
Transport Layer 3-1

Reti di Elaboratori

Corso di Laurea in Informatica

Università degli Studi di Roma “La Sapienza”

Canale A-L

Prof.ssa Chiara Petrioli

Parte di queste slide sono state prese dal materiale associato al libro

Computer Networking: A Top Down Approach , 5th edition.

All material copyright 1996-2009

J.F Kurose and K.W. Ross, All Rights Reserved
Thanks also to Antonio Capone, Politecnico di Milano, Giuseppe Bianchi and

Francesco LoPresti, Un. di Roma Tor Vergata

Chapter 3
Transport Layer

Transport Layer 3-2

Chapter 3: Transport Layer

Our goals:

r understand principles
behind transport
layer services:

m multiplexing/demultipl
exing

m reliable data transfer

m flow control

m congestion control

r learn about transport
layer protocols in the
Internet:

m UDP: connectionless
transport

m TCP: connection-oriented
transport

m TCP congestion control

Transport Layer 3-3

Chapter 3 outline

r 3.1 Transport-layer
services

r 3.2 Multiplexing and
demultiplexing

r 3.3 Connectionless
transport: UDP

r 3.4 Principles of
reliable data transfer

r 3.5 Connection-oriented
transport: TCP

m segment structure

m reliable data transfer

m flow control

m connection management

r 3.6 Principles of
congestion control

r 3.7 TCP congestion
control

Transport Layer 3-4

Transport services and protocols

r provide logical communication
between app processes
running on different hosts

r transport protocols run in
end systems

m send side: breaks app
messages into segments,
passes to network layer

m rcv side: reassembles
segments into messages,
passes to app layer

r more than one transport
protocol available to apps

m Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

Transport Layer 3-5

Transport vs. network layer

r network layer: logical
communication
between hosts

r transport layer: logical
communication
between processes

m relies on, enhances,
network layer services

Household analogy:

12 kids sending letters
to 12 kids

r processes = kids

r app messages = letters
in envelopes

r hosts = houses

r transport protocol =
Ann and Bill

r network-layer protocol
= postal service

Transport Layer 3-6

Internet transport-layer protocols

r reliable, in-order
delivery (TCP)

m congestion control

m flow control

m connection setup

r unreliable, unordered
delivery: UDP

m no-frills extension of
“best-effort” IP

r services not available:
m delay guarantees

m bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

Transport Layer 3-7

Chapter 3 outline

r 3.1 Transport-layer
services

r 3.2 Multiplexing and
demultiplexing

r 3.3 Connectionless
transport: UDP

r 3.4 Principles of
reliable data transfer

r 3.5 Connection-oriented
transport: TCP

m segment structure

m reliable data transfer

m flow control

m connection management

r 3.6 Principles of
congestion control

r 3.7 TCP congestion
control

Transport Layer 3-8

Servizio di trasporto
r Più applicazioni possono essere attive su un end

system
m il livello di trasporto svolge funzioni di

multiplexing/demultiplexing
m ciascun collegamento logico tra applicazioni è indirizzato

dal livello di trasporto

entità di
trasporto

protocolli

applicativi

livello rete livello rete

protocollo di trasporto

indirizzo di liv.

trasporto

(SAP di livello 4)

http ftp smtp http ftp smtp

entità di
trasporto

Transport Layer 3-9

Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

= process= socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Multiplexing at send host:

Transport Layer 3-10

How demultiplexing works
r host receives IP datagrams

m each datagram has source
IP address, destination IP
address

m each datagram carries 1
transport-layer segment

m each segment has source,
destination port number
(recall: well-known port
numbers for specific
applications)

r host uses IP addresses & port
numbers to direct segment to
appropriate socket

source port # dest port #

32 bits

application
data

(message)

other header fields

TCP/UDP segment format

Transport Layer 3-11

Connectionless demultiplexing

r Create sockets with port
numbers:

DatagramSocket mySocket1 = new

DatagramSocket(99111);

DatagramSocket mySocket2 = new

DatagramSocket(99222);

r UDP socket identified by
two-tuple:

(dest IP address, dest port number)

r When host receives UDP
segment:

m checks destination port
number in segment

m directs UDP segment to
socket with that port
number

r IP datagrams with
different source IP
addresses and/or source
port numbers directed
to same socket

Transport Layer 3-12Transport Layer 3-12

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket(6428);

Client
IP:B

P2

client
IP: A

P1P1P3

server
IP: C

SP: 6428

DP: 9157

SP: 9157

DP: 6428

SP: 6428

DP: 5775

SP: 5775

DP: 6428

SP provides “return address”

Transport Layer 3-13

Connection-oriented demux

r TCP socket identified
by 4-tuple:

m source IP address

m source port number

m dest IP address

m dest port number

r recv host uses all four
values to direct
segment to appropriate
socket

r Server host may support
many simultaneous TCP
sockets:

m each socket identified by
its own 4-tuple

r Web servers have
different sockets for
each connecting client

m non-persistent HTTP will
have different socket for
each request

Transport Layer 3-14Transport Layer 3-14

Connection-oriented demux
(cont)

Client
IP:B

P1

client
IP: A

P1P2P4

server
IP: C

SP: 9157

DP: 80

SP: 9157

DP: 80

P5 P6 P3

D-IP:C

S-IP: A

D-IP:C

S-IP: B

SP: 5775

DP: 80

D-IP:C

S-IP: B

Transport Layer 3-15Transport Layer 3-15

Connection-oriented demux:
Threaded Web Server

Client
IP:B

P1

client
IP: A

P1P2

server
IP: C

SP: 9157

DP: 80

SP: 9157

DP: 80

P4 P3

D-IP:C

S-IP: A

D-IP:C

S-IP: B

SP: 5775

DP: 80

D-IP:C

S-IP: B

Transport Layer 3-16

Chapter 3 outline

r 3.1 Transport-layer
services

r 3.2 Multiplexing and
demultiplexing

r 3.3 Connectionless
transport: UDP

r 3.4 Principles of
reliable data transfer

r 3.5 Connection-oriented
transport: TCP

m segment structure

m reliable data transfer

m flow control

m connection management

r 3.6 Principles of
congestion control

r 3.7 TCP congestion
control

Transport Layer 3-17

UDP: User Datagram Protocol [RFC 768]

r “no frills,” “bare bones”
Internet transport protocol

r “best effort” service, UDP
segments may be:

m lost
m delivered out of order to

app

reliable transfer over UDP: add
reliability at application layer

m application-specific error
recovery!

r connectionless:
m no handshaking between

UDP sender, receiver
m each UDP segment handled

independently of others

Why is there a UDP?
r no connection

establishment (which can
add delay)

r simple: no connection
state at sender, receiver

r small segment header (8
byte)

r no congestion control: UDP
can blast away as fast as
desired

roften used for streaming multimedia apps

mloss tolerant

mrate sensitive

other UDP uses: DNS, SNMP..

Transport Layer 3-18

UDP Packets

r Connection-Less
m (no handshaking)

r UDP packets (Datagrams)
m Each application interacts with UDP transport

sw to produce EXACTLY ONE UDP datagram!

IP

IP
IP

IP
UDP UDP

IP

proc proc

Application

UDP header Application data

UDP header Application dataIP header

encapsulated in
exactly 1 IP packet

This is why, improperly, we use the term UDP packets

Transport Layer 3-19

UDP datagram format
8 bytes header + variable payload

Checksum

Data

0 7 15 23 31

r UDP length field
m all UDP datagram

m (header + payload)

r payload sizes allowed:
m Empty

m even size (bytes)

length (bytes)

source port destination port

�UDP functions limited to:

�addressing
�which is the only strictly necessary role of a transport protocol

�Error checking
�which may even be disabled for performance

Transport Layer 3-20

Maximum UDP datagram size
r 16 bit UDP length field:

m Maximum up to 216-1 = 65535 bytes
m Includes 8 bytes UDP header (max data = 65527)

r But max IP packet size is also 65535
m Minus 20 bytes IP header, minus 8 bytes UDP header
m Max UDP_data = 65507 bytes!

r Moreover, most OS impose further limitations!
m most systems provide 8192 bytes maximum (max size in NFS)

m some OS had (still have?) internal implementation features (bugs?) that limit IP
packet size

• SunOS 4.1.3 had 32767 for max tolerable IP packet transmittable (but 32786 in
reception…) – bug fixed only in Solaris 2.2

r Finally, subnet Maximum Transfer Unit (MTU) limits may fragment
datagram – annoying for reliability!

m E.g. ethernet = 1500 bytes; PPP on your modem = 576

Transport Layer 3-21

Error checksum
r 16 bit checksum field, obtained by:

m summing up all 16 bit words in
header data and pseudoheader, in
1’s complement (checksum fields
filled with 0s initially)

m take 1’s complement of result
m if result is 0, set it to 111111…11

(65535==0 in 1’s complement)
m Sender puts checksum value into

UDP checksum field

r at destination:
m 1’s complement sum should return

0, otherwise error detected
m upon error, no action (just packet

discard)

r efficient implementation RFC 1071

0 7 3115 23

Data

Src port

UDP length checksum

Dest port

00000000

r Zero padding

m To multiple of 16 bits

r checksum disabled

m by source, by setting 0 in
the checksum field

Transport Layer 3-22

Pseudo header
r Is not transmitted!

m But it is information available at transmitter and at receiver
m intention: double check that packet has arrived at correct destination

0 7 3115 23

Source IP address

Destination IP address

Source port Destination port

00000000 protocol UDP length

UDP length checksum

data

12 bytes

pseudoheader

8 bytes UDP header

Protocol field (TCP=6,UDP=17) necessary, as same checksum

calculation used in TCP. UDP length duplicated.

Transport Layer 3-23

disabling checksum

r In principle never!
m Remember that IP packet checksum DOES

NOT include packet payload.

r In practice, often done in NFS
m sun was the first, to speed up implementation

r may be tolerable in LANs under one’s
control.

r Definitely dangerous in the wide internet
m Exist layer 2 protocols without error checking

Transport Layer 3-24

UDP: a lightweight protocol
r No connection establishment

m no initial overhead due to handshaking

r No connection state
m greater number of supported connections by a server!

r Small packet header overhead
m 8 bytes only vs 20 in TCP

r originally intended for simple applications, oriented to short
information exchange

m DNS
m management (e.g. SNMP)
m etc

r No rate limitations

m No throttling due to congestion & flow control mechanisms

m No retransmission (for certain application loss tolerable)

r extremely important features for today multimedia applications!
Expecially for real time applications which can tolerate some packet
loss but require a minimum send rate.

Transport Layer 3-25

RTP as seen from Application

Application developer integrates

RTP into the application by:
•writing code which creates the RTP

encapsulating packets;

•sends the RTP packets into a UDP

socket interface.

Application

RTP

UDP

IP

Lower layers

SOCKET

INTERFACE

Details of RTP in subsequent courses – unless we are ahead of schedule

Be careful: UDP ok for multimedia because it does not provide anything
at all (no features = no limits!). Application developers have to provide

supplementary transport capabilities at the application layer!

Solution for audio/video:

Real Time Protocol

(RTP, RFC 1889)

T
ra
n
sp
o
rt

Transport Layer 3-26

Chapter 3 outline

r 3.1 Transport-layer
services

r 3.2 Multiplexing and
demultiplexing

r 3.3 Connectionless
transport: UDP

r 3.4 Principles of
reliable data transfer

r 3.5 Connection-oriented
transport: TCP

m segment structure

m reliable data transfer

m flow control

m connection management

r 3.6 Principles of
congestion control

r 3.7 TCP congestion
control

Transport Layer 3-27

A MUCH more complex transport
for three main reasons

r Connection oriented
m implements mechanisms to setup and tear down

a full duplex connection between end points

r Reliable
m implements mechanisms to guarantee error

free and ordered delivery of information

r Flow & Congestion controlled
m implements mechanisms to control traffic

Transport Layer 3-28

TCP services
r connection oriented

m TCP connections

r reliable transfer service
m all bytes sent are received

IP

IP

IP

IP

TCP
TCP

IP

Appl.
Appl.

�TCP functions
� application addressing (ports)

� error recovery (acks and
retransmission)

� reordering (sequence numbers)

� flow control

� congestion control

Transport Layer 3-29

Byte stream service

r TCP exchange data between applications as a stream of
bytes.

r It does not introduce any data delimiter (an application
duty)

m source application may enter 10 bytes followed by 1 and 40 (grouped
with some semantics)

m data is buffered at source, and transmitted

m at receiver, may be read in the sequence 25 bytes, 22 bytes and 4
bytes...

Application view

TCP view

Transport Layer 3-30

TCP segments
r Application data broken into segments for transmission

r segmentation totally up to TCP, according to what TCP considers being

the best strategy

r each segment placed into an IP packet

r very different from UDP!!

TCP data

IP dataHeader IP

Header TCP TCP data

IP dataHeader IP

Header TCP

Transport Layer 3-31

TCP segment format
20 bytes header (minimum)

0 3 7 15 31

Header
length

checksum

32 bit Sequence number

Window size

Source port Destination port

Options (if any)

32 bit acknowledgement number

6 bit
Reserved

Urgent pointer

Data (if any)

padding

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Transport Layer 3-32

r Source & destination port + source and destination IP
addresses

m univocally determine TCP connection

r checksum as in UDP
m same calculation including same pseudoheader

r no explicit segment length specification

Header
length

checksum

32 bit Sequence number

Window size

Source port Destination port

32 bit acknowledgement number

6 bit
Reserved

Urgent pointer

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Transport Layer 3-33

r Header length: 4 bits
m specifies the header size (n*4byte words) for options

m maximum header size: 60 (15*4)

m option field size must be multiple of 32bits: zero padding
when not.

r Reserved: 000000 (still today!)

Header
length

checksum

32 bit Sequence number

Window size

Source port Destination port

32 bit acknowledgement number

6 bit
Reserved

Urgent pointer

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Options (if any)
00000000

Transport Layer 3-34

Reliable data transfer: issues

r mechanisms to guarantee correct reception:
m Forward Error Correction (FEC) coding schemes

• Powerful to correct bits affected by error, not effective in
case of packet loss

• Mostly used at link layer

m Error detection (e.g. checksum used in UDP)
m Retransmission – issues:

• ACK
• NACK
• TIMEOUT

INTERNET

packet packet PROBLEMS:
1) Packet received with errors

2) Packet not received at all

Same problem considered at DATA LINK LAYER

(although it is less likely that a whole packet is lost at data link)

Transport Layer 3-35

Principles of Reliable data transfer

r important in app., transport, link layers

r top-10 list of important networking topics!

r characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-36

Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

deliver_data(): called by
rdt to deliver data to upper

Transport Layer 3-37

Reliable data transfer: getting started

We’ll:

r incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

r consider only unidirectional data transfer
m but control info will flow on both directions!

r use finite state machines (FSM) to specify
sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event
actions

Transport Layer 3-38

Rdt1.0: reliable transfer over a reliable channel

r underlying channel perfectly reliable
m no bit errors

m no loss of packets (�no congestion, no buffer overflows)

r separate FSMs for sender, receiver:
m sender sends data into underlying channel

m receiver read data from underlying channel

Wait for

call from
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)
deliver_data(data)

Wait for

call from

below

rdt_rcv(packet)

sender receiver

Transport Layer 3-39

Rdt2.0: channel with bit errors

r underlying channel may flip bits in packet
m recall: UDP checksum to detect bit errors

r Still no loss!!

r the question: how to recover from errors:
m acknowledgements (ACKs): receiver explicitly tells sender that

pkt received OK

m negative acknowledgements (NAKs): receiver explicitly tells
sender that pkt had errors

m sender retransmits pkt on receipt of NAK

m human scenarios using ACKs, NAKs?

r new mechanisms in rdt2.0 (beyond rdt1.0):
m error detection

m receiver feedback: control msgs (ACK,NAK) rcvr->sender

Transport Layer 3-40

rdt2.0: FSM specification

Wait for

call from

above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

corrupt(rcvpkt)

Wait for

ACK or

NAK

Wait for

call from
belowsender

receiver
rdt_send(data)

Λ

Transport Layer 3-41

rdt2.0: operation with no errors

Wait for

call from

above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

corrupt(rcvpkt)

Wait for

ACK or

NAK

Wait for

call from
below

rdt_send(data)

Λ

Transport Layer 3-42

rdt2.0: error scenario

Wait for

call from

above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

corrupt(rcvpkt)

Wait for

ACK or

NAK

Wait for

call from
below

rdt_send(data)

Λ

Transport Layer 3-43

rdt2.0 has a fatal flaw!

What happens if
ACK/NAK corrupted?

r sender doesn’t know what
happened at receiver!

r can’t just retransmit:
possible duplicate

What to do?
r sender ACKs/NAKs

receiver’s ACK/NAK? What
if sender ACK/NAK lost?

r retransmit, but this might
cause retransmission of
correctly received pkt!

Handling duplicates:
r sender adds sequence

number to each pkt

r sender retransmits current
pkt if ACK/NAK garbled

r receiver discards (doesn’t
deliver up) duplicate pkt

Sender sends one packet,
then waits for receiver
response

stop and wait

Transport Layer 3-44

Retransmission scenarios
referred to as ARQ schemes (Automatic Retransmission reQuest)

DATA

ACK

SRC DST

Basic ACK idea

DATA

NACK

SRC DST

Basic NACK idea

Error
Check:
OK

COMPONENTS: a) error checking at receiver; b) feedback to sender; c) retx

Error
Check:
corrupted

DATA
Automatic
retransmit

DATA
SRC DST

Basic ACK/Timeout idea

Retx
Timeout
(RTO)

DATA

DATA
SRC DST

DATA

Error
Check:
corrupted

DATA
SRC DST

DATA

ACK

Transport Layer 3-45

Why sequence numbers?
(on data)

Sender side:

DATA

DATA

ACK
RTO

DATArtx

Receiver side:

DATA

NETWORK

(ACK lost)

New data?

Old data?

Need to univocally “label” all packets circulating

in the network between two end points.

1 bit (0-1) enough for Stop-and-wait

Transport Layer 3-46

rdt2.1: sender, handles garbled ACK/NAKs

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

Wait for
ACK or
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isNAK(rcvpkt))

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isNAK(rcvpkt))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt)

Wait for
call 1 from

above

Wait for
ACK or
NAK 1

Λ
Λ

Transport Layer 3-47

rdt2.1: receiver, handles garbled ACK/NAKs

Wait for
0 from
below

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Wait for
1 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

Transport Layer 3-48

rdt2.1: discussion

Sender:

r seq # added to pkt

r two seq. #’s (0,1) will
suffice. Why?

r must check if received
ACK/NAK corrupted

r twice as many states
m state must “remember”

whether “current” pkt
has 0 or 1 seq. #

Receiver:

r must check if received
packet is duplicate

m state indicates whether
0 or 1 is expected pkt
seq #

r note: receiver can not
know if its last
ACK/NAK received OK
at sender

Transport Layer 3-49

rdt2.2: a NAK-free protocol

r same functionality as rdt2.1, using NAKs only

r instead of NAK, receiver sends ACK for last pkt
received OK

m receiver must explicitly include seq # of pkt being ACKed

r duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-50

rdt2.2: sender, receiver fragments

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

Wait for
ACK

0

sender FSM
fragment

Wait for
0 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment

Λ

Transport Layer 3-51

rdt3.0: channels with errors and loss

New assumption:
underlying channel can
also loose packets
(data or ACKs)

m checksum, seq. #, ACKs,
retransmissions will be
of help, but not enough

Q: how to deal with loss?
m sender waits until

certain data or ACK
lost, then retransmits

m yuck: drawbacks?

Approach: sender waits
“reasonable” amount of
time for ACK

r retransmits if no ACK
received in this time

r if pkt (or ACK) just delayed
(not lost):

m retransmission will be
duplicate, but use of seq.
#’s already handles this

m receiver must specify seq
of pkt being ACKed

r requires countdown timer

Transport Layer 3-52

WhyWhy sequencesequence numbersnumbers??
(on (on ackack))

Sender side:

DATA 1

DATA 2

Receiver side:

Data 2 lost !!

With pathologically critical network (as the Internet!)

also need to univocally “label” all acks circulating

in the network between two end points.

1 bit (0-1) enough for Stop-and-wait ?

ACK

Queueing
Delay

Duplicated
ACK

DATA 3

ACKDATA 1

ACK

Transport Layer 3-53

rdt3.0 sender

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait
for

ACK0

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

Wait for
call 1 from

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,0))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer

stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for
call 0from

above

Wait
for

ACK1

Λ

rdt_rcv(rcvpkt)

Λ

Λ

Λ

Transport Layer 3-54

rdt3.0 in action

Transport Layer 3-55

rdt3.0 in action

Transport Layer 3-56

Performance of rdt3.0

r rdt3.0 works, but performance stinks

r example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

Ttransmit = 8kb/pkt
10**9 b/sec

= 8 microsec

m U sender: utilization – fraction of time sender busy sending

m 1KB pkt every 30 msec -> 33kB/sec throuput over 1 Gbps link

m network protocol limits use of physical resources!

U
sender

=
.008

30.008
= 0.00027

microsec

L / R

RTT + L / R
=

L (packet length in bits)
R (transmission rate, bps)

=

Transport Layer 3-57

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send
ACK

ACK arrives, send next
packet, t = RTT + L / R

U
sender

=
.008

30.008
= 0.00027

microsec

L / R

RTT + L / R
=

Transport Layer 3-58

Pipelined protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-
be-acknowledged pkts

m range of sequence numbers must be increased

m buffering at sender and/or receiver

r Two generic forms of pipelined protocols: go-Back-N,
selective repeat

