
2: Application Layer 1

Reti di Elaboratori
Corso di Laurea in Informatica

Università degli Studi di Roma “La Sapienza”
Canale A-L

Prof.ssa Chiara Petrioli
 Parte di queste slide sono state prese dal materiale associato al libro

Computer Networking: A Top Down Approach , 5th edition.
All material copyright 1996-2009
J.F Kurose and K.W. Ross, All Rights Reserved
Thanks also to Antonio Capone, Politecnico di Milano, Giuseppe Bianchi and
Francesco LoPresti, Un. di Roma Tor Vergata

Chapter 2
Application Layer

Application Layer 2-2

DNS: domain name system

people: many identifiers:
❍  SSN, name, passport #

Internet hosts, routers:
❍  IP address (32 bit) -

used for addressing
datagrams

❍  “name”, e.g.,
www.yahoo.com -
used by humans

Q: how to map between IP
address and name, and
vice versa ?

Domain Name System:
❒  distributed database

implemented in hierarchy of
many name servers

❒  application-layer protocol: hosts,
name servers communicate to
resolve names (address/name
translation)
❍  note: core Internet function,

implemented as application-
layer protocol

❍  complexity at network’s
“edge”

Application Layer 2-3

DNS: services, structure

why not centralize DNS?
❒  single point of failure
❒  traffic volume
❒  distant centralized database
❒  maintenance

DNS services
❒  hostname to IP address

translation
❒  host aliasing

❍  canonical, alias names

❒  mail server aliasing
❒  load distribution

❍  replicated Web
servers: many IP
addresses correspond
to one name

A: doesn’t scale!

Application Layer 2-4

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS servers yahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; 1st approx:
❒  client queries root server to find com DNS server
❒  client queries .com DNS server to get amazon.com DNS server
❒  client queries amazon.com DNS server to get IP address for

www.amazon.com

… … Top level
domain

Authoritative DNS servers

Application Layer 2-5

DNS: root name servers
❒  contacted by local name server that can not resolve name
❒  root name server:

❍  could contacts authoritative name server if name mapping not
known (in recursive queries)

❍  gets mapping
❍  returns mapping to local name server

 13 root name
“servers”
worldwide

a. Verisign, Los Angeles CA
 (5 other sites)
b. USC-ISI Marina del Rey, CA
l. ICANN Los Angeles, CA
 (41 other sites)

e. NASA Mt View, CA
f. Internet Software C.
Palo Alto, CA (and 48 other
sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo
(5 other sites)

c. Cogent, Herndon, VA (5 other sites)
d. U Maryland College Park, MD
h. ARL Aberdeen, MD
j. Verisign, Dulles VA (69 other sites)

g. US DoD Columbus,
OH (5 other sites)

Application Layer 2-6

TLD, authoritative servers

top-level domain (TLD) servers:
❍  responsible for com, org, net, edu, aero, jobs, museums,

and all top-level country domains, e.g.: uk, fr, ca, jp, eu
❍ Network Solutions maintains servers for .com TLD
❍  Educause for .edu TLD

authoritative DNS servers:
❍  organization’s own DNS server(s), providing authoritative

hostname to IP mappings for organization’s named hosts
❍  can be maintained by organization or service provider

Application Layer 2-7

Local DNS name server

❒  does not strictly belong to hierarchy
❒  each ISP (residential ISP, company, university) has

one
❍  also called “default name server”

❒ when host makes DNS query, query is sent to its
local DNS server
❍  has local cache of recent name-to-address translation

pairs (but may be out of date!)
❍  acts as proxy, forwards query into hierarchy

Application Layer 2-8

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4
5

6

authoritative DNS server
dns.cs.umass.edu

7 8

TLD DNS server

DNS name
resolution example

❒  host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
v  contacted server

replies with name of
server to contact

v  “I don’t know this
name, but ask this
server”

Application Layer 2-9

4 5

6
3

recursive query:
v  puts burden of name

resolution on
contacted name
server

v  heavy load at upper
levels of hierarchy?

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
7

authoritative DNS server
dns.cs.umass.edu

8

DNS name
resolution example

TLD DNS
server

Application Layer 2-1
0

DNS: caching, updating records

❒  once (any) name server learns mapping, it caches
mapping
❍  cache entries timeout (disappear) after some time (TTL)
❍ TLD servers typically cached in local name servers

•  thus root name servers not often visited

❒  cached entries may be out-of-date (best effort
name-to-address translation!)
❍  if name host changes IP address, may not be known

Internet-wide until all TTLs expire

❒  update/notify mechanisms proposed IETF standard
❍ RFC 2136

Application Layer 2-1
1

DNS records
DNS: distributed db storing resource records (RR)

type=NS
❍  name is domain (e.g.,

foo.com)
❍  value is hostname of

authoritative name
server for this domain

(foo.com,dns.foo.com,NS)

RR format: (name, value, type, ttl)

type=A
§  name is hostname
§  value is IP address
(relay.bar.foo.com,
145.37.93.126,A)

type=CNAME
§  name is alias name for

some “canonical” (the real)
name

§  www.ibm.com is really

 servereast.backup2.ibm.com

§  value is canonical name

type=MX
§  value is name of

mailserver associated with
name

Application Layer 2-1
2

DNS protocol, messages

❒  query and reply messages, both with same message
format

msg header
v  identification: 16 bit #

for query, reply to query
uses same #

v  flags:
§  query or reply
§  recursion desired
§  recursion available
§  reply is authoritative

identification flags

questions

questions (variable # of questions)

additional RRs # authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

Application Layer 2-1
3

name, type (A/MX)fields
 for a query

RRs in response
to query (Type,

Value, TTL)
records for

authoritative servers

additional “helpful”
info that may be used

identification flags

questions

questions (variable # of questions)

additional RRs # authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

DNS protocol, messages

2 bytes 2 bytes

Application Layer 2-1
4

Inserting records into DNS

❒  example: new startup “Network Utopia”
❒  register name networkuptopia.com at DNS registrar

(e.g., Network Solutions)
❍  provide names, IP addresses of authoritative name server

(primary and secondary)
❍  registrar inserts two RRs into .com TLD server:
(networkutopia.com, dns1.networkutopia.com, NS)

 (dns1.networkutopia.com, 212.212.212.1, A)

❒  create authoritative server type A record for
www.networkuptopia.com; type MX record for
networkutopia.com

Attacking DNS

DDoS attacks
❒  Bombard root servers

with traffic
❍ Not successful to date
❍ Traffic Filtering
❍  Local DNS servers

cache IPs of TLD
servers, allowing root
server bypass

❒  Bombard TLD servers
❍  Potentially more

dangerous

Redirect attacks
v Man-in-middle

§  Intercept queries
v DNS poisoning

§  Send bogus replies
to DNS server,
which caches

Exploit DNS for
DDoS

v Send queries with
spoofed source
address: target IP

v Requires
amplification

Application Layer 2-1
5

2: Application Layer 16

Perche’ UDP?
❒ Less overhead

❒ Messaggi corti
❒ Tempo per set-up connessione di TCP lungo
❒ Un unico messaggio deve essere scambiato tra una
coppia di server (nella risoluzione contattati diversi
server—se si usasse TCP ogni volta dovremmo
mettere su la connessione!!)

❒ Se un messaggio non ha risposta entro un timeout?
❒ Semplicemente viene riinviato dal resolver (problema
Risolto dallo strato applicativo)
 Porta usata per il DNS: 53!!

2: Application Layer 17

Browser
http://cerbero.elet.polimi.it/

people/bianchi/research.html

151.100.37.9

Port
23561

CLIENT

DNS server(s)

Browser asks DNS to resolve
location cerbero.elet.polimi.it

Uses UDP packet
<151.100.37.9,port=23561>,
<name_server_IP_address, port 53>

Port no given by
OS when UDP
socket created

Un esempio: uso di DNS da
parte di un client web

2: Application Layer 18

Browser
http://cerbero.elet.polimi.it/

people/bianchi/research.html

opening transport session:
client side, step b

151.100.37.9

Port
23561

CLIENT

DNS server(s)

Network responds with IP
address 131.175.15.1
Uses UDP connection
<name_server_IP_address, port 53>,
<151.100.37.9,port=23561>

2: Application Layer 19

Browser
http://cerbero.elet.polimi.it/

people/bianchi/research.html

opening transport session:
client side, step c

151.100.37.9

Port
23561

CLIENT

INTERNET
TCP connection
<151.100.37.9, 2345>,
<131.175.21.1,80>

Closes UDP socket
used for DNS
lookup

Port
2345

Creates TCP socket
and assigns port no.

IP: 131.175.21.1

Port: 80

SERVER

Sends TCP conn req
to server 131.175.21.1
port 80

2: Application Layer 20

opening transport session:
server side
❍  httpd (http daemon) process listens for arrival of

connection requests from port 80.
❍ Upon connection request arrival, server decides

whether to accept it, and send back a TCP connection
accept

❍ This opens a TCP connection, uniquely identified by
client address+port and server address+port 80

Application Layer 2-2
1

Chapter 2: outline

2.1 principles of network
applications
❍  app architectures
❍  app requirements

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

❍  SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications
2.7 socket programming

with UDP and TCP

Application Layer 2-2
2

FTP: the file transfer protocol
file transfer

FTP
server

FTP
user

interface
FTP
client

local file
system

remote file
system

user
at host

v  transfer file to/from remote host
v  client/server model

§  client: side that initiates transfer (either to/from remote)
§  server: remote host

v  ftp: RFC 959
v  ftp server: port 21

Application Layer 2-2
3

FTP: separate control, data connections

❒  FTP client contacts FTP server
at port 21, using TCP

❒  client authorized over control
connection

❒  client browses remote
directory, sends commands
over control connection

❒  when server receives file
transfer command, server
opens 2nd TCP data
connection (for file) to client

❒  after transferring one file,
server closes data connection

FTP
client

FTP
server

TCP control connection,
server port 21

TCP data connection,
server port 20

v  server opens another TCP
data connection to transfer
another file

v  control connection: “out of
band”

v  FTP server maintains
“state”: current directory,
earlier authentication

Application Layer 2-2
4

FTP commands, responses

sample commands:
❒  sent as ASCII text over

control channel
❒  USER username
❒  PASS password
❒  LIST return list of file in

current directory
❒  RETR filename

retrieves (gets) file
❒  STOR filename stores

(puts) file onto remote
host

sample return codes
❒  status code and phrase (as

in HTTP)
❒  331 Username OK,
password required

❒  125 data
connection
already open;
transfer starting

❒  425 Can’t open
data connection

❒  452 Error writing
file

Application Layer 2-2
5

Chapter 2: outline

2.1 principles of network
applications
❍  app architectures
❍  app requirements

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

❍  SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications
2.7 socket programming

with UDP and TCP

Application Layer 2-2
6

Electronic mail
Three major components:
❒  user agents
❒  mail servers
❒  simple mail transfer

protocol: SMTP

User Agent
❒  a.k.a. “mail reader”
❒  composing, editing, reading

mail messages
❒  e.g., Outlook, Thunderbird,

iPhone mail client
❒  outgoing, incoming

messages stored on server

user mailbox

outgoing
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

Application Layer 2-2
7

user
agent

Scenario: Alice sends message to Bob

1) Alice uses UA to compose
message “to”
bob@someschool.edu

2) Alice’s UA sends message to
her mail server; message
placed in message queue

3) client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent
to read message

mail
server

mail
server

1
2 3 4

5
6

Alice’s mail server Bob’s mail server

user
agent

Application Layer 2-2
8

Electronic mail: mail servers

mail servers:
❒  mailbox contains incoming

messages for user
❒  message queue of outgoing

(to be sent) mail messages
❒  SMTP protocol between mail

servers to send email
messages
❍  client: sending mail

server
❍  “server”: receiving mail

server

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

Application Layer 2-2
9

Electronic Mail: SMTP [RFC 2821]
❒  uses TCP to reliably transfer email message from

client to server, port 25
❒  direct transfer: sending server to receiving

server
❒  three phases of transfer

❍  handshaking (greeting)
❍  transfer of messages
❍  closure

❒  command/response interaction (like HTTP, FTP)
❍  commands: ASCII text
❍  response: status code and phrase

❒ messages must be in 7-bit ASCI

Application Layer 2-3
0

Sample SMTP interaction

 S: 220 hamburger.edu
 C: HELO crepes.fr
 S: 250 Hello crepes.fr, pleased to meet you
 C: MAIL FROM: <alice@crepes.fr>
 S: 250 alice@crepes.fr... Sender ok
 C: RCPT TO: <bob@hamburger.edu>
 S: 250 bob@hamburger.edu ... Recipient ok
 C: DATA
 S: 354 Enter mail, end with "." on a line by itself
 C: Do you like ketchup?
 C: How about pickles?
 C: .
 S: 250 Message accepted for delivery
 C: QUIT
 S: 221 hamburger.edu closing connection

Application Layer 2-3
1

SMTP: final words

❒  SMTP uses persistent
connections

❒  SMTP requires message
(header & body) to be in
7-bit ASCII

❒  SMTP server uses
CRLF.CRLF to
determine end of message

comparison with HTTP:

❒  HTTP: pull
❒  SMTP: push

❒  both have ASCII
command/response
interaction, status codes

❒  HTTP: each object
encapsulated in its own
response msg

❒  SMTP: multiple objects
sent in multipart msg

Application Layer 2-3
2

Mail message format

SMTP: protocol for
exchanging email msgs

RFC 822: standard for text
message format:

❒  header lines, e.g.,
❍  To:
❍  From:
❍  Subject:

different from SMTP MAIL
FROM, RCPT TO:
commands!

❒  Body: the “message”
❍  ASCII characters only

header

body

blank
line

Application Layer 2-3
3

Mail access protocols

❒  SMTP: delivery/storage to receiver’s server
❒  mail access protocol: retrieval from server

❍  POP: Post Office Protocol [RFC 1939]: authorization,
download

❍  IMAP: Internet Mail Access Protocol [RFC 1730]: more
features, including manipulation of stored msgs on
server

❍  HTTP: gmail, Hotmail, Yahoo! Mail, etc.

sender’s mail
server

SMTP SMTP
mail access

protocol

receiver’s mail
server

(e.g., POP,
 IMAP)

user
agent

user
agent

Application Layer 2-3
4

POP3 protocol

authorization phase
❒  client commands:

❍  user: declare username
❍  pass: password

❒  server responses
❍  +OK
❍  -ERR

transaction phase, client:
❒  list: list message numbers
❒  retr: retrieve message by

number
❒  dele: delete
❒  quit

 C: list
 S: 1 498
 S: 2 912
 S: .
 C: retr 1
 S: <message 1 contents>
 S: .
 C: dele 1
 C: retr 2
 S: <message 1 contents>
 S: .
 C: dele 2
 C: quit
 S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on

Application Layer 2-3
5

POP3 (more) and IMAP

more about POP3
❒  previous example uses

POP3 “download and
delete” mode
❍  Bob cannot re-read e-

mail if he changes
client

❒  POP3 “download-and-
keep”: copies of messages
on different clients

❒  POP3 is stateless across
sessions

IMAP
❒  keeps all messages in one

place: at server
❒  allows user to organize

messages in folders
❒  keeps user state across

sessions:
❍  names of folders and

mappings between
message IDs and folder
name

Content Delivery Networks

❒  We have seen the
extensive use of
caching for reducing
latencies in resolving
names and accessing
web content

❒  Is this enough?
❍ Origin servers may

still have to be
accessed to maintain
consistency

❒  Caching
❍ What to cache
❍  How to maintain

consistency
❍  How to invalidate or

update in case an
inconsistency is
detected

❒  More here:http://
citeseerx.ist.psu.edu/
viewdoc/download?
doi=10.1.1.73.586&rep=rep1
&type=pdf 2: Application Layer 36

Content Delivery Networks

2: Application Layer 37

Content Delivery Networks

2: Application Layer 38

Content Delivery Networks

2: Application Layer 39

Content Delivery Networks

❒ HTTP Redirect
❒ DNS Redirect

2: Application Layer 40

Application Layer 2-4
1

Pure P2P architecture-
Technical Motivation

❒  no always-on server
❒  arbitrary end systems

directly communicate
❒  peers are intermittently

connected and change IP
addresses

examples:
❍  file distribution

(BitTorrent)
❍  Streaming (KanKan)
❍ VoIP (Skype)

Application Layer 2-4
2

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from
one server to N peers?
❍  peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant
 bandwidth)

file, size F

us: server upload
capacity

ui: peer i upload
capacity

di: peer i download
capacity u2 d2

u1 d1

di

ui

Application Layer
2-4

3

File distribution time: client-server

❒  server transmission: must
sequentially send (upload) N
file copies:
❍  time to send one copy: F/us
❍  time to send N copies: NF/us

increases linearly in N

time to distribute F
to N clients using

client-server approach
 Dc-s > max{NF/us,,F/dmin}

v  client: each client must
download file copy
§  dmin = min client download

rate
§  min client download time:

F/dmin

us

network
di

ui

F

Application Layer
2-4

4

File distribution time: P2P

❒  server transmission: must
upload at least one copy
❍  time to send one copy: F/us

time to distribute F
to N clients using

P2P approach

us

network
di

ui

F

 DP2P > max{F/us,,F/dmin,,NF/(us + Σui)}

v  client: each client must
download file copy
§  min client download time:

F/dmin
v  clients: as aggregate must download NF bits

§  max upload rate (limiting max download rate)
is us + Σui

… but so does this, as each peer brings service capacity
increases linearly in N …

Application Layer 2-4
5

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

