DIPARTIMENTO
DI INFORMATICA N[

b/ UNIVERSITA DI ROMA
Via Salaria 113 - 00198, Roma

%4 SAPIENZA

Chapter 3
Transport Layer

Reti di Elaboratori
Corso di Laurea in Informatica
Universita degli Studi di Roma "La Sapienza”
Canale A-L
Prof.ssa Chiara Petrioli

Parte di queste slide sono state prese dal materiale associato al libro

Computer Networking: A Top Down Approach , Sth edition.
All material copyright 1996-2009

J.F Kurose and K.W. Ross, All Rights Reserved

Thanks also to Antonio Capone, Politecnico di Milano, Giuseppe Bianchi and
Francesco LoPresti, Un. di Roma Tor Vergata

rd13.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0 —jgs----------------momoecme o
last packet bit transmitted, t =L/ R

first packet bit arrives
—last packet bit arrives, send
ACK

RTT

ACK arrives, send next]
packet,t=RTT +L/R |

U L/R -008 = 0.00027

sender RTT+L/R - 30.008

Transport Layer 3-2

Pipelined protocols

Pipelining: sender allows multiple, "in-flight", yet-to-
be-acknowledged pkts
m range of sequence numbers must be increased
m buffering at sender and/or receiver

<+— ACK packets

{(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

r Two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-3

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —e----------cocoeee
last bit transmitted, t =L /R

first packet bit arrives
last packet bit arrives, send ACK

last bit of 2" packet arrives, send ACK
last bit of 3 packet arrives, send ACK

RTT

ACK arrives, send next]
packet,t=RTT +L/R

......... \.,__f:_'_"'"“-.-j Increase utilization
¥ / by a factor of 3!
x
U 3*L/R 0—24 = 0.0008

sender RTT+L/R " 30.008

Transport Layer 3-4

GO - BGC k— N Diverso rispetto a Stop and Wait

/ Q: Percheé?
Sender:

r k-bit seq # in pkt header
r "window" of up to N, consecutive unack'ed pkts allowed

send_base nexfsegnum dlready usable, not
i i ack’ed yet sent
TR LTI 0000ND | semmsta] mnescme
Wmdo&?’ oS ACKa contenous sequence of successfulyy

received pkts

/

r ACK(n): ACKs all pkts up to, including seq # n - "cumulative ACK"
m may deceive duplicate ACKs (see receiver)
r timer for each in-flight pkt

r timeout(n). retransmit pkt n and all higher seq # plsrtgn in rvgm;:legw .

GBN: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
sndpki[nextsegnum] = make_pkt(nextsegnum,data,chksum)

udt_send(sndpkt[nextsegnum])
if (base == nextseqnum) «____

start_timer
nextseqnum-++
}

A else
refuse_data(data)

base=1 . A
nextseqnums=t. .. - timeout
start_timer
3 udt_send(sndpkt[base])
rdt_rcv(rCVpkt) G Udt_send (S ndpkt[base+1]) -
&& corrupt(rcvpkt) Q
udt_send(sndpkt[nextseqnum-1])
rdt_rcv(rcvpkt) &&
notcorrupt(rcvpki)

base = getacknum(rcvpkt)+1

If (base == nextsegnum)
[Gestionerfimer| | stop._timer
else
start_timer Transport Layer 3-6

GBN: receiver extended FSM

default
udt_sen rdt_rcv(rcvpkt)
T~ < > && notcurrupt(rcvpkt)
A && hassegnum(rcvpkt,expectedseqgnum)
expectedsegnum=1 extract (rcvpkt,data)
sndpkt = deliver_data(data)
make_pki(expectedseqnum K,chksum) snhdpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedsegnum++

ACK-only: always send ACK for correctly-received pkt
with highest /n-order seq #
m may generate duplicate ACKs
m need only remember expectedseqnum

r out-of-order pkt:

m discard (don't buffer) -> no receiver buffering!
m Re-ACK pkt with highest in-order seq #

Transport Layer 3-7

GBN in
action

send pktO
send pktl

send pkt2

send pkt3
(wait)

-

rcv ACKO
send pkt4

rcv ACK]

—pkf2 timeout
send pki2
send pkt3
send pkt4
send pktd

WINDOW SIZE ==

sender

receiver

\
\(Is)(ss)

N

send pkt5 \

—
~

rcv pkto
send ACKO

rcv Pkt
send ACK

rcv pkt3, discard
send ACKI

rcv pkitd, discard
send ACKI]

rcv pkid, discard
sencr:j) ACK

rev pkt2, deliver

send ACK2
rcv pkt3, deliver

send ACK3

Transport Layer

3-8

A few questions...

r Why limiting the window size?
m max window size to improve performance
related to RTT

m window size powerful tool to control data rate
(important for flow control, con gestion control)

m related to window size field length

ADD Transport Layer 3-9

Selective Repeat

r receiver /ndividually acknowledges all correctly
received pkts

m buffers pkts, as needed, for eventual in-order delivery
to upper layer

r sender only resends pkts for which ACK not
received
m sender timer for each unACKed pkt

r Sender window
m N consecutive seq #'s
m again limits seq #s of sent, unACKed pkts

Transport Layer 3-10

Selective repeat

—sender — receiver
data fr'om above : pk'|' nin [rcvbase, rcvbase+N-1]
r if next available seq # in r send ACK(n)
window, send pkft r out-of-order: buffer

Each packet has one

’rimeou’r(n)j/ Logical timer rin-order: deliver (also

r resend pkt n, restart timer deliver buffered, in-order
, pkts), advance window to

ACK(H) IN [sendbase,sendbase+N]: next no’r-yeT-r'eceived ka

r mark Pkn nas reC:Ce'VZd) ka N IN [rcvbase-N revbase-1]
r if nsmallest unACKed pkft, ¢ ACK(n)

advance window base to .
next unACKed seq # O/ThQ{WISeI

ighore
/rlg

Importantll Sender and receiver may have different views!l v qnsnort Layer 3-11

Selective repeat: sender, receiver windows

send_base hexfsegnum dlready Usable. not
Jv ¢ ack’ed yet sent
(LT = gt
- wEndow size —4
PN

(a) sender view of sequence numlbers

acceptable
(buffered) but B (\yithin window)
already ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂlllllllll||||||]|]|] el R

t _ window size—24

1 N

rcv_base

out of order I

(b) receiver view of sequence numbers

Transport Layer 3-12

Selective repeat in action

plktl =ent

Transmitter and receiver

can have different

view of the current windoow

0

ACK3 rowd, nothing sent

—— pktd TIMEOUT, pkt2 resent

1{2 3 45

01234567879 ﬂq_hhﬁﬂq__h%ﬁﬁ__‘““"pktD rovd, delivered, ACED sent
pktl =ent 0|1 2 3 4|56 7 8 9
01234567873 pktl rowd, delivered. ACEl =ent
pkt2 =ent n 1|2 24 &5fe 7 89
0123456789 WX
(loss)

pkt3d =ent. window full
0123456783 pktd rovd, uffered. ACKI sent

01|2 3 45| 7 89
ACKD rowd, pktd =e=nt
0L 2 3 4|56 7 8 9

r plktd rovd, mffered, ACKd =ent

ACE]l rowd, pkth =e=nt n1{2 3 4 5|l 7 849
01|12 3 4 5| 7 8 9

pktt rovd, buffersd. ACEKS =ent

n1|2 3 4 56 7 8 9

BE 7 8 9
pkt? rowd, pkt?, pktd pltd plth
delivered, ACK?Z =e=nt

ni1z2345)k 7819

01j2 3 45

£ 7 8 9

rt Layer

3-13

Selective repeat in action 3

1) Delays in receiving ACKs
lost ACKs

plktl =ent

0

12 3[456 7879 ﬂq_hhﬁﬂq__h%ﬁﬁ__‘““"pktD rovd, delivered, ACED sent

plktl =ent

012 3|14 °5

plkt? =ent

— |01 2 3

pkt3l =ent.

012 3|45

0

0

0

ACK3 rowd, nothing sent

1 2 3 4|5

1{2 3 45

1{2 3 45

B 7 8 9

window full

B 7 8 9

ACKD rowd, pktd =e=nt

B 7 89

ACK]l rowd., pktbS =ent

E 7 8 9

—— pktd TIMEOUT, pkt2 resent

E 7 8 9

01j2 3 45

£ 7 8 9

456 789 iy

(loss)

of1 2 3 4|56 7 58 9

pktl rowd, delivered. ACEl =ent
n1|2 2 45| 7 8219

pktd rovd, uffered. ACKI sent
0 1{2z 3 4 5|6 7 8 9

pktd rcwvd, buffered. ACE4 =ent
ni1l2 3 4 5/ 7 8 9

pktt rovd, buffersd. ACEKS =ent
012 2 4 5|6 7 8 9

pkt? rowd, pkt?, pktd pltd plth
delivered, ACK?Z =e=nt

ni1z2345)k 7819

t Layer 3-14

receiver window
(after receipt)

sender window

SeleCTive r‘epea*: (after receipt)

ktO
01230149

dilemma 012301

Ofjl 2 3J0 1 2

0112 30f1 2

N 0123012
EXGmPIZ- >, 012301
r seq#s:0,1,2,3 |
. . timeout
r Wlndow Slze:3 retransmit pk’tOk,[O
012301 2 —Jp receive packet
with seq number O

r receiver sees no

difference in two (@)

SC@”GI"IOS! sender window receiver window

' f ' ft it
r incorrectly passes (after receipt >th0 (after receipt)
duplicate data as new 012J3012 ot 23Jo12
ln(G) 01l 2301 0123012
01l2]30172 01230 12
ACK2
Q: what relationship ol 2 3]0 1
between seq # size o B3k

receive packet
with seq number O

and window size?

()
Clearly at least the window must be small enough so that there is ndt;

sport L 3-15
ambiguity on sequence numbers!ll Is it enough in Selective Repeat?: ransport Layer

Answer to the dilemma

r The window size must be less than or equal to half the
size of the sequence number space for SR protocols

Another issue

r When ARQ solutions are applied at transport layer
packets traverse not only one link but a path. Packets
may arrive not in order, old packets may arrive with a
long delay—=>in that case the answer is more involved. We
cannot reuse a sequence number unless we are sure that
old packets carrying that sequence number are out of
the network (limit on the packet lifetime).

Transport Layer 3-16

Performance issues with/without
pipelining

Transport Layer 3-17

Link delay computation

= Transmission delay:
=>C [bit/s] = link rate

O] Ro?ter =>B [bit] = packet size
&7 1 = transmission delay = B/C [sec]
G > Example:
sender receiver =>»512 bytes packet
.. R =>» 64 kbps link
TXB",‘gaVI by Dtransmission delay = 512°8/64000 = 64ms

delay
| =>Propagation delay - constant depending on

Txdelay ~ =@Link length

B/C => Electromagnetig waves propagation speed in
considered media

=>»200 km/s for copper links

v v =>» 300 km/s in air
time time >other delays neglected
=>Queueing
=>» processing

Transport Layer 3-18

Stop-and-wait performance

Router 1 Router 2 ':I
B <5 o —
=7 4 -i \ -i %'E/
~% 28.8 Kbps 1024 Kbps L 28.8 Kbps =
Start tx 1ms 30 ms «itardi di 1ms
g propang. e . pr0p1
... | X1
prop2
. i o tX2
prop3
tx3

Completion time (neglecting processing & queueing) =
Tx1 + Prop1 + Tx2 + Prop2 + Tx3 + Prop3 +

Approx Ack_Tx1 + Prop1 + Ack_Tx2 + Prop2 +
: ck_Tx rop ck_Tx rop
Ralf tx time EOCN Ack_Tx3 + Prop3 +
[same computation x remaining segment]
Ll Y Ll Y Ll ¢ Ll ¢
time time time time

Transport Layer 3-19

Stop-and-wait performance
Numerical example

Router 1 Router 2

= ~x y =)
== L ™ %
A 28.8 Kbps ni 1024 Kbps ni 28.8 Kbps B
1ms 30 ms 1ms
r Message: => Segment 1: => Acks:
m 2024 by*? = Tx1 = 576*8/28,8 = = Txl=Tx3=
m 2 segments: * -
536+488 bytes 160ms 40*8/28,8 = 11,1ms
m Overhead: 20 bytes = Tx3 = Tx1 = Tx2 =40%8/1024 =
TCP + 20 bytes IP = Tx2 = 576*8/1024 = 0,3 ms
m ACK = 40 bytes]
(header only) 4,5 ms RESULT:
=> Segment 2:
= Tx1=5288/28,8 = D = 667 (tx total) + 2*RTT =
146,7ms =795 ms
Lower layer headers not = Tx3 = Tx]
considered . . .
= Tx?2 = 528*8/1024 = THR =1024*8/795 =
4,1 ms =10,3 kbps

Transport Layer 3-20

Stop-and-wait performance

Numerical example

Router 1 Router 2

with (B < -)
S s I ™ 4
ISDN? 128 Kbps ” 1024 Kbps ” 128Kops A
Tms 30 ms 1ms
=> Segment 1: => Acks:
= Tx1=Tx3 = = Tx1=Tx3 =
576*8/128 = 36ms 40%8/128 = 2,5 ms on Gbps fiber optics?
= Tx2 = 576*8/1024 = = Tx2 = 40*8/1024 =
4,5ms 0,3 ms D = negligible + 2*RTT =
=> Segment 2: RESULT: =128 ms
" aeion: THR =1024*8/128 =
528°8/128=33ms |) = 151,9 (tx total) + 2°RTT = e
= Tx2 = 528+8/1024 = =279.9 ms . = pPs
4,1 ms /
. _ | MA E' VERAMENTE MEGLIO
THR =1024°8/279,9 = AD ALTO DATA RATE? NO
= 29,3 kbps —DI QUI A POCO..

Transport Layer 3-21

Simplified performance model

C bits/sec

Approximate analysis, much simpler than multi-hop
Typically, C = bottleneck link rate

MSS = segment size (ev. ignore overhead)
MSIZE = message size
Ignore ACK transmission time
No loss of segments
W = number of outstanding segments
W=1: stop-and-wait
W>1: go-back-N (sliding window)
This is a highly dynamic parameter in TCP!!
For now, consider W fixed

Transport Layer 3-22

W=1 case (stop-and-wait)

sender receiver

One way delay

MSS/C
RTT

MSS
RTT +MSS/C

throughput =

REMARK: throughput always lower than
Available link rate!

v time time

Transport Layer 3-23

client

S *Tatency in TCP

RTT etrieval model
Latency: time elapsing between TCP connection
g%‘}gfft 4 Request, and last bit received at client
o MSIZE | MSIZE
latency = 2RTT + + —1|RTT
M C MSS
Number of segments
In which message
is split

time

Transport Layer 3-24

W=1 case (stop-and-wait)

MSS = 1500 bytes

——(=28,8 kbps
100% - (=128 kbps
28:;0 .‘%‘\‘\ C=640 Kbps
_ 700/: \|\ \ C=10 mbps
2 60% \u\ \\
S 50% |
N
= 40% — A
= 30%
20% :
10% | s
0% ‘ ‘ S
1 10 100 1000

RTT (ms)

Under-utilization with: 1) high capacity links, 2) large RTT links
Transport Layer 3-25

Pipelining (W>1) analysis

tTwo cases

RTT
(+1tx)

time time

WINDOW SIZING that allows
\ 4 CONTINUOUS TRANSMISSION
UNDER-SIZED WINDOW:
THROUGHPUT INEFFICIENCY

Transport Layer 3-26

Continuous transmission

Condition in which link rate is fully utilized

M M
w2 S R M2
C C
\ J \ J
Y Y
Time to transmit Time to receive
W segments Ack of first segment

We may elaborate:

W -MSS >RIT-C+MSS =RIT-C

This means that full link utilization is possible when window size (in bits) is
Greater than the bandwidth (C bit/s) delay (RTT s) product!

Transport Layer 3-27

Bandwidth-delay product

> Network: like a pipe
=> C [bit/s] x D [s]

= number of bits “flying” in the
network
= number of bits injected in the

r!etwo_rk_ by the tx, before that the A 15360 (64000x0.240) bits
first bit is rxed

“worm” in the air!!

bandwidth-delay product = no of bytes that saturate network pipe

Transport Layer 3-28

Long Fat Networks
LFNs (el-ef-an(t)s): large bandwidth-delay product

NETWORK RTT (ms) rate (kbps) BxD (bytes)
Ethernet 3 10.000 3.750
T1, transUS 60 1.544 11.580
T1 satellite 480 1.544 92.640
T3 transUS 60 45.000 337.500
Gigabit transUS 60 1.000.000 7.500.000

The 65535 (16 bit field in TCP header) maximum window size W
may be a limiting factor!

Transport Layer 3-29

Pipelining (W>1) analysis

RTT
(+1tx)

thr = min(C W- M55 j

"RTT +MSS/C

Transport Layer 3-30

Throughput for pipelining

MSS = 1500 bytes

1 Mbps link speed

1200 J

21000 fp " =
o - \V=2
X 800 Wt
= 600 W=16
= 400 | <
o
= 200 5

O \ \ \ \ \

0 100 200 300 400 500 600
RTT (ms)

Transport Layer 3-31

Chapter 3 outline

r 3.1 Transport-layer r 3.5 Connection-oriented
services transport: TCP

r 3.2 Multiplexing and m segment structure
demultiplexing m reliable data transfer

3.3 Connectionless m flow control

transport: UDP m cohnection management
r 3.6 Principles of
congestion control

r 3.7 TCP congestion
control

r 3.4 Principles of
reliable data transfer

Transport Layer 3-32

TCP: Overview rrcs: 793, 1122, 1323, 2018, 2581

r point-to-point: r full duplex data:
m one sender, one receiver m bi-directional data flow
r reliable, in-order byfte In same connection
steam: m MSS: maximum

segment size

r conhection-oriented:

m handshaking (exchange
of control msgs) init's
sender, receiver state

r send & receive buffers before data exchange

flow controlled:

s M Sender will not
foor overwhelm receiver

m no "message boundaries”
r pipelined:
m TCP congestion and flow
control set window size

-

socket
door —

send buffer

receive buffer

() [segment] —» ()

Transport Layer 3-33

TCP segment structure

32 bits

URG: urgent data

source port # | dest port #

counting

(generally not used)™_
ACK: ACK #

N sequence number

by bytes
of data

valid

(not segments!)

PSH: push data now
(generally not used)— |

C owledgemen’r number
h!“d ';fd APLRSF Receive window

Mm Urg data pnter

bytes
rcvr willing

RST, SYN, FIN— |
connection estab

Op’r/d((variable length)

to accept

(setup, teardown
commands)

Internet /

checksum
(as in UDP)

/ application

data
(variable length)

Window Scale Option

r Appears in SYN segment
m operates only if both peers understand option
r allows client & server to agree on a different W
scale
m specified in terms of bit shift (from 1 to 14)

m maximum window: 65535 * 2°b
m b=14 means max W = 1.073.725.440 bytesl!

Transport Layer 3-35

r

r

r

Source port

Destination port

32 bit Sequence number

32 bhit acknowledgement number

Header
length

6 bit
Reserved

U
R
G

~OP

|
S
H

R
S
T

S
Y
N

K
I
N

Window size

checksum

Urgent pointer

Sequence number:
m Sequence humber of the first byte in the segment.
m When reaches 232-1, next wraps back to O

Acknowledgement number:

m valid only when ACK flag on

m Contains the next byte sequence number that the host expects to
receive (= last successfully received byte of data + 1)

m grants successful reception for all bytes up to ack# - 1 (cumulative)
When seq/ack reach 232-1, next wrap back to O

Transport Layer 3-36

TCP data transfer management

r Full duplex connection
m data flows in both directions, independently

m To the application program these appear as two unrelated data
streams

r each end point maintains a sequence number
m Independent sequence numbers at both ends
m Measured in bytes

r acks often carried on top of reverse flow data
segments (piggybacking)

m But ack packets alone are possible

Transport Layer 3-37

Byte-oriented

Example: 1 Kbyte message — 1024 bytes

ol1 [00 lessl [1023{

~ — A y J

Example: segment size = 536 bytes =2 2 segments: 0-535; 536-1023

sender receiver

Seq=(0

| =>No explicit segment size
indication
g& f5?’6 = Seq = first byte number
297336 = Returning Ack = last byte

= number + 1

ne -1024 = Segment size = Ack-seq#

v \ 4
time time

Transport Layer 3-38

Pipelining - cumulative ack

Example: 1024 bytes msg; seg_size = 536 bytes = 2 segments: 0-535; 536-1023

ol 1 [ool 0 lessl [1023{
— g PN g Y
sender receiver
Seq=0

—] > Cumulative ack

= ACK = all previous bytes
correctly received!

= E.g. ACK=1024: all bytes 0-1023
received
= Other names of pipelining:
v v = (Go-Back-N ARQ mechanisms

time time = Sliding window mechanisms
Why pipelining? Dramatic improvement in efficiency!

Transport Layer 3-39

Multiple acks: Piggybacking

Bytes 19p.
20199, seq=10g

Immediate acki_

no payload Data in reverse
direction,carries
previous ack

v v
CLIENT Next segment, SERVER
piggybacked ack

Transport Layer 3-40

TCP data transfer

idirectional example

Segment size = 6

f

~vw|slao|Neo|lo|ISRIRIG IR IGIS

Time 0:
Time 1:
Time 2:
Time 3:

Seqg=1, NO ack

Seq=7, ack=116

Seq=13, ack=119

< Segment size = 4

118
17
116
115
114
113
112 |

Seq=112, NO ack

Seq=116, ack=7

Seq=119, ack=13

Seq=119, ack=17

Transport Layer 3-41

TCP seq. #'s and ACKs

TCP Solution: Go Back N like

Seq. #'s:

m byte stream
"number” of first
byte in segment’s
data

ACKs:

m seq # of next byte
expected from
other side

m cumulative ACK

Q: how receiver handles
out-of-order segments

m A: TCP spec doesn't
say, - up to
implementor

host ACKs
receipt
of echoed
|Cl

Seq=4

%’

simple telnet scenario

. receipt of
3 qaa=—"'C, echoes
A back 'C

time

\ 4

Transport Layer 3-42

TCP Round Trip Time and Timeout

Q: how to set TCP Q: how to estimate RTT?
timeout value? (not r SampleRTT: measured time from
trivial, highly segment transmission until ACK
varying, it isa RTT receipt
over a network m ighore refransmissions
path) Why??

" longer than RTT r SampleRTT will vary, want
m but RTT varies estimated RTT “smoother”
r foo short: premature m average several recent

timeout)
m measurements, not just

m unnecessary
. current SampleRTT
retransmissions P

r too long: slow reaction
to segment loss

Transport Layer 3-43

TCP Round Trip Time and Timeout

EstimatedRTT = (1- o) *EstimatedRTT + Oo*SampleRTT

r Exponential weighted moving average
r influence of past sample decreases exponentially fast
r typical value: a =0.125

Transport Layer 3-44

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350

300

[\®]

()]

o
I

RTT (milliseconds)

200 ~

150

1 00 T T T T T T T T T T T
1 8 15 22 29 36 43 50 57 64 71 78

time (seconnds)

—o— SampleRTT —=— Estimated RTT

85

92 99 106

Transport Layer 3-45

TCP Round Trip Time and Timeout

Setting the timeout

r EstimtedRTT plus "safety margin”
m large variation in EstimatedRTT -> larger safety margin

r first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-fB) *DevRTT +
B* | SampleRTT-EstimatedRTT |

(typically, B = 0.25)

Then set timeout interval:

EstimatedRTT + 4*DevRTT

TimeoutInterval

Transport Layer 3-46

