
Transport Layer 3-1

Reti di Elaboratori

Corso di Laurea in Informatica

Università degli Studi di Roma “La Sapienza”

Canale A-L

Prof.ssa Chiara Petrioli

Parte di queste slide sono state prese dal materiale associato al libro

Computer Networking: A Top Down Approach , 5th edition.

All material copyright 1996-2009

J.F Kurose and K.W. Ross, All Rights Reserved
Thanks also to Antonio Capone, Politecnico di Milano, Giuseppe Bianchi and

Francesco LoPresti, Un. di Roma Tor Vergata

Chapter 3
Transport Layer

Transport Layer 3-2

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send
ACK

ACK arrives, send next
packet, t = RTT + L / R

U
sender

=
.008

30.008
= 0.00027

microsec

L / R

RTT + L / R
=

Transport Layer 3-3

Pipelined protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-
be-acknowledged pkts

m range of sequence numbers must be increased

m buffering at sender and/or receiver

r Two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-4

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

U
sender

=
.024

30.008
= 0.0008

microsecon

3 * L / R

RTT + L / R
=

Increase utilization
by a factor of 3!

Transport Layer 3-5

Go-Back-N
Sender:
r k-bit seq # in pkt header

r “window” of up to N, consecutive unack’ed pkts allowed

r ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”

m may deceive duplicate ACKs (see receiver)

r timer for each in-flight pkt

r timeout(n): retransmit pkt n and all higher seq # pkts in window

Diverso rispetto a Stop and Wait
Q: Perché?

ACKa contenous sequence of successfulyy
received pkts

Transport Layer 3-6

GBN: sender extended FSM

Wait
start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++
}

else
refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)

stop_timer
else
start_timer

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

Λ

Un solo timer in questa
implementazione

Gestione timer

All
retransmitted

Transport Layer 3-7

GBN: receiver extended FSM

ACK-only: always send ACK for correctly-received pkt
with highest in-order seq #

m may generate duplicate ACKs

m need only remember expectedseqnum

r out-of-order pkt:
m discard (don’t buffer) -> no receiver buffering!

m Re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)

default

rdt_rcv(rcvpkt)
&& notcurrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =
make_pkt(expectedseqnum,ACK,chksum)

Λ

Transport Layer 3-8

GBN in
action

WINDOW SIZE ==4

Transport Layer 3-9

A few questions…

r Why limiting the window size?
m max window size to improve performance

related to RTT

m window size powerful tool to control data rate
(important for flow control, con gestion control)

m related to window size field length

ADD

Transport Layer 3-10

Selective Repeat

r receiver individually acknowledges all correctly
received pkts

m buffers pkts, as needed, for eventual in-order delivery
to upper layer

r sender only resends pkts for which ACK not
received

m sender timer for each unACKed pkt

r sender window
m N consecutive seq #’s

m again limits seq #s of sent, unACKed pkts

Transport Layer 3-11

Selective repeat

data from above :
r if next available seq # in

window, send pkt

timeout(n):
r resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

r mark pkt n as received

r if n smallest unACKed pkt,
advance window base to
next unACKed seq #

sender
pkt n in [rcvbase, rcvbase+N-1]

r send ACK(n)

r out-of-order: buffer

r in-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

r ACK(n)

otherwise:
r ignore

receiver

Each packet has one
Logical timer

Important!! Sender and receiver may have different views!!

Transport Layer 3-12

Selective repeat: sender, receiver windows

Transport Layer 3-13

Selective repeat in action Transmitter and receiver
can have different

view of the current windoow

Transport Layer 3-14

Selective repeat in action 1) Delays in receiving ACKs
2) lost ACKs

Transport Layer 3-15

Selective repeat:
dilemma

Example:
r seq #’s: 0, 1, 2, 3
r window size=3

r receiver sees no
difference in two
scenarios!

r incorrectly passes
duplicate data as new
in (a)

Q: what relationship
between seq # size
and window size?

Clearly at least the window must be small enough so that there is not
ambiguity on sequence numbers!!! Is it enough in Selective Repeat??

Transport Layer 3-16

Answer to the dilemma

r The window size must be less than or equal to half the
size of the sequence number space for SR protocols

r When ARQ solutions are applied at transport layer
packets traverse not only one link but a path. Packets
may arrive not in order, old packets may arrive with a
long delay�in that case the answer is more involved. We
cannot reuse a sequence number unless we are sure that
old packets carrying that sequence number are out of
the network (limit on the packet lifetime).

Another issue

Transport Layer 3-17

Performance issues with/without
pipelining

Transport Layer 3-18

Tx delay

B/C

Link delay computation

Router

�Transmission delay:
�C [bit/s] = link rate

�B [bit] = packet size

�transmission delay = B/C [sec]

�Example:
�512 bytes packet

�64 kbps link

�transmission delay = 512*8/64000 = 64ms

�Propagation delay – constant depending on
�Link length

�Electromagnetig waves propagation speed in
considered media

�200 km/s for copper links

�300 km/s in air

�other delays neglected
�Queueing

�processing

time

sender

time

receiver

Tx delay

B/C

Prop

delay

Transport Layer 3-19

Stop-and-wait performance
Router 1 Router 2

28.8 Kbps
1 ms

1024 Kbps
30 ms

28.8 Kbps
1 ms

time time time time

Start tx

……………

Approx

Half tx time

Completion time (neglecting processing & queueing) =
Tx1 + Prop1 + Tx2 + Prop2 + Tx3 + Prop3 +

Ack_Tx1 + Prop1 + Ack_Tx2 + Prop2 +

Ack_Tx3 + Prop3 +

[same computation x remaining segment]

tx1

prop1

prop2

tx2
prop3
tx3

Ritardi di
propagazione

Transport Layer 3-20

Router 1 Router 2

28.8 Kbps
1 ms

1024 Kbps
30 ms

28.8 Kbps
1 ms

StopStop--andand--waitwait performanceperformance
NumericalNumerical exampleexample

r Message:
m 1024 bytes;

m 2 segments:
536+488 bytes

m Overhead: 20 bytes
TCP + 20 bytes IP

m ACK = 40 bytes
(header only)

� Segment 1:

� Tx1 = 576*8/28,8 =

160ms

� Tx3 = Tx1

� Tx2 = 576*8/1024 =

4,5 ms

� Segment 2:

� Tx1 = 528*8/28,8 =

146,7ms

� Tx3 = Tx1

� Tx2 = 528*8/1024 =

4,1 ms

� Acks:

� Tx1 = Tx3 =

40*8/28,8 = 11,1ms

� Tx2 = 40*8/1024 =

0,3 ms

RESULT:

D = 667 (tx total) + 2*RTT =

= 795 ms

THR = 1024*8/795 =

= 10,3 kbps

Lower layer headers not
considered

Transport Layer 3-21

Router 1 Router 2

128 Kbps
1 ms

1024 Kbps
30 ms

128 Kbps
1 ms

StopStop--andand--waitwait performanceperformance
NumericalNumerical exampleexample

� Segment 1:

� Tx1 = Tx3 =

576*8/128 = 36ms

� Tx2 = 576*8/1024 =

4,5 ms

� Segment 2:

� Tx1 = Tx3 =

528*8/128 = 33 ms

� Tx2 = 528*8/1024 =

4,1 ms

� Acks:

� Tx1 = Tx3 =

40*8/128 = 2,5 ms

� Tx2 = 40*8/1024 =

0,3 ms

RESULT:

D = 151,9 (tx total) + 2*RTT =

= 279,9 ms

THR = 1024*8/279,9 =

= 29,3 kbps

With

ISDN?

on Gbps fiber optics?

D = negligible + 2*RTT =

= 128 ms

THR = 1024*8/128 =

= 64 kbps

MA E’ VERAMENTE MEGLIO
AD ALTO DATA RATE? NO

—DI QUI A POCO…

Transport Layer 3-22

Simplified performance model

C bits/sec

Approximate analysis, much simpler than multi-hop

Typically, C = bottleneck link rate

MSS = segment size (ev. ignore overhead)

MSIZE = message size

Ignore ACK transmission time

No loss of segments

W = number of outstanding segments

W=1: stop-and-wait

W>1: go-back-N (sliding window)

This is a highly dynamic parameter in TCP!!

For now, consider W fixed

Transport Layer 3-23

W=1 case (stop-and-wait)

time

sender

time

receiver

One way delay

RTT

CMSSRTT

MSS
throughput

/+
=

MSS/C

REMARK: throughput always lower than

Available link rate!

Transport Layer 3-24

Latency in TCP
retrieval model

time

client

time

server

RTT
MSS

MSIZE

C

MSIZE
RTTlatency 





−++= 12

Latency: time elapsing between TCP connection

Request, and last bit received at client

Number of segments

In which message

is split

Start TCP
connection

request
object

RTT

RTT

Transport Layer 3-25

W=1 case (stop-and-wait)
MSS = 1500 bytes

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 10 100 1000

RTT (ms)

U
ti

li
z

a
ti

o
n

C=28,8 kbps

C=128 kbps

C=640 kbps

C=10 mbps

Under-utilization with: 1) high capacity links, 2) large RTT links

Transport Layer 3-26

Pipelining (W>1) analysis
two cases

W=4
RTT

(+1tx)

UNDER-SIZED WINDOW:

THROUGHPUT INEFFICIENCY

?

timetime

WINDOW SIZING that allows

CONTINUOUS TRANSMISSION

W=10

Transport Layer 3-27

Continuous transmission

C

MSS
RTT

C

MSS
W +>⋅

Time to transmit

W segments

Time to receive

Ack of first segment

Condition in which link rate is fully utilized

We may elaborate:

CRTTMSSCRTTMSSW ⋅≈+⋅>⋅
This means that full link utilization is possible when window size (in bits) is

Greater than the bandwidth (C bit/s) delay (RTT s) product!

Transport Layer 3-28

BandwidthBandwidth--delaydelay productproduct

�Network: like a pipe

�C [bit/s] x D [s]
� number of bits “flying” in the

network

� number of bits injected in the

network by the tx, before that the

first bit is rxed

D

C

64Kbps

A 15360 (64000x0.240) bits

“worm” in the air!!

bandwidth-delay product = no of bytes that saturate network pipe

Transport Layer 3-29

Long Long FatFat NetworksNetworks
LFNsLFNs ((elel--efef--anan(t)s): (t)s): largelarge bandwidthbandwidth--delaydelay productproduct

Ethernet

T1, transUS

T1 satellite

T3 transUS

Gigabit transUS

3

60

480

60

60

NETWORK RTT (ms)

10.000

1.544

1.544

45.000

1.000.000

rate (kbps)

3.750

11.580

92.640

337.500

7.500.000

BxD (bytes)

The 65535 (16 bit field in TCP header) maximum window size W

may be a limiting factor!

Transport Layer 3-30

Pipelining (W>1) analysis

W
RTT

(+1tx)










+

⋅
=

CMSSRTT

MSSW
Cthr

/
,min

Transport Layer 3-31

1 Mbps link speed

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600
RTT (ms)

T
h

ro
u

g
h

p
u

t
(K

b
p

s
)

W=1

W=2

W=4

W=16

ThroughputThroughput forfor pipeliningpipelining
MSS = 1500 MSS = 1500 bytesbytes

Transport Layer 3-32

Chapter 3 outline

r 3.1 Transport-layer
services

r 3.2 Multiplexing and
demultiplexing

r 3.3 Connectionless
transport: UDP

r 3.4 Principles of
reliable data transfer

r 3.5 Connection-oriented
transport: TCP

m segment structure

m reliable data transfer

m flow control

m connection management

r 3.6 Principles of
congestion control

r 3.7 TCP congestion
control

Transport Layer 3-33

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

r full duplex data:
m bi-directional data flow
in same connection

m MSS: maximum
segment size

r connection-oriented:
m handshaking (exchange

of control msgs) init’s
sender, receiver state
before data exchange

r flow controlled:
m sender will not

overwhelm receiver

r point-to-point:
m one sender, one receiver

r reliable, in-order byte
steam:

m no “message boundaries”

r pipelined:
m TCP congestion and flow

control set window size

r send & receive buffers

socket

door
TCP

send buffer

TCP

receive buffer

socket

door

segment

application

writes data
application

reads data

Transport Layer 3-34

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number

Receive window

Urg data pnterchecksum

FSRPAU
head
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)
Negotiation of MTU,

Scaling factor for window size,
Tipo di protocollo di

Ritrasmissione affidabile
Etc.

Transport Layer 3-35

Window Scale Option

r Appears in SYN segment
m operates only if both peers understand option

r allows client & server to agree on a different W
scale

m specified in terms of bit shift (from 1 to 14)

m maximum window: 65535 * 2b

m b=14 means max W = 1.073.725.440 bytes!!

Transport Layer 3-36

r Sequence number:
m Sequence number of the first byte in the segment.
m When reaches 232-1, next wraps back to 0

r Acknowledgement number:
m valid only when ACK flag on
m Contains the next byte sequence number that the host expects to

receive (= last successfully received byte of data + 1)
m grants successful reception for all bytes up to ack# - 1 (cumulative)

r When seq/ack reach 232-1, next wrap back to 0

Header
length

checksum

32 bit Sequence number

Window size

Source port Destination port

32 bit acknowledgement number

6 bit
Reserved

Urgent pointer

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Transport Layer 3-37

TCP data transfer management
r Full duplex connection

m data flows in both directions, independently

m To the application program these appear as two unrelated data
streams

r each end point maintains a sequence number
m Independent sequence numbers at both ends

m Measured in bytes

r acks often carried on top of reverse flow data
segments (piggybacking)

m But ack packets alone are possible

Transport Layer 3-38

Byte-oriented

0 1001 … … 535… … 1023… …

Example: 1 Kbyte message – 1024 bytes

…

Example: segment size = 536 bytes � 2 segments: 0-535; 536-1023

seq=0

Ack=5
36

seq=536

Ack=1
024

timetime

sender receiver

�No explicit segment size
indication
� Seq = first byte number

� Returning Ack = last byte
number + 1

� Segment size = Ack-seq#

Transport Layer 3-39

Pipelining – cumulative ack

0 1001 … … 535… … 1023… …

Example: 1024 bytes msg; seg_size = 536 bytes � 2 segments: 0-535; 536-1023

…

seq=0

seq=536

Ack=1
024

timetime

sender receiver

�Cumulative ack
� ACK = all previous bytes

correctly received!

� E.g. ACK=1024: all bytes 0-1023

received

� Other names of pipelining:
� Go-Back-N ARQ mechanisms

� Sliding window mechanisms

Why pipelining? Dramatic improvement in efficiency!

Transport Layer 3-40

Multiple acks; Piggybacking

CLIENT SERVER

Bytes 100-199, seq=100,

EMPT
Y, Ack

=200

Bytes
450-5

25, se
q=450

, ack=
200

Bytes 200-249, seq=200, ack=526

Immediate ack,

no payload Data in reverse

direction,carries

previous ack

Next segment,

piggybacked ack

Transport Layer 3-41

TCP data transfer
bidirectional example

16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

118
117
116
115
114
113
112

Segment size = 6

Segment size = 4

Time 0: Seq=1, NO ack Seq=112, NO ack

Time 1: Seq=7, ack=116 Seq=116, ack=7

Time 2: Seq=13, ack=119 Seq=119, ack=13

Time 3:
Seq=119, ack=17

Transport Layer 3-42

TCP seq. #’s and ACKs
Seq. #’s:

m byte stream
“number” of first
byte in segment’s
data

ACKs:
m seq # of next byte

expected from
other side

m cumulative ACK
Q: how receiver handles

out-of-order segments
m A: TCP spec doesn’t

say, - up to
implementor

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

time
simple telnet scenario

TCP Solution: Go Back N like

Transport Layer 3-43

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value? (not
trivial, highly
varying, it is a RTT
over a network
path)

r longer than RTT
m but RTT varies

r too short: premature
timeout

m unnecessary
retransmissions

r too long: slow reaction
to segment loss

Q: how to estimate RTT?
r SampleRTT: measured time from

segment transmission until ACK
receipt

m ignore retransmissions

Why??

r SampleRTT will vary, want
estimated RTT “smoother”

m average several recent
measurements, not just
current SampleRTT

Transport Layer 3-44

TCP Round Trip Time and Timeout

EstimatedRTT = (1- αααα)*EstimatedRTT + αααα*SampleRTT

r Exponential weighted moving average

r influence of past sample decreases exponentially fast

r typical value: αααα = 0.125

Transport Layer 3-45

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T
T
 (
m
il
lis
ec
o
n
d
s)

SampleRTT Estimated RTT

Transport Layer 3-46

TCP Round Trip Time and Timeout

Setting the timeout
r EstimtedRTT plus “safety margin”

m large variation in EstimatedRTT -> larger safety margin

r first estimate of how much SampleRTT deviates from
EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-ββββ)*DevRTT +

ββββ*|SampleRTT-EstimatedRTT|

(typically, ββββ = 0.25)

Then set timeout interval:

