
Transport Layer 3-1

Reti di Elaboratori

Corso di Laurea in Informatica

Università degli Studi di Roma “La Sapienza”

Canale A-L

Prof.ssa Chiara Petrioli

Parte di queste slide sono state prese dal materiale associato al libro

Computer Networking: A Top Down Approach , 5th edition.

All material copyright 1996-2009

J.F Kurose and K.W. Ross, All Rights Reserved
Thanks also to Antonio Capone, Politecnico di Milano, Giuseppe Bianchi and

Francesco LoPresti, Un. di Roma Tor Vergata

Chapter 3
Transport Layer

Transport Layer 3-2

TCP: controllo di congestione
r Il TCP ha dei meccanismi di controllo

della congestione
m il flusso dei dati in ingresso in rete è

anche regolato dalla situazione di
traffico in rete

m se il traffico in rete porta a situazioni di
congestione il TCP riduce velocemente il
traffico in ingresso

m in rete non vi è nessun meccanismo per
notificare esplicitamente le situazioni di
congestione

m il TCP cerca di scoprire i problemi di
congestione sulla base degli eventi di
perdita dei pacchetti

Transport Layer 3-3

TCP Congestion Control

r end-end control (no network
assistance)

r sender limits transmission:
LastByteSent-LastByteAcked

≤≤≤≤ CongWin

r Roughly,

r CongWin is dynamic, function of
perceived network congestion

How does sender
perceive congestion?

r loss event = timeout or
3 duplicate acks

r TCP sender reduces
rate (CongWin) after
loss event

three mechanisms:
m AIMD

m slow start

m conservative after
timeout events

rate =
CongWin
RTT

Bytes/sec

Transport Layer 3-4

Starting a TCP transmission

r A new offered flow may suddenly overload
network nodes

m receiver window is used to avoid recv buffer overflow

m But it may be a large value (16-64 KB)

r Idea: slow start
m Start with small value of cwnd

m And increase it as soon as packets get through

– Arrival of ACKs = no packet losts = no congestion

r Initial cwnd size:
m Just 1 MSS!

m Recent (1998) proposals for more aggressive starts (up to 4
MSS) have been found to be dangerous

Transport Layer 3-5

Detecting congestion and restarting
r Segment gets lost

m Detected via RTO expiration

m Indirectly notifies that one of the network nodes along the
path has lost segment

– Because of full queue

r Restart from cwnd=1 (slow start)

r But introduce a supplementary control: slow start
threshold

• sstresh = max(min(cwnd,window)/2,2MSS)

m The idea is that we now KNOW that there is congestion in
the network, and we need to increase our rate in a more
careful manner…

m Ssthresh defines the “congestion avoidance” region

Transport Layer 3-6

Congestion avoidance
r If cwnd < ssthresh

m Slow start region: Increase rate exponentially

r If cwnd >= ssthresh
m Congestion avoidance region : Increase rate

linearly
m At rate 1 MSS per RTT

• Practical implementation:
cwnd += MSS*MSS/cwnd

• Good approximation for 1 MSS per RTT
• Alternative (exact) implementations: count!!

r Which initial ssthresh?
– ssthresh initially set to 65535: unreachable!

In essence, congestion avoidance is flow control imposed by sender

while advertised window is flow control imposed by receiver

Corrisponde ad un segmento
per finestra

Transport Layer 3-7

Simplified example (overall)
C

o
n
g
es

ti
o
n

w
in

d
o
w

cw
n
d

(i
n
 M

S
S
)

Number of transmissions

1

2

3

4

6

8

10

12

14

16

1

Timeout:

cwnd = 1

ssthresh=8

Timeout:

cwnd = 1

ssthresh=6

Transport Layer 3-8

The Fast Retransmit Algorithm

Seq=100

Seq=150

Seq=50

Seq=100

�Idea: use duplicate ACKs!
� Receiver responds with an ACK

every time it receives an out-
of-order segment

� ACK value = last correctly
received segment

�FAST RETRANSMIT
algorithm:
� if 3 duplicate acks are received

for the same segment, assume
that the next segment has been
lost. Retransmit it right away.

� Helps if single packet lost. Not
very effective with multiple
losses

�And then? A congestion
control issue…

ack=100

ack=100

ack=100

ack=100: FR

RTO

Transport Layer 3-9

What happens AFTER RTO?
(without fast retransmit)

Seq=100

Seq=150

Seq=50

Seq=350

ack=100

ack=100

ack=100

ack=100

RTO

Current cwnd = 6

set cwnd = 1 and rtx seq=100

ack=400!

And then, restart normally with cwnd=2 and send seq=400,450

ack=100

ack=100

Transport Layer 3-10

TCP RENOTCP RENO
((withwith fast fast retransmitretransmit))

Seq=100

Seq=150

Seq=50

Seq=350

ack=100

ack=100
ack=100

ack=100

RTO

Current cwnd = 6

set cwnd = 1 and rtx seq=100

ack=400!

And then, restart normally

with cwnd=2 and send

seq=400,450

ack=100

ack=100

Seq=100

Same as before, but shorter time to recover packet loss!

Idea del fast retransmit
Dovrebbe portare ad un
Diverso modo di gestire
L’evento da parte del

Controllo di congetsione?

Transport Layer 3-11

Motivations for fast recovery

Seq=100

Seq=150

Seq=50

Seq=100

ack=100

3rd dupack

FAST RECOVERY:
� The phase following fast

retransmit (3 duplicate acks
received)

� TAHOE approach: slow start, to
protect network after congestion

� However, since subsequent acks
have been received, no hard
congestion situation should be
present in the network: slow start
is a too conservative restart!

Seq=350

Transport Layer 3-12

Fast Fast recoveryrecovery rulesrules

Seq=100

Seq=150

Seq=50

Seq=100

cwnd = 6

Fast Retransmit

& recovery:

cwnd=3, ndup=3

Seq=350

FAST RECOVERY RULES:
� Retransmit lost segment
� Set cwnd = cwnd/2
� Restart with congestion

avoidance (linear)
� start fast recovery phase:

�Set counter for
duplicate packets
ndup=3

�Use “inflated” window:
w = cwnd+ndup

�Upon new dup_acks,
increase ndup, not cwnd
(and send new data)

�Upon recovery ack,
“deflate” window
setting ndup=0

cwnd=3, ndup=4
Seq=400cwnd=3, ndup=5
Seq=450

Recovery ack=400

cwnd=3 Seq=500

Transport Layer 3-13

Idle periods

r After a long idle period (exceeding one
RTO), reset the congestion window to one.

Time

Congestion

Window

CWND

Receiver Window

Idle

Interval

Timeout

1

SSThresh

Transport Layer 3-14

Timeout:

cw
n
d

Number of transmissions

Timeout:

Further TCP issues

Timeout = packet loss occurrence in an internal network router

TCP (both Tahoe & Reno) does not AVOID packet loss

Simply REACTS to packet loss

CONCLUSION: a TCP able to AVOID packet

loss should be much better…..

Toward next

Timeout…

Transport Layer 3-15

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP
connection 2

TCP Fairness

Transport Layer 3-16

Why is TCP fair?

Two competing sessions:
r Additive increase gives slope of 1, as throughout increases

r multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

C
on

n e
ct

io
n

2
 t
h
ro

ug
h
pu

t

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Transport Layer 3-17

Fairness with UDP traffic

r A serious problem for TCP
m in heavy network load, TCP reduces

transmission rate. Non congestion-controlled
traffic does not.

m Result: in link overload, TCP throughput
vanishes!

This is why we still live in a World Wide Wait time

(Webcams are destroying TCP traffic)

Transport Layer 3-18

Mixing TCP & UDP traffic

Link 45 Mbps

TCP

UDP

UDP

TCP1

TCP2

Transport Layer 3-19

Fairness (more)

Fairness and UDP

r Multimedia apps often
do not use TCP

m do not want rate
throttled by congestion
control

r Instead use UDP:
m pump audio/video at

constant rate, tolerate
packet loss

r Research area: TCP
friendly

Fairness and parallel TCP
connections

r nothing prevents app from
opening parallel
connections between 2
hosts.

r Web browsers do this
r Example: link of rate R

supporting 9 cnctions;
m new app asks for 1 TCP, gets

rate R/10
m new app asks for 11 TCPs,

gets R/2 !

