
Transport Layer 3-1

Reti di Elaboratori

Corso di Laurea in Informatica

Università degli Studi di Roma “La Sapienza”

Canale A-L

Prof.ssa Chiara Petrioli

Parte di queste slide sono state prese dal materiale associato al libro

Computer Networking: A Top Down Approach , 5th edition.

All material copyright 1996-2009

J.F Kurose and K.W. Ross, All Rights Reserved
Thanks also to Antonio Capone, Politecnico di Milano, Giuseppe Bianchi and

Francesco LoPresti, Un. di Roma Tor Vergata

Chapter 3
Transport Layer

Transport Layer 3-2

Guessing right?
Karn’s problem

ack

DATA

Retransmit DATA

RTO

Scenario 1

M

ack

DATA

RTO

Scenario 2

M?

retransmit
M?

How can we distinguish among an ACK to the original segment and to a duplicate?

Transport Layer 3-3

Solution to Karn’s problem

r Very simple: DO NOT update RTT when a segment has been
retransmitted because of RTO expiration!

r Instead, use Exponential backoff
m double RTO for every subsequent expiration of same segment

• When at 64 secs, stay

• persist up to 9 minutes, then reset

Transport Layer 3-4

TCP reliable data transfer
(more in detail)
r TCP creates rdt

service on top of IP’s
unreliable service

r Pipelined segments

r Cumulative acks

r TCP uses single
retransmission timer

r Retransmissions are
triggered by:

m timeout events

m duplicate acks

r Initially consider
simplified TCP sender:

m ignore duplicate acks

m ignore flow control,
congestion control

Transport Layer 3-5

TCP sender events:
data rcvd from app:
r Create segment with

seq #
r seq # is byte-stream

number of first data
byte in segment

r start timer if not
already running (think
of timer as for oldest
unacked segment)

r expiration interval:
TimeOutInterval

timeout:

r retransmit segment
that caused timeout

r restart timer

Ack rcvd:

r If acknowledges
previously unacked
segments

m update what is known to
be acked

m start timer if there are
outstanding segments

Transport Layer 3-6

TCP
sender
(simplified)

NextSeqNum = InitialSeqNum

SendBase = InitialSeqNum

loop (forever) {

switch(event)

event: data received from application above

create TCP segment with sequence number NextSeqNum

if (timer currently not running)

start timer

pass segment to IP

NextSeqNum = NextSeqNum + length(data)

event: timer timeout

retransmit not-yet-acknowledged segment with

smallest sequence number

start timer

event: ACK received, with ACK field value of y

if (y > SendBase) {

SendBase = y

if (there are currently not-yet-acknowledged segments)

start timer

}

} /* end of loop forever */

Comment:
• SendBase-1: last
cumulatively
ack’ed byte
Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is
acked

Purche’ non si ecceda la finestra

Transport Layer 3-7

TCP: retransmission scenarios

Host A

Seq=100, 20 bytes data

ACK=100

time
premature timeout

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

S
eq

=9
2
 t
im

eo
ut

ACK=120

Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m
eo

ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time

S
eq

=9
2
 t
im

eo
ut

SendBase
= 100

SendBase
= 120

SendBase
= 120

Sendbase
= 100

Transport Layer 3-8

TCP retransmission scenarios (more)

Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m
eo

ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120

Transport Layer 3-9

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with

expected seq #. All data up to

expected seq # already ACKed

Arrival of in-order segment with

expected seq #. One other

segment has ACK pending

Arrival of out-of-order segment

higher-than-expect seq. # .

Gap detected

Arrival of segment that

partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms

for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,

indicating seq. # of next expected byte

Immediate send ACK, provided that

segment starts at lower end of gap

Favor piggybacking

Duplicate ACK important feedback—more later

Can advance source window

Main motivation: performance

Transport Layer 3-10

So what is the TCP solution

r Go-Back-N??
r Selective Repeat?
r A: An Hybrid solution.

m Possibility of buffering correctly received
packets AND selective retransmission of
packets, BUT NOT pure Selective Repeat,
cumulative ACK, buffering not required (free
implementation choice)

m Shares some aspects with GBN BUT
• A single timer for the oldest unacked packet;
• when the timer experises ONLY that packet is

retransmitted

Transport Layer 3-11

TCP: a reliable transport

r TCP is a reliable protocol
m all data sent are guaranteed to be received
m very important feature, as IP is unreliable network layer

r employs positive acknowledgement
m cumulative ack

m selective ack may be activated when both peers
implement it (use option)

r does not employ negative ack
m error discovery via timeout (retransmission timer)

m …But “implicit NACK” is available (more later: fast
retransmit)

TCP SACKS

Transport Layer 3-12

Need for implicit NACKs

Seq=100

Retransmit Seq=100

RTO

Seq=150
Seq=200
Seq=250

Seq=50

Seq=350

Seq=300

�TCP does not support
negative ACKs

�This can be a serious
drawback
� Especially in the case of single

packet loss

�Necessary RTO expiration to
start retransmit lost packet
� As well as following ones!!
May take too much time before
retransmitting!!!

�ISSUE: is there a way to
have NACKs in an implicit
manner????

Transport Layer 3-13

The Fast Retransmit Algorithm

Seq=100

Seq=150

Seq=50

Seq=100

�Idea: use duplicate ACKs!
� Receiver responds with an ACK

every time it receives an out-
of-order segment

� ACK value = last correctly
received segment

�FAST RETRANSMIT
algorithm:
� if 3 duplicate acks are received

for the same segment, assume
that the next segment has been
lost. Retransmit it right away.

� Helps if single packet lost. Not
very effective with multiple
losses

ack=100

ack=100

ack=100

ack=100: FR

RTO

Transport Layer 3-14

event: ACK received, with ACK field value of y

if (y > SendBase) {

SendBase = y

if (there are currently not-yet-acknowledged segments)

start timer

}

else {

increment count of dup ACKs received for y

if (count of dup ACKs received for y = 3) {

resend segment with sequence number y

}

Fast retransmit algorithm:

a duplicate ACK for
already ACKed segment

fast retransmit

Transport Layer

r flow control

r congestion control

TCP mechanisms for: TCP mechanisms for:

Graphical examples (applet java) of several algorithms at:

http://www.ce.chalmers.se/~fcela/tcp-tour.html

Transport Layer 3-16

TCP pipelining

r More than 1 segment “flying” in
the network

r Transfer efficiency increases
with W

r So, why an upper limit on W?
m Esempio: flow control

W=6

+

⋅
=

CMSSRTT

MSSW
Cthr

/
,min

Transport Layer 3-17

Why flow control?

r Limited receiver buffer
m If MSS = 2KB = 2048 bytes

m And receiver buffer = 8 KB = 8192 bytes

m Then W must be lower or equal than 4 x MSS

r A possible implementation:
m During connection setup, exchange W value.

m DOES NOT WORK. WHY?

receiver

sender

Transport Layer 3-18

WindowWindow--basedbased flow flow controlcontrol

�MSS = 2KB = 2048 bytes
�Receiver Buffer capacity = 10 KB = 10240 bytes
�TCP data stored in buffer: 3 segments
�Receiver window = Spare room: 10-6 = 4KB = 4096 bytes

�Then, at this time, W must be lower or equal than 2 x MSS

Receiver buffer

�receiver buffer capacity varies with time!
� Upon application process read()

[asynchronous, not depending on OS, not predictable]

From IP Application process read()

Receiver window

Transport Layer 3-19

r Window size field: used to advertise receiver’s
remaining storage capabilities

m 16 bit field, on every packet
m Measure unit: bytes, from 0 (included) to 65535
m Sender rule:

LastByteSent - LastByteAcked <=

RcvWindow.

m W=2048 means:
• I can accept other 2048 bytes since ack, i.e. bytes [ack, ack+W-1]
• also means: sender may have 2048 bytes outstanding (in multiple segments)

Header
length

checksum

32 bit Sequence number

Window size

Source port Destination port

32 bit acknowledgement number

6 bit
Reserved

Urgent pointer

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Transport Layer 3-20

What is flow control needed for?

r Window flow control guarantees receiver buffer to

be able to accept outstanding segments.

r When receiver buffer full, just send back win=0

r in essence, flow control guarantees that

transmission bit rate never exceed receiver rate

Transport Layer 3-21

S=7

Sliding window

S=4
S=5
S=6

Dynamic window based reduces to

pure sliding window when receiver

app is very fast in reading data…

W=3

W=3

1 2 3 4 5 6 7 8 9

SEQ

Window “sliding” forward

Transport Layer 3-22

Dynamic window - example
sender receiver Rec. Buffer

EMPTY

Exchanged param: MSS=2K,

sender ISN=2047, WIN=4K

(carried by receiver SYN)

0 4K
TCP CONN

SETUP

Application

does a 2K write 2K, seq=2048 0 4K

2K
Ack=4096, win=2048

Application

does a 3K write 2K, seq=4096

Sender blocked Ack=6144, win=0

0 4K

FULL

Application

does a 2K read

A B

Transport Layer 3-23

Dynamic window - example
sender receiver Rec. Buffer

EMPTY

Exchanged param: MSS=2K,

sender ISN=2047, WIN=4K

(carried by receiver SYN)

0 4K
TCP CONN

SETUP

Application

does a 2K write 2K, seq=2048 0 4K

2K
Ack=4096, win=2048

Application

does a 3K write 2K, seq=4096

Sender blocked Ack=6144, win=0

0 4K

FULL

Application

does a 2K readAck=6144, win=2048
0 4K

2K
Sender unblocks

may send last 1K 1K, seq=6144

Piggybacked in a packet sent from B to A

A B

Window thus source rate limited by reading speed and buffer size at the receiver

Transport Layer 3-24

Blocked sender deadlock problem
sender receiver Rec. Buffer

0 4K

FULL

Application read

0 4K

2K

BLOCKED

ACK=
X, WIN=2K

REMAINS

BLOCKED

FOREVER!!

Since ACK does not

carry data, no ack

from sender

expected….

Transport Layer 3-25

Solution: Persist timer

r When win=0 (blocked sender), sender starts a “persist” timer
• Initially 500ms (but depends on implementation)

r When persist timer elapses AND no segment received during this
time, sender transmits “probe”

m Probe = 1byte segment; makes receiver reannounce next byte
expected and window size

• this feature necessary to break deadlock

• if receiver was still full, rejects byte

• otherwise acks byte and sends back actual win

r Persist time management (exponential backoff):
m Doubles every time no response is received

m Maximum = 60s

Transport Layer 3-26

The silly window syndrome

Bulk data

source
TCP connection

Full

recv

buffer

Interactive

user (one byte

at the time)SCENARIOSCENARIO

Transport Layer 3-27

The silly window syndrome

Ack=X, win=1
1 byte read

1 byte read

Network loaded with

tinygrams (40bytes

header + 1 payload!!)

Forever!

1 byte

Buffer FULLAck=X+1, win=0

Ack=X+1, win=1

Buffer FULL

1 byte

Ack=X+2, win=0

Buffer FULL
Fill up buffer until win=0

Anche se il ricevitore e’ veloce
A passare i dati al livello

applicativo inviare segmenti
piccoli in un bulk di dati

ha questo effetto

Transport Layer 3-28

Silly window solution

r Problem discovered by David Clark (MIT),
1982

r easily solved, by preventing receiver to
send a window update for 1 byte

r rule: send window update when:
• receiver buffer can handle a whole MSS

or

• half received buffer has emptied (if smaller than
MSS)

r sender also may apply rule
• by waiting for sending data when win low

Transport Layer 3-29

Interactive applications

keystroke

display

server

echo

CLIENT SERVER

Data byte

Echo of data
byte

Ack of
data by

te

Ack of echoed byte

Header overhead:

20 TCP header

+

20 IP header

+

1 data

Interactive apps: create some tricky situations….

Transport Layer 3-30

Nagle’s algorithm
(RFC 896, 1984)

1 byte 1 byte

ack

W
A
IT

2 byte

ack
W
A
IT

NAGLE RULE: inhibit

sending new segments if

any previously

transmitted data unacked

self-clocking algorithm:

on LANs, plenty of

tynigrams

on slow WANs, data

aggregation L’idea e’ che si possoa
trasmettere segmenti

piu’ lunghi avendo bufferizzato
dati nel frattempo

UNLESS MSS data (or at least half
the window size bytes) are
ready to be transmitted

Transport Layer 3-31

PUSH flag

r Used to notify
m TCP sender to send data

• but for this an header flag NOT needed! Sufficient a
“push” type indication in the TCP sender API

m TCP receiver to pass received data to the
application

Header
length

checksum

32 bit Sequence number

Window size

Source port Destination port

32 bit acknowledgement number

6 bit
Reserved

Urgent pointer

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Transport Layer 3-32

Urgent data

r URG on: notifies rx that “urgent” data placed in segment.

r When URG on, urgent pointer contains position of the last octet of urgent
data

• indeed it contains the positive offset from the segment sequence number
• and the position of the first octet of urgent data? No way to specify it!
• Changed wrt RFC 793

r receiver is expected to pass all data up to urgent ptr to app
• interpretation of urgent data is left to the app

r typical usage: ctrlC (interrupt) in rlogin & telnet; abort in FTP

r urgent data is a second exception to blocked sender

Header
length

checksum

32 bit Sequence number

Window size

Source port Destination port

32 bit acknowledgement number

6 bit
Reserved

Urgent pointer

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Transport Layer 3-33

Chapter 3 outline

r 3.1 Transport-layer
services

r 3.2 Multiplexing and
demultiplexing

r 3.3 Connectionless
transport: UDP

r 3.4 Principles of
reliable data transfer

r 3.5 Connection-oriented
transport: TCP

m segment structure

m reliable data transfer

m flow control

m connection management

r 3.6 Principles of
congestion control

r 3.7 TCP congestion
control

Transport Layer 3-34

Application
(client)

Socket

TCP software

Application
(server)

Socket

TCP software

INTERNET

TCP

“Logical” connection

only end hosts are aware!

State variables:

- conn status

- MSS

- windows

- …

buffer space

normally 4 to 16 Kbytes

64+ Kbytes possible

TCP connection

Connection described by client&server status

Connection SET-UP duty:

1) initializes state variables

2) reserves buffer space
Transmission control

block

Contains also info on: sockets, pointers to the users’ send and receive buffers,
to the retransmit queue and to the current segment

Transport Layer 3-35

Connection establishment:
simplest approach (non TCP)

Connection request

Connection granted

Transmit data

time
time

Transport Layer 3-36

Delayed duplicate problem
REQ

ACK

Data

REQ

duplicate

duplicate

Application:

transactional (sell

100000$ stocks)

Selling other 100000$

stocks!!!!!

USER BANK

Data
What is this?

Oh my God!

Too late!!!

Transport Layer 3-37

Solution: three way handshake
Tomlinson 1975

SRC DEST
Connection request (seq=X)

Connection granted (seq=Y,ack=X+1)

Acknowledge + data (seq=X+1, ack=Y+1)

time
time

Transport Layer 3-38

Delayed duplicate detection
SEQ X

SEQ Y, ACK X+1

Data SEQ X+1, ACK Y+1

SEQ X

duplicate

duplicate

Application:

transactional (selling stocks)

What is this??? Should be

SEQ X, ACK Z!!!! STOP...

USER BANK

SEQ Z, ACK X+1

Data SEQ X+1, ACK Y+1
What is this?

Not too late: Reject SEQ X+1, ACK Z+1
Ah ah! Got the problem!

??? What a case: request with

same indicator X? anyway...

Disaster could not be avoided with a two-way handshake

Transport Layer 3-39

r SYN (synchronize sequence numbers): used to open
connection

m SYN present: this host is setting up a connection

m SEQ with SYN: means initial sequence number (ISN)

m data bytes numbered from ISN+1.

r FIN: no more data to send
m used to close connection

...more later about connection closing...

Header
length

checksum

32 bit Sequence number

Window size

Source port Destination port

32 bit acknowledgement number

6 bit
Reserved

Urgent pointer

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Transport Layer 3-40

Three way handshake in TCP

SRC DEST
Connection request (SYN, ISN=100)

Connection granted (SYN, ISN=350, ACK=101)

Data segment (seq=101, ACK=351)

time
time

Full duplex connection: opened in both ways

SRC: performs ACTIVE OPEN

DEST: Performs PASSIVE OPEN

ACTIVE

OPEN

PASSIVE

OPEN

Transport Layer 3-41

Initial Sequence Number

r Should change in time
m RFC 793 (but not all implementations are

conforming) suggests to generate ISN as a
sample of a 32 bit counter incrementing at 4µs
rate (4.55 hour to wrap around—Maximum
Segment Lifetime much shorter)

r transmitted whenever SYN (Synchronize
sequence numbers) flag active
m note that both src and dest transmit THEIR

initial sequence number (remember: full duplex)

r Data Bytes numbered from ISN+1
m necessary to allow SYN segment ack

Transport Layer 3-42

Forbidden Region
r Obiettivo: due sequence number identici non devono trovarsi in rete allo stesso

tempo

r Aging dei pacchetti� dopo un certo tempo MSL (Maximum Segment Lifetime)
i pacchetti eliminati dalla rete

r Sequence numbers basati sul clock
r Un ciclo del clock circa 4 ore; MSL circa 2 minuti.
r � Se non ci sono crash che fanno perdere il valore dell’ultimo sequence number

usato NON ci sono problemi (si riusa lo stesso sequence number ogni 4 ore
circa, quando il segmento precedentemente trasmesso con quel sequence
number non è più in rete)

r � Cosa succede nel caso di crash? RFC suggerisce l’uso di un ‘periodo di
silenzio’ in cui non vengono inviati segmenti dopo il riavvio pari all’MSL (per
evitare che pacchetti precedenti connessioni siano in giro).

T

Forbidden region

Time

S
eq

ue
nc

e
nu

m
b
er

s

Transport Layer 3-43

Maximum Segment Size - MSS

r Announced at setup by both ends.

r Lower value selected (indeed min of lower value
and largest size permitted by IP layer).

r MSS sent in the Options header of the SYN
segment

m clearly cannot (=ignored if happens) send MSS in a non
SYN segment, as connection has been already setup

m when SYN has no MSS, default value 536 used

r goal: the larger the MSS, the better...
m until fragmentation occurs

m e.g. if host is on ethernet, sets MSS=1460
• 1500 max ethernet size - 20 IP header - 20 TCP header

Transport Layer 3-44

MSS advertise

Conn request (C_MSS, SYN, seq=C_ISN)

Conn granted (MSS, SYN, seq=S_ISN, ack=C_ISN+1)

Acknowledge (seq=C_ISN+1,ack=S_ISN+1)

time
time

CLIENT (C_MSS) SERVER (S_MSS)

If (S_MSS<C_MSS)

MSS = S_MSS;

else MSS = C_MSS;

Use

recv

MSS

Does not avoid fragmentation to occur WITHIN the network!!

Transport Layer 3-45

TCP Connection Management:Summary

Recall: TCP sender, receiver
establish “connection”
before exchanging data
segments

r initialize TCP variables:

m seq. #s

m buffers, flow control
info (e.g. RcvWindow)

m MSS

r client: connection initiator
Socket clientSocket = new

Socket("hostname","port

number");

r server: contacted by client
Socket connectionSocket =

welcomeSocket.accept();

Three way handshake:

Step 1: client host sends TCP
SYN segment to server

m specifies initial seq #
m no data

Step 2: server host receives
SYN, replies with SYNACK
segment

m server allocates buffers
m specifies server initial

seq. #
Step 3: client receives SYNACK,

allocates buffer and
variables,replies with ACK
segment, which may contain
data

Per chiudere la connessione uno dei due estremi invia un messaggio con FIN flag a 1
a cui l’altro estremo della connessione risponde con ACK

Transport Layer 3-46

Problema dei due eserciti
r L’esercito rosso e’ globalmente più debole. Se le due pattuglie verdi

attaccano insieme lo sconfiggono, altrimenti perdono. Possono
scambiarsi messaggi relativi all’orario in cui attaccheranno e di ACK
di un messaggio ricevuto. I messaggeri che li portano possono pero’
essere catturati e quindi il messaggio può non arrivare
correttamente a destinazione. Come fanno a mettersi d’accordo per
attaccare insieme?

Transport Layer 3-47

Problema dei due eserciti
r L’esercito rosso e’ globalmente più debole. Se le due pattuglie verdi

attaccano insieme lo sconfiggono, altrimenti perdono. Possono
scambiarsi messaggi relativi all’orario in cui attaccheranno e di ACK
di un messaggio ricevuto. I messaggeri che li portano possono pero’
essere catturati e quindi il messaggio può non arrivare
correttamente a destinazione. Come fanno a mettersi d’accordo per
attaccare insieme?

Attacco alle 6

Senza ACK 1 non
Attacchera’ perche’

Non sa se 2 ha ricevuto
Il messaggio

Pattuglia 1
Pattuglia 2

Transport Layer 3-48

Problema dei due eserciti
r L’esercito rosso e’ globalmente più debole. Se le due pattuglie verdi

attaccano insieme lo sconfiggono, altrimenti perdono. Possono
scambiarsi messaggi relativi all’orario in cui attaccheranno e di ACK
di un messaggio ricevuto. I messaggeri che li portano possono pero’
essere catturati e quindi il messaggio può non arrivare
correttamente a destinazione. Come fanno a mettersi d’accordo per
attaccare insieme?

Pattuglia 1 Pattuglia 2
Attacco alle 6

OK Attacco alle 6

Senza ACK del secondo
Messaggio 2 non

attacchera’ perche’
Non sa se 1 ha ricevuto

il messaggio e sa che senza ACK
del primo messaggio 1 non

Attacchera’

Transport Layer 3-49

Problema dei due eserciti
r In generale: se N scambi di messaggi /Ack etc. necessari a

raggiungere la certezza dell’accordo per attaccare allora cosa
succede se l’ultimo messaggio ‘necessario’ va perso?

r �E’ impossibile raggiungere questa certezza. Le due pattuglie non
attaccheranno mai!!

Transport Layer 3-50

Problema dei due eserciti: cosa ha
a che fare con le reti e TCP??

r Chiusura di una connessione. Vorremmo un
accordo tra le due peer entity o rischiamo
di perdere dati.

Connection Request

Accept
Data

Data

Disconnection Request (FIN)

connected
connected

A B

A pensa che il secondo pacchetto sia stato ricevuto. La connessione e’
Stata chiusa da B prima che ciò avvenisse���� secondo pacchetto perso!!!

Transport Layer 3-51

Quando si può dire che le due peer
entity abbiano raggiunto un accordo???

r Problema dei due eserciti!!!

Connection Request

Accept
Data

Data

Disconnection Request

connected
connected

A B

Ack

Ma se l’ACK va perso????

Soluzione: si e’ disposti a correre piu’ rischi quando si butta giu’ una connessione di
quando si attacca un esercito nemico. Possibili malfunzionamenti. Soluzioni ‘di

recovery’ in questi casi

Transport Layer 3-52

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system
sends TCP FIN control
segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

client

FIN

server

ACK

ACK

FIN

close

close

closed

ti
m
ed

 w
ai

t

Since it is impossible to solvethe proble use simple solution:
two way handshake

Transport Layer 3-53

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

m Enters “timed wait” -
will respond with ACK
to received FINs

Step 4: server, receives
ACK. Connection closed.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

ti
m
ed

 w
ai

t
closed

Transport Layer 3-54

Connection states - Client

Transport Layer 3-55

Connection States - Server

Transport Layer 3-56

Why TIME_WAIT?
r MSL (Maximum Segment Lifetime): maximum time a

segment can live in the Internet
• no timers on IP packets! Only hop counter

• RFC 793 specifies MSL=2min, but each implementation has its own
value (from 30s to 2min)

r TIME_WAIT state: 2 x MSL

m allows to “clean” the network of delayed packets belonging to the

connection

m 2xMSL because a lost FIN_ACK implies a new FIN from server

r during TIME_WAIT conn sock pair reserved
m many implementations even more restictive (local port non reusable)

m clearly this may be a serious problem when restarting server daemon
(must pause from 1 to 4 minutes…)

Transport Layer 3-57

Header
length

checksum

32 bit Sequence number

Window size

Source port Destination port

32 bit acknowledgement number

6 bit
Reserved

Urgent pointer

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

r RST (Reset)
m sent whenever a segment arrives and does not apparently belong to

the connection

m typical RST case: connection request arriving to port not in use

r Sending RST within an active connection:
m allows aborting release of connection (versus orderly release)

• any queued data thrown away

• receiver of RST can notify app that abort was performed at other end

Transport Layer 3-58

Chapter 3 outline

r 3.1 Transport-layer
services

r 3.2 Multiplexing and
demultiplexing

r 3.3 Connectionless
transport: UDP

r 3.4 Principles of
reliable data transfer

r 3.5 Connection-oriented
transport: TCP

m segment structure

m reliable data transfer

m flow control

m connection management

r 3.6 Principles of
congestion control

r 3.7 TCP congestion
control

Transport Layer 3-59

Principles of Congestion Control

Congestion:
r informally: “too many sources sending too much

data too fast for network to handle”

r different from flow control!

r manifestations:

m lost packets (buffer overflow at routers)

m long delays (queueing in router buffers)

r a top-10 problem!

Transport Layer 3-60

Causes/costs of congestion: scenario 1

r two senders, two
receivers

r one router,
infinite buffers

r no retransmission

r large delays
when congested

r maximum
achievable
throughput

unlimited shared
output link buffers

Host A
λin : original data

Host B

λout

Transport Layer 3-61

Causes/costs of congestion: scenario 2

r one router, finite buffers

r sender retransmission of lost packet

finite shared output
link buffers

Host A λin : original data

Host B

λout

λ'in : original data, plus
retransmitted data

Transport Layer 3-62

Causes/costs of congestion: scenario 2

r always we want: (goodput)

r Second step …retransmission only when loss:

r retransmission of delayed (not lost) packet makes larger

(than second case) for same

λ
in

λ
out

=

λ
in

λ
out

>

λ
in

λ
out

“costs” of congestion:

r more work (retrans) for given “goodput”

r unneeded retransmissions: link carries multiple copies of pkt

Caso in cui ciascun pacchetto instradato
Sia trasmesso mediamente due volte dal router

Transport Layer 3-63

Causes/costs of congestion: scenario 3

r four senders

r multihop paths

r timeout/retransmit

λ
in

Q: what happens as
and increase ?λ

in

finite shared output
link buffers

Host A
λin : original data

Host B

λout

λ'in : original data, plus
retransmitted data

D-B traffic high

D

Transport Layer 3-64

Causes/costs of congestion: scenario 3

Another “cost” of congestion:

r when packet dropped, any “upstream transmission
capacity used for that packet was wasted!

H

o

s

t
A

H

o

s

t
B

λ
o

u

t

Transport Layer 3-65

Approaches towards congestion control

End-end congestion
control:

r no explicit feedback from
network

r congestion inferred from
end-system observed loss,
delay

r approach taken by TCP

Network-assisted
congestion control:

r routers provide feedback
to end systems

m single bit indicating
congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

m explicit rate sender
should send at

Two broad approaches towards congestion control:

Transport Layer 3-66

Chapter 3 outline

r 3.1 Transport-layer
services

r 3.2 Multiplexing and
demultiplexing

r 3.3 Connectionless
transport: UDP

r 3.4 Principles of
reliable data transfer

r 3.5 Connection-oriented
transport: TCP

m segment structure

m reliable data transfer

m flow control

m connection management

r 3.6 Principles of
congestion control

r 3.7 TCP congestion
control

Transport Layer 3-67

TCP: controllo di congestione
r Il TCP ha dei meccanismi di controllo

della congestione
m il flusso dei dati in ingresso in rete è

anche regolato dalla situazione di
traffico in rete

m se il traffico in rete porta a situazioni di
congestione il TCP riduce velocemente il
traffico in ingresso

m in rete non vi è nessun meccanismo per
notificare esplicitamente le situazioni di
congestione

m il TCP cerca di scoprire i problemi di
congestione sulla base degli eventi di
perdita dei pacchetti

Transport Layer 3-68

TCP: controllo di congestione
r il meccanismo si basa ancora sulla sliding window la

cui larghezza viene dinamicamente regolata in base
alle condizioni in rete

r in linea di principio scopo del controllo è far si che
il flusso emesso da ciascuna sorgente venga
regolato in modo tale che il flusso complessivo
offerto a ciascun canale non superi la sua capacità

r tutti i flussi possono essere ridotti in modo tale
che la capacità della rete venga condivisa da tutti
in misura se possibile uguale

Transport Layer 3-69

The problem of congestion
SENDERs

(bulk flows)

RECEIVERs

(large capacity)

Internal

network

congestion:

- queues build up

- delay increases

- RTOs expire

-more segments transmitted, more

Segments retransmitted -> more congestion!

Advertise large win

Several outstanding segments

Transport Layer 3-70

The goal The goal ofof congestioncongestion controlcontrol
SENDERs

(bulk flows)

RECEIVERs

(large capacity)

Bottleneck link rate C

N=4 TCP connections

Each should transmit at C/4 rate.

Since:

Each should adapt W accordingly…

How sources can be lead to know the RIGHT value of W??

RTT

MSSW
thr

⋅
≈

Transport Layer 3-71

TCP approach for detecting and
controlling congestion

r IP protocol does not implement mechanisms to detect
congestion in IP routers

• Unlike other networks, e.g. ATM

r necessary indirect means (TCP is an end-to-end
protocol)

r TCP approach: congestion detected by lack of acks
– couldn’t work efficiently in the 60s & 70s (error prone transmission

lines)

– OK in the 80s & 90s (reliable transmission)

– what about wireless networks???

r Controlling congestion: use a SECOND window
(congestion window)

• Locally computed at sender
• Outstanding segments: min(receiver_window, congestion_window)

Transport Layer 3-72

TCP Congestion Control

r end-end control (no network
assistance)

r sender limits transmission:
LastByteSent-LastByteAcked

≤≤≤≤ CongWin

r Roughly,

r CongWin is dynamic, function of
perceived network congestion

How does sender
perceive congestion?

r loss event = timeout or
3 duplicate acks

r TCP sender reduces
rate (CongWin) after
loss event

three mechanisms:
m AIMD

m slow start

m conservative after
timeout events

rate =
CongWin
RTT

Bytes/sec

Transport Layer 3-73

Starting a TCP transmission

r A new offered flow may suddenly overload
network nodes

m receiver window is used to avoid recv buffer overflow

m But it may be a large value (16-64 KB)

r Idea: slow start
m Start with small value of cwnd

m And increase it as soon as packets get through

– Arrival of ACKs = no packet losts = no congestion

r Initial cwnd size:
m Just 1 MSS!

m Recent (1998) proposals for more aggressive starts (up to 4
MSS) have been found to be dangerous

Transport Layer 3-74

Slow start: the idea

cwnd

0RTT
1

1RTT
2

3

2RTT
4

5 7

6

3RTT
8

9 11

10 12

13 15

14

Arrivo di ACK

Si trasmette il minimo tra window e cwd pacchetti

Transport Layer 3-75

Slow start – exponential increase

…………………………

Request http obj

Conn granted

Conn request

Cwnd=1

Cwnd=2

Cwnd=3

Cwnd=4

� First start: set
congestion window

cwnd = 1MSS

� send cwnd segments
� assume cwnd <=

receiver win

� upon successful
reception:
� Cwnd +=1 MSS
� i.e. double cwnd

every RTT
� until reaching

receiver window
advertisement

� OR a segment
gets lost

Transport Layer 3-76

Detecting congestion and restarting
r Segment gets lost

m Detected via RTO expiration

m Indirectly notifies that one of the network nodes along the
path has lost segment

– Because of full queue

r Restart from cwnd=1 (slow start)

r But introduce a supplementary control: slow start
threshold

• sstresh = max(min(cwnd,window)/2,2MSS)

m The idea is that we now KNOW that there is congestion in
the network, and we need to increase our rate in a more
careful manner…

m Ssthresh defines the “congestion avoidance” region

Transport Layer 3-77

Congestion avoidance
r If cwnd < ssthresh

m Slow start region: Increase rate exponentially

r If cwnd >= ssthresh
m Congestion avoidance region : Increase rate

linearly
m At rate 1 MSS per RTT

• Practical implementation:
cwnd += MSS*MSS/cwnd

• Good approximation for 1 MSS per RTT
• Alternative (exact) implementations: count!!

r Which initial ssthresh?
– ssthresh initially set to 65535: unreachable!

In essence, congestion avoidance is flow control imposed by sender

while advertised window is flow control imposed by receiver

Corrisponde ad un segmento
per finestra

Transport Layer 3-78

Simplified example (overall)
C
o
n
g
es
ti
o
n
w
in
d
o
w
cw

n
d
(i
n
 M
S
S
)

Number of transmissions

1

2

3

4

6

8

10

12

14

16

1

Timeout:

cwnd = 1

ssthresh=8

Timeout:

cwnd = 1

ssthresh=6

