1.2 Network edge

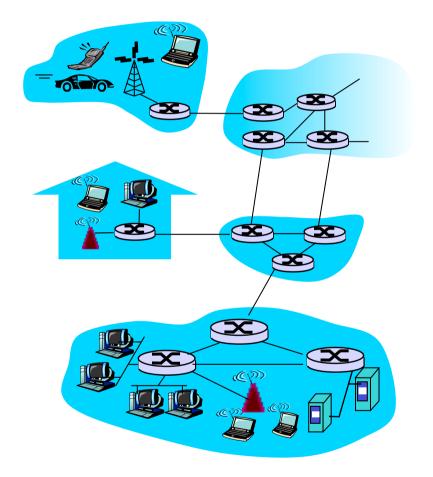
end systems, access networks, links

1.3 Network core

□ circuit switching, packet switching, network structure

1.4 Delay, loss and throughput in packet-switched networks

- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security
- 1.7 History


A closer look at network structure:

network edge: applications and hosts

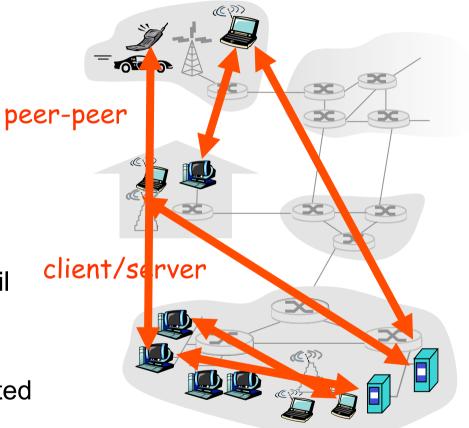
access networks, physical media: wired, wireless communication links

network core:

- interconnected routers
- network of networks

The network edge:

end systems (hosts):

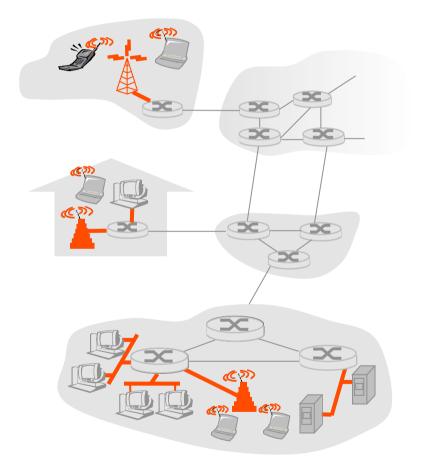

- run application programs
- o e.g. Web, email
- o at "edge of network"

client/server model

- client host requests, receives service from always-on server
- e.g. Web browser/server; email client/server

peer-peer model:

- minimal (or no) use of dedicated servers
- e.g. Skype, BitTorrent



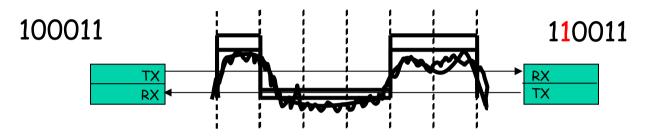
Access networks and physical media

- Q: How to connect end systems to edge router?
- residential access nets
- institutional access networks (school, company)
- mobile access networks

Keep in mind:

- bandwidth (bits per second) of access network?
- shared or dedicated?
- reliable/unreliable (bit error rates)

Transmission across a physical link

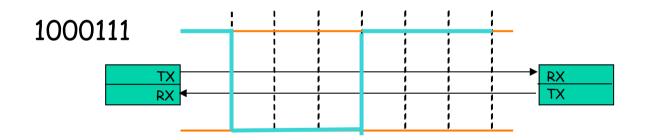

Bits: propagate between transmitter and receiver
 physical link: what lies between transmitter & receiver
 guided media:

 signals propagate in solid media: copper, fiber, coax

unguided media:

○ signals propagate freely, e.g., radio

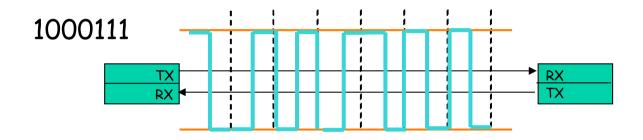
Transmission across a physical link



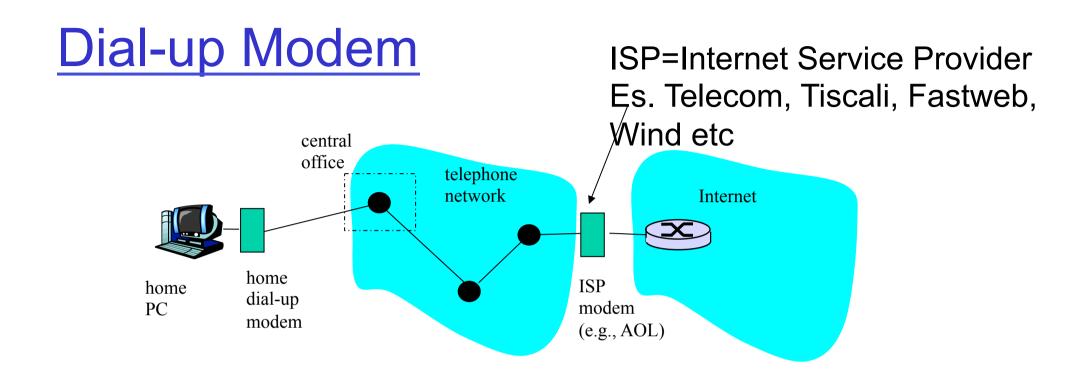
- Bit sequence modulates a suitable waveform which is sent across the link
 - How and which depends on the medium
- □ As the signal travels it experiences
 - Attenuation (absorption)
 - Distortion (limited bandwidth (frequency))
 - Noise (interference, thermal noise)
 - Influenced by medium, bit rate and distance
- Received sequence may be incorrect!!!

Codifica NRZ (Non Return to Zero)

Ogni bit ha associato un valore stabile per la sua intera durata (1: High; 0: Low)

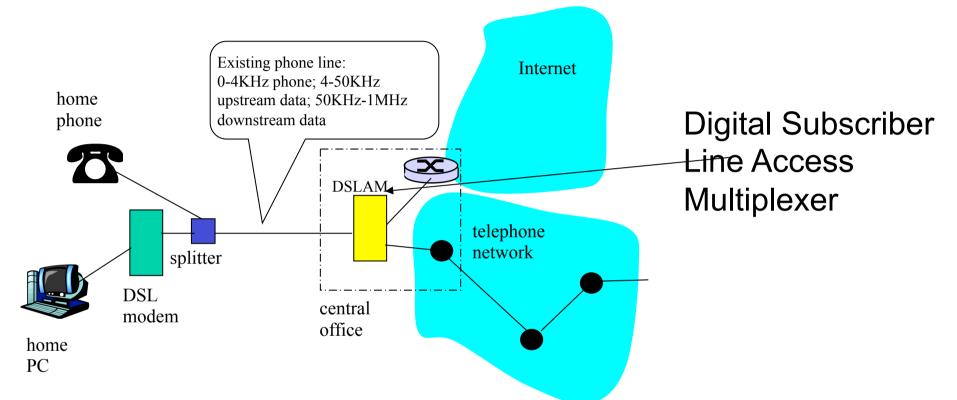


Problemi di sincronizzazione del ricevitore (nessuna transizione nel caso di sequenze di zeri o di uni)→ NRZ 5B6B o 4B5B


Codifica Manchester

Codifica Manchester

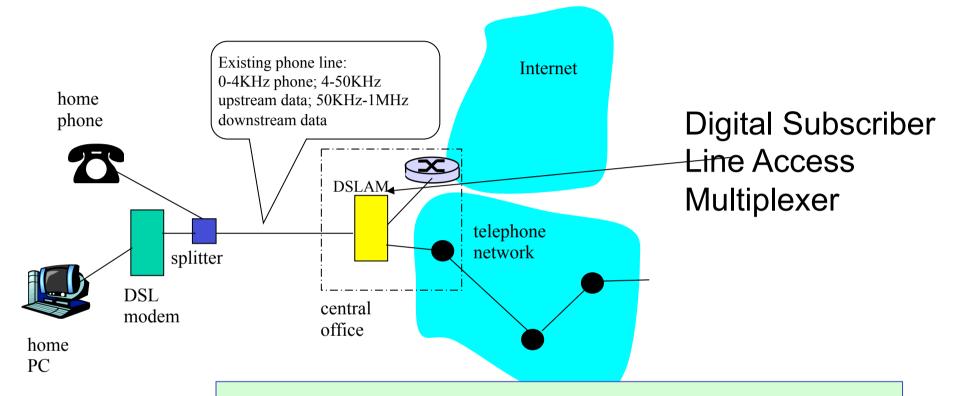
Una transizione basso-alto (codifica dello zero) o alto-basso (codifica del valore uno) in corrispondenza di ogni bit



Usato in Ethernet 10Mbps e Token Ring

- Uses existing telephony infrastructure
 - Home is connected to central office
- up to 56Kbps direct access to router (often less)
- Can't surf and phone at same time: not "always on"

Digital Subscriber Line (DSL)


- Also uses existing telephone infrastruture
- up to 1 Mbps upstream (typically < 256 kbps)</p>
- up to 8 Mbps downstream (typically < 1 Mbps)</p>
- dedicated physical line to telephone central office

ADSL loops extender

An ADSL loop extender or ADSL repeater is a device placed midway between the subscriber and central office by the telephone company to extend the distance and increase the channel capacity of their DSL connection.

In some cases, service can now be established as far as 10 miles from the Central Office (factor of 2 improvement)

Digital Subscriber Line (DSL)

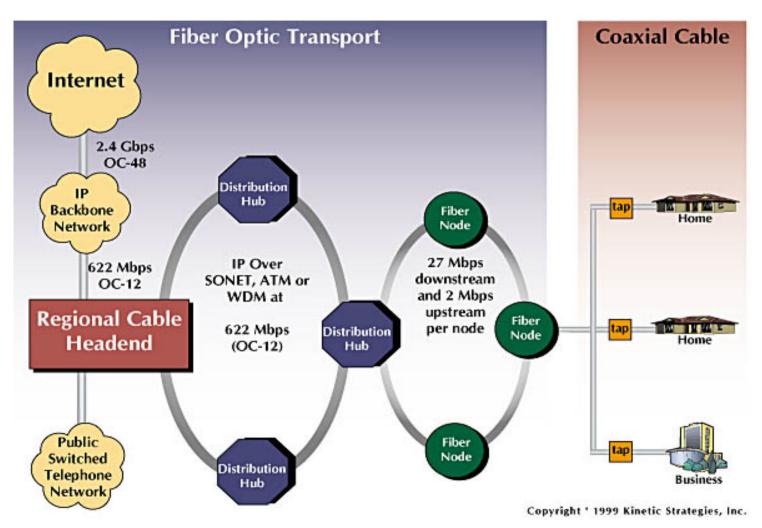
Also uses exi

✤ up to 1 Mbps

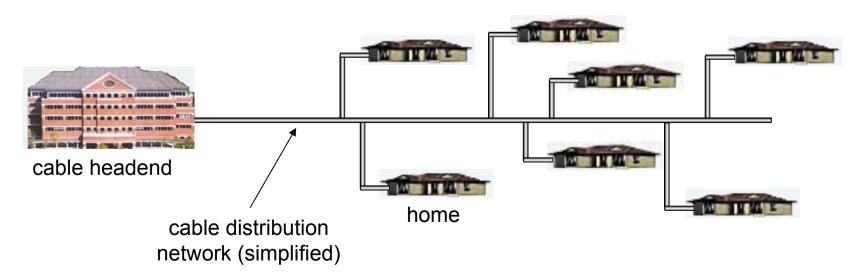
Speed significantly increased in the last few years
technologies more robust to interference;

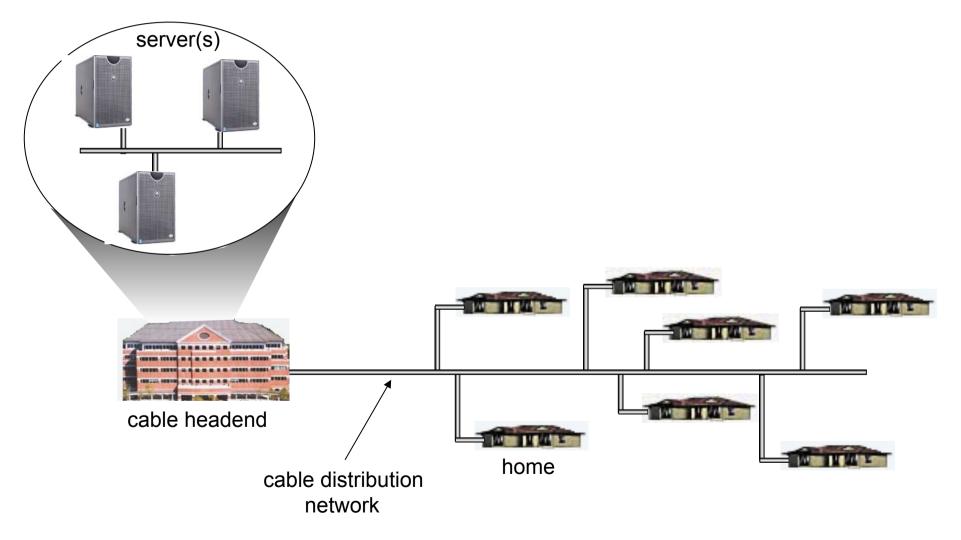
- ✤ up to 8 Mbps · lower distance from DSM modem to DSLAM
- dedicated physical is expected to raise speed to 1Gbps by 2016)

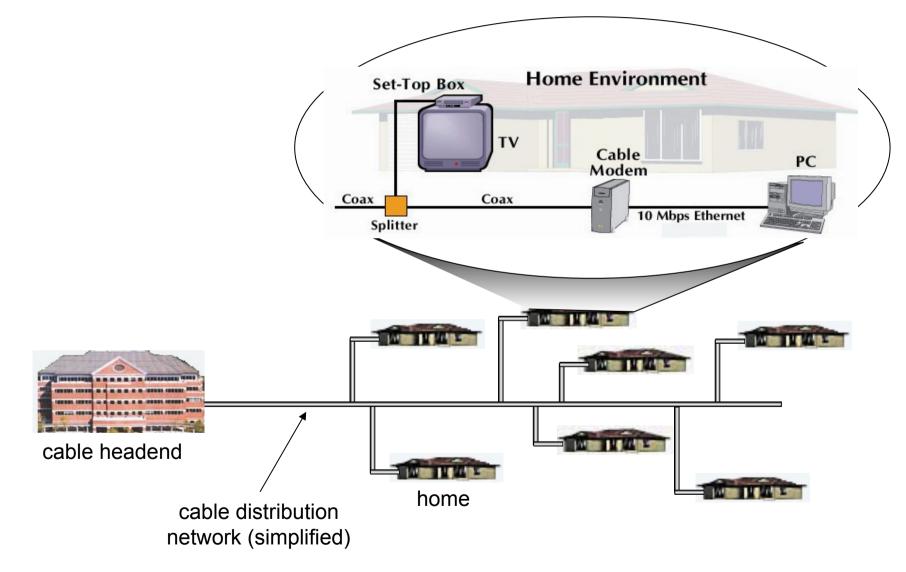
Residential access: cable modems

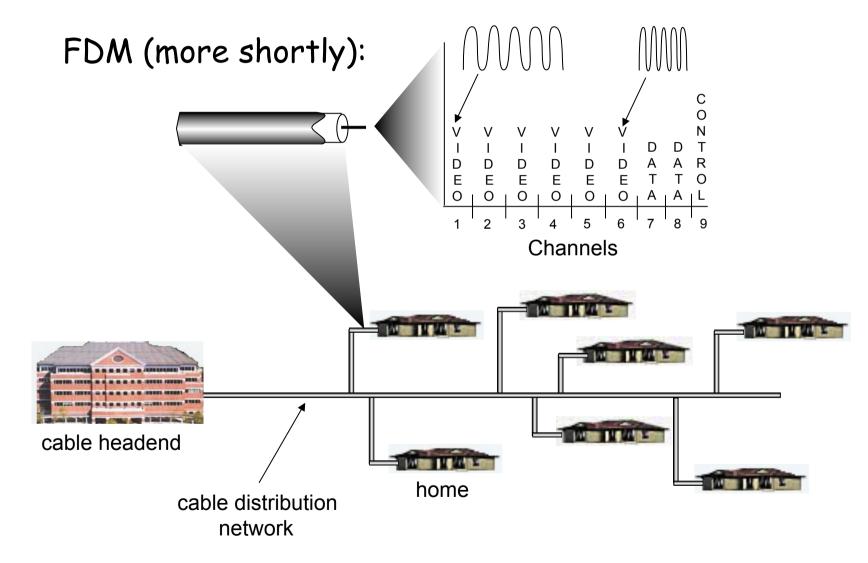

Does not use telephone infrastructure

• Instead uses cable TV infrastructure

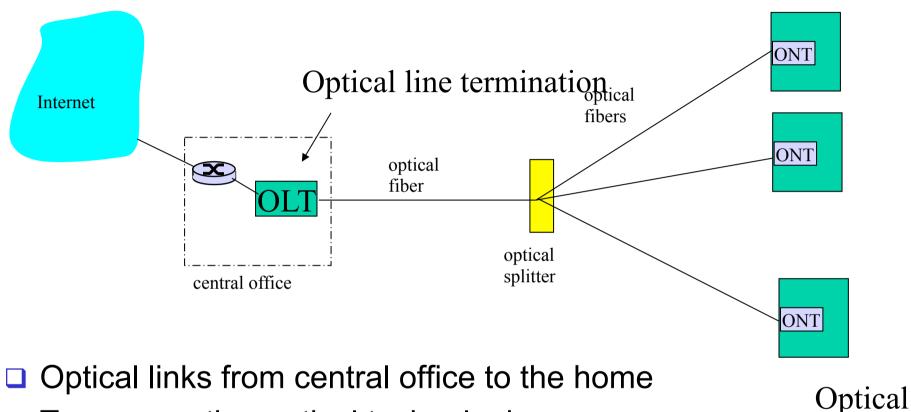

□ HFC: hybrid fiber coax


- asymmetric: up to 30Mbps downstream, 2 Mbps upstream
- network of cable and fiber attaches homes to ISP router
 - homes share access to router
 - unlike DSL, which has dedicated access

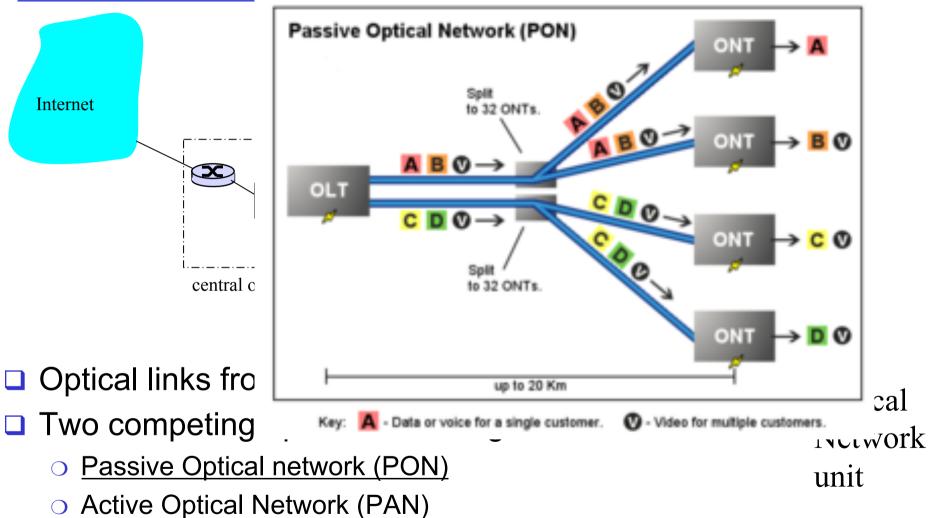

Residential access: cable modems



Typically 500 to 5,000 homes



Fiber to the Home

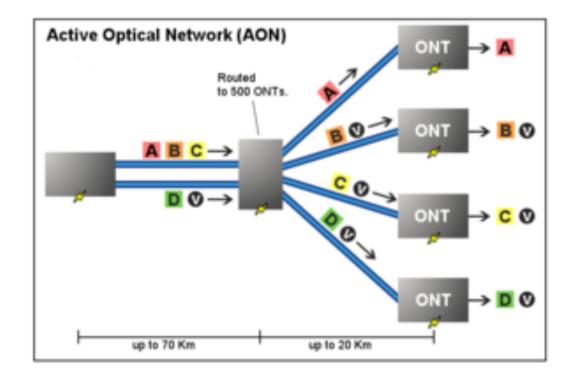


- □ Two competing optical technologies:
 - O Passive Optical network (PON)
 - Active Optical Network (PAN)
- Much higher Internet rates; fiber also carries television and phone services
 - Introduction 1-47

Network

unit

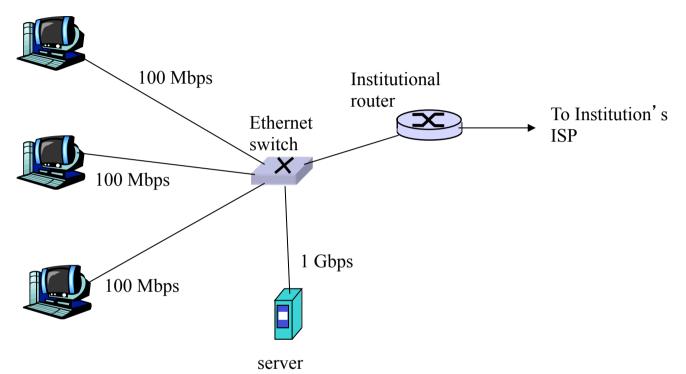
Fiber to the Home



Much higher Internet rates; fiber also carries television and phone services

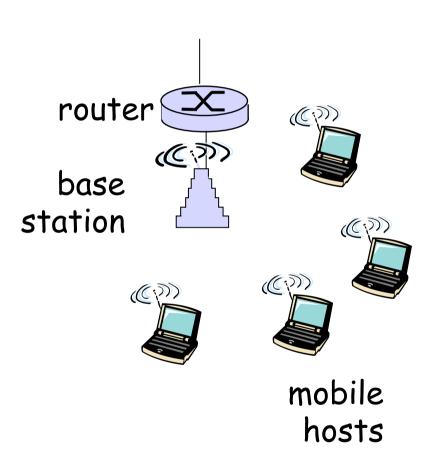
Introduction 1-48

Active Optical Networks


- An active optical system uses electrically powered switching equipment, such as a router or a switch aggregator, to manage signal distribution and direct signals to specific customers.
- In such a system, a customer may have a dedicated fiber running to his or her house.

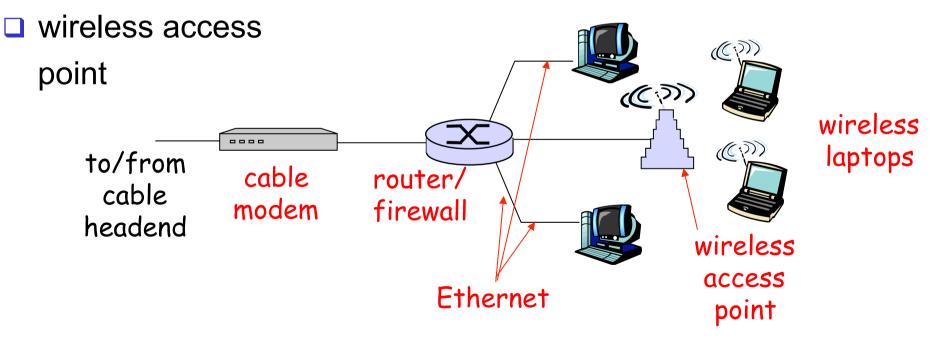
Active vs Passive Optical Networks

- Passive optical networks, or PONs, have some distinct advantages.
 - They're efficient, in that each fiber optic strand can serve up to 32 users
 - PONs have a low building cost relative to active optical networks along with lower maintenance costs. In active optical networks one aggregator is required every 48 subscribers.
- Passive optical networks also have some disadvantages.
 - They have less range than an active optical network.
 - PONs also make it difficult to isolate a failure when they occur.
 - Because the bandwidth in a PON is not dedicated to individual subscribers, data transmission speed may slow down during peak usage times.


Ethernet Internet access

- □ Typically used in companies, universities, etc
- □ 10 Mbs, 100Mbps, 1Gbps, 10Gbps Ethernet
- Today, end systems typically connect into Ethernet switch

Wireless access networks


- shared *wireless* access network connects end system to router
 via base station aka "access point"
- wireless LANs:
 - 802.11b/g (WiFi): 11 or 54 Mbps
- wider-area wireless access
 - provided by telco operator
 - ~1Mbps over cellular system (EVDO, HSDPA), several tens Mbps LTE
 - WiMAX (10's Mbps) over wide area
 - Next to come: 5G systems

Home networks

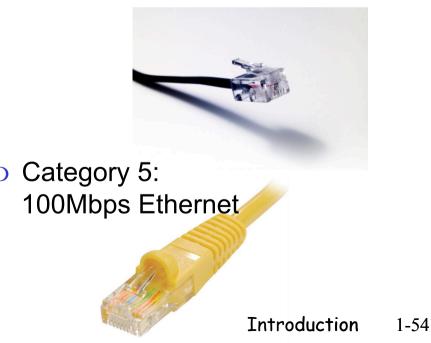
Typical home network components:

- DSL or cable modem
- router/firewall/NAT
- Ethernet

Physical Media

- Bit: propagates between transmitter/rcvr pairs
- physical link: what lies between transmitter & receiver

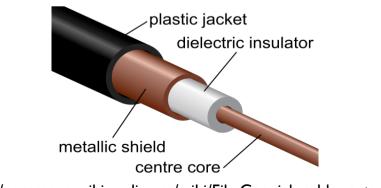
u guided media:


 signals propagate in solid media: copper, fiber, coax

unguided media:

 signals propagate freely, e.g., radio

Twisted Pair (TP)


- two insulated copper wires
 - Category 3: traditional phone wires, 10 Mbps Ethernet

Physical Media: coax, fiber

Coaxial cable:

- two concentric copper conductors
- bidirectional
- baseband:
 - o single channel on cable
 - o legacy Ethernet
- broadband:
 - multiple channels on cable
 - HFC

http://commons.wikimedia.org/wiki/File:Coaxial_cable_cutaway.svg

Fiber optic cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
 - high-speed point-to-point transmission (e.g., 10' s-100' s Gps, but experimented up to tens of terabps)
- Iow error rate: repeaters spaced far apart ; immune to electromagnetic noise

http://www.macmynd.com/storage/misc-pics/ fiber_optic_cable.jpg Introduction

ion 1-55

Physical media: radio

- signal carried in electromagnetic spectrum
- no physical "wire"
- bidirectional
- propagation environment effects:
 - o reflection
 - obstruction by objects
 - o interference

Radio link types: terrestrial microwave ✤ e.g. up to 45 Mbps channels LAN (e.g., Wifi) ✤ 11Mbps, 54 Mbps □ wide-area (e.g., cellular) ✤ 3G cellular: ~ 1 Mbps satellite Kbps to 45Mbps channel (or multiple smaller channels) 270 msec end-end delay geosynchronous versus low altitude

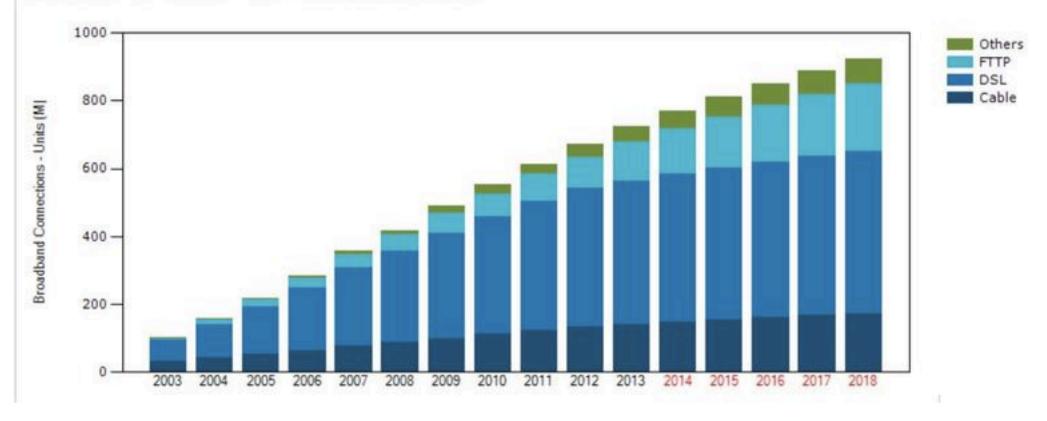
 (500 Km dalla superficie terrestre, servono costellazioni di satelliti)

Physical media performance evolution (update: 2014) –On the move

Generation		Technology	Maximum Download Speed	Typical Download Speed
2G	G	GPRS	0.1Mbit/s	<0.1Mbit/s
	Е	EDGE	0.3Mbit/s	0.1Mbit/s
3G	3G	3G (Basic)	0.3Mbit/s	0.1Mbit/s
	Н	HSPA	7.2Mbit/s	1.5Mbit/s
	H+	HSPA+	21Mbit/s	4Mbit/s
	H+	DC-HSPA+	42Mbit/s	8Mbit/s
4G	HG	LTE	100Mbit/s	15Mbit/s

Physical media performance evolution (update:

2014) – Access technologies


- WiFi, Ethernet, Fiber to the "home", DSL...Maximum current speeds or technologies tested to enter the market within a couple of years
- DSL (G.Fast technology) 1Gbps
 - By 2016
 - Combined with fiber; access to broadband network within 50m to reach such speeds
- Ethernet: 25Gbps (40Gbps under standardization). With more lines: currently 100Gbps, standards towards 400Gbps
- □ WiFi IEEE 802.11ac Up to 1Gbps to come

Fiber

- Technologies tested up to few tens of terabps
- 1Gbps per home more than enough (current threshold per user satisfaction >10Mbps)
- Cellular systems evolution
 - Tens-hundred of Mbps

Physical media performance evolution (update: 2014)—different types of media

Broadband Connections - Units (M) by Access Type

DSL is the most widely used broadband connection technology, and it's growing, but fiber-optic links are growing faster.