
Transport Layer 3-1

Reti di Elaboratori

Corso di Laurea in Informatica

Università degli Studi di Roma “La Sapienza”

Canale A-L

Prof.ssa Chiara Petrioli

Parte di queste slide sono state prese dal materiale associato al libro 

Computer Networking: A Top Down Approach , 5th edition. 

All material copyright 1996-2009

J.F Kurose and K.W. Ross, All Rights Reserved
Thanks also to Antonio Capone, Politecnico di Milano, Giuseppe Bianchi and 

Francesco LoPresti, Un. di Roma Tor Vergata

Chapter 3
Transport Layer



Transport Layer 3-2

TCP: controllo di congestione
r Il TCP ha dei meccanismi di controllo 

della congestione
m il flusso dei dati in ingresso in rete è

anche regolato dalla situazione di 
traffico in rete

m se il traffico in rete porta a situazioni di 
congestione il TCP riduce velocemente il 
traffico in ingresso

m in rete non vi è nessun meccanismo per 
notificare esplicitamente le situazioni di 
congestione

m il TCP cerca di scoprire i problemi di 
congestione sulla base degli eventi di 
perdita dei pacchetti 
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TCP Congestion Control

r end-end control (no network 
assistance)

r sender limits transmission:
LastByteSent-LastByteAcked

≤≤≤≤ CongWin

r Roughly,

r CongWin is dynamic, function of 
perceived network congestion

How does  sender 
perceive congestion?

r loss event = timeout or
3 duplicate acks

r TCP sender reduces 
rate (CongWin) after 
loss event

three mechanisms:
m AIMD

m slow start

m conservative after 
timeout events

rate =
CongWin
RTT

Bytes/sec
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Starting a TCP transmission

r A new offered flow may suddenly overload
network nodes

m receiver window is used to avoid recv buffer overflow

m But it may be a large value (16-64 KB)

r Idea: slow start
m Start with small value of cwnd

m And increase it as soon as packets get through

– Arrival of ACKs = no packet losts = no congestion

r Initial cwnd size:
m Just 1 MSS!

m Recent (1998) proposals for more aggressive starts (up to 4 
MSS) have been found to be dangerous
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Detecting congestion and restarting
r Segment gets lost

m Detected via RTO expiration

m Indirectly notifies that one of the network nodes along the 
path has lost segment

– Because of full queue

r Restart from cwnd=1 (slow start)

r But introduce a supplementary control: slow start 
threshold

• sstresh = max(min(cwnd,window)/2,2MSS)

m The idea is that we now KNOW that there is congestion in 
the network, and we need to increase our rate in a more 
careful manner…

m Ssthresh defines the “congestion avoidance” region
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Congestion avoidance
r If cwnd < ssthresh

m Slow start region: Increase rate exponentially

r If cwnd >= ssthresh
m Congestion avoidance region : Increase rate 

linearly
m At rate 1 MSS per RTT

• Practical implementation:
cwnd += MSS*MSS/cwnd

• Good approximation for 1 MSS per RTT
• Alternative (exact) implementations: count!!

r Which initial ssthresh?
– ssthresh initially set to 65535: unreachable!

In essence, congestion avoidance is flow control imposed by sender

while advertised window is flow control imposed by receiver

Corrisponde ad un segmento
per finestra
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Simplified example (overall)
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The Fast Retransmit Algorithm

Seq=100

Seq=150

Seq=50

Seq=100

�Idea: use duplicate ACKs!
� Receiver responds with an ACK 

every time it receives an out-
of-order segment

� ACK value = last correctly 
received segment

�FAST RETRANSMIT 
algorithm:
� if 3 duplicate acks are received 

for the same segment, assume 
that the next segment has been 
lost. Retransmit it right away.

� Helps if single packet lost. Not 
very effective with multiple 
losses

�And then? A congestion 
control issue…

ack=100

ack=100

ack=100

ack=100: FR

RTO
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What happens AFTER RTO?
(without fast retransmit)

Seq=100

Seq=150

Seq=50

Seq=350

ack=100

ack=100

ack=100

ack=100

RTO

Current cwnd = 6

set cwnd = 1 and rtx seq=100

ack=400!

And then, restart normally with cwnd=2 and send seq=400,450

ack=100

ack=100
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TCP RENOTCP RENO
((withwith fast fast retransmitretransmit))

Seq=100

Seq=150

Seq=50

Seq=350

ack=100

ack=100
ack=100

ack=100

RTO

Current cwnd = 6

set cwnd = 1 and rtx seq=100

ack=400!

And then, restart normally

with cwnd=2 and send

seq=400,450

ack=100

ack=100

Seq=100

Same as before, but shorter time to recover packet loss! 

Idea del fast retransmit
Dovrebbe portare ad un 
Diverso modo di gestire 
L’evento da parte del 

Controllo di congetsione?
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Motivations for fast recovery

Seq=100

Seq=150

Seq=50

Seq=100

ack=100

3rd dupack

FAST RECOVERY:
� The phase following fast 

retransmit (3 duplicate acks
received)

� TAHOE approach: slow start, to 
protect network after congestion

� However, since subsequent acks
have been received, no hard 
congestion situation should be 
present in the network: slow start 
is a too conservative restart!

Seq=350
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Fast Fast recoveryrecovery rulesrules

Seq=100

Seq=150

Seq=50

Seq=100

cwnd = 6

Fast Retransmit

& recovery: 

cwnd=3, ndup=3

Seq=350

FAST RECOVERY RULES:
� Retransmit lost segment
� Set cwnd = cwnd/2
� Restart with congestion 

avoidance (linear)
� start fast recovery phase:

�Set counter for 
duplicate packets 
ndup=3

�Use “inflated” window: 
w = cwnd+ndup

�Upon new dup_acks, 
increase ndup, not cwnd
(and send new data)

�Upon recovery ack, 
“deflate” window 
setting ndup=0

cwnd=3, ndup=4
Seq=400cwnd=3, ndup=5
Seq=450

Recovery ack=400

cwnd=3 Seq=500
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Idle periods

r After a long idle period (exceeding one 
RTO), reset the congestion window to one.

Time

Congestion

Window

CWND

Receiver Window

Idle

Interval

Timeout

1

SSThresh
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Timeout:

cw
n
d

Number of transmissions

Timeout:

Further TCP issues

Timeout = packet loss occurrence in an internal network router

TCP (both Tahoe & Reno) does not AVOID packet loss

Simply REACTS to packet loss

CONCLUSION: a TCP able to AVOID packet

loss should be much better…..

Toward next

Timeout…
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Fairness goal: if K TCP sessions share same 
bottleneck link of bandwidth R, each should have 
average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP 
connection 2

TCP Fairness
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Why is TCP fair?

Two competing sessions:
r Additive increase gives slope of 1, as throughout increases

r multiplicative decrease decreases throughput proportionally 

R

R

equal bandwidth share

Connection 1 throughput
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congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2
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Fairness with UDP traffic

r A serious problem for TCP
m in heavy network load, TCP reduces

transmission rate. Non congestion-controlled
traffic does not.

m Result: in link overload, TCP throughput
vanishes!

This is why we still live in a World Wide Wait time

(Webcams are destroying TCP traffic)
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Mixing TCP & UDP traffic

Link 45 Mbps

TCP

UDP

UDP

TCP1

TCP2
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Fairness (more)

Fairness and UDP

r Multimedia apps often 
do not use TCP

m do not want rate 
throttled by congestion 
control

r Instead use UDP:
m pump audio/video at 

constant rate, tolerate 
packet loss

r Research area: TCP 
friendly

Fairness and parallel TCP 
connections

r nothing prevents app from 
opening parallel 
connections between 2 
hosts.

r Web browsers do this 
r Example: link of rate R 

supporting 9 cnctions; 
m new app asks for 1 TCP, gets 

rate R/10
m new app asks for 11 TCPs, 

gets R/2 !


