
P2P Applications
Reti di Elaboratori

Corso di Laurea in Informatica
Università degli Studi di Roma “La Sapienza”

Canale A-L
Prof.ssa Chiara Petrioli



Peer-to-peer networks

● A type of network in which each 
workstation has equivalent 
capabilities and responsibilities

● Differs from client/server 
architectures, in which some 
computers are dedicated to 
serving the others

Server-based Network

P2P Network



P2P Paradigm
● Late 80’s
● Became popular in 1999-2001 thanks to
● Napster was shut down by court order in 2001 due to 

copyright violation
● New P2P clients were developed: Gnutella, Kazaa, 

BitTorrent
● As of today, 43-70% of Internet traffic is generated by P2P 

applications (Feb 2009)



P2P file sharing
● Computer systems connected via Internet form a 

network of peers among which digital documents and 
files are distributed and shared

● P2P programs search for other connected computers on 
a P2P network and locate the desired content

● Each peer can both download and upload files from/to 
other peers

● How to keep track of which peers hold a given content?
○ Centralized vs decentralized solutions 

http://en.wikipedia.org/wiki/Computer_file


Understanding P2P protocols



Spotify: Overview

● Spotify is a peer-assisted on-demand 
music streaming service

● Large catalog of music (over 15 
million tracks)

● Available in more than 32 countries 
(USA, Europe, Asia)

● Very popular (over 10 million users)
● Only ~ 250ms playback latency on 

average!



Spotify: Overview (cont’d)

● Spotify uses a proprietary protocol, but:
○ some of its internals have been described 

by researchers working at Spotify (http://www.
csc.kth.se/~gkreitz/spotify-p2p10/)

○ a third-party OSS alternative client has 
been released (http://despotify.sourceforge.net/)

○ update: the alternative client is not 
compatible anymore with the new protocol

http://www.csc.kth.se/~gkreitz/spotify-p2p10/
http://www.csc.kth.se/~gkreitz/spotify-p2p10/
http://www.csc.kth.se/~gkreitz/spotify-p2p10/
http://despotify.sourceforge.net/


Spotify: Architecture (cont’d)

● Spotify uses a hybrid content distribution 
method, combining:
○ a client-server access model
○ a P2P network of clients

● Main advantage: only ~ 8.8% of music data 
comes from the spotify servers! The rest is 
shared among the peers (although mobile 
devices do not participate to the P2P network)

● Possible drawbacks:
○ playback latency (i.e., the time the user has 

to wait before the track starts playing)
○ complex design 



Spotify: Architecture (cont’d)

● As we are about to see, Spotify uses a number of 
good design choices in order to:
○ keep the playback latency low
○ simplify its design (with respect to pure P2P 

systems)



Spotify: Load Balancing
● To balance the load among its servers (at least 2, one in London, one in 

Stockholm), a peer randomly selects which server to connect to.
● Each server is responsible for a separate and independent P2P network of 

clients.
○ advantage: does not require to manage inconsistencies between the 

servers’ view of the P2P network
○ advantage: the architecture scales up nicely (at least in principle). If more 

users join Spotify and the servers get clogged, just add a new server (and 
a new P2P network)

● To keep the discussion simple, we assume there is only one server.



Spotify: P2P Network
● Spotify uses an unstructured P2P overlay topology.

○ the network is built and maintained by means of trackers (similar to BitTorrent)
○ no super nodes with special maintenance functions (as opposite to Skype)
○ no Distributed Hash Table to find peers/content (as opposite to eDonkey)
○ no routing: discovery messages get forwarded to other peers for one hop at most 

● Advantages:
○ keeps the protocol simple
○ keeps the bandwidth overhead on clients down
○ reduces latency

● This is possible because Spotify can leverage on a centralized and fast backend (as 
opposite to the completely distributed P2P networks)



Spotify: Caching
● Spotify clients store the already played tracks in a cache. By default, the cache 

uses at most 10% of disk space (capped to 10GB, but never less than 50MB).
● Around 56% of clients have a maximum cache size of 5GB.

○ advantage: reduces the chances that a client has to re-download already 
played tracks.

○ advantage: increases the chances that a client can get a track from the P2P 
network (lower load on the Spotify servers).

○ drawback: impacts on the users’ disk
■ an LRU cache-eviction policy is used that removes the Least Recently 

Used (i.e., played) track.
■ caches are large (as compared to the typical track size), so this is not a 

big deal.



Spotify: Sharing Tracks

● A client cannot upload a track to its peers unless it has the whole track
○ advantage: this choice greatly simplifies the protocol and keeps the 

overhead low, as clients do not have to communicate (to their peers or 
to the server) what parts of a track they have.

○ drawback: reduces the number of peers a client can download a track 
from (i.e., slower downloads).
■ tracks are small though (few MB each), so this has a limited effect 



Spotify: Locating Peers

● There are two ways a client can locate the peers:
○ ask the server
○ ask the other peers



Spotify: Locating Peers (tracker)
● The server maintains a tracker, similarly to BitTorrent.

○ as opposite to other systems, however, the server does not keep 
track of all the peers who can serve each track

○ rather, it keeps a list of the ~ 20 most recent clients that played each 
track

○ clients do not report to the server the content of their caches!
● Advantages:

○ less resources on the server side
○ simplifies the implementation of the tracker

● Drawback: only a fraction of the peers can be located through the tracker
○ this is not a big issue, since clients can ask the other peers (next slide)



Spotify: Locating Peers (P2P)
● Each client has a set of neighbors (other clients) in the P2P network.

○ these are the peers the client has previously uploaded a track to, or 
has previously downloaded a track from

● When a new track has to be downloaded, a client can search its 
neighborhood for peers that have stored in their cache

● The peers can, in turn, forward the search request to their own peers in the 
network
○ the process stops at distance 2 in the overlay network

● each query has a unique ID, to allow ignoring duplicate queries



Spotify: Locating Peers (P2P) (cont’d)



Spotify: Neighbor Selection
● A client uploads to at most 4 peers at any given time

○ helps Spotify behave nicely with concurrent application streams (e.g., browsing)
● Connections to peers do not get closed after a download/upload

○ advantage: reduces time to discover new peers when a new track has to be played
○ drawback: keeping the state required to maintain a large number of TCP 

connections to peers is expensive (in particular for home routers acting as stateful 
firewall and Network Address Translation (NAT) devices)

● To keep the overhead low, clients impose both a soft and a hard limit to the number of 
concurrent connections to peers (set to 50 and 60 respectively)
○ when the soft limit is reached, a client stops establishing new connections to other 

peers (though it still accepts new connections from other peers)
○ when the hard limit is reached, no new connections are either established or 

accepted



Spotify: Neighbor Selection (cont’d)

● When the soft limit is reached, the client starts pruning its connections, leaving some 
space for new ones.

● To do so, the client computes an utility of each connected peer by considering, 
among the other factors:
○ the number of bytes sent (received) from the peer in the last 60 (respectively 

10) minutes
○ the number of other peers the peer has helped discovering in the last 10 

minutes
● Peers are sorted by their utility, and the peers with the least total scores are 

disconnected.



Spotify: Playing a Track

● Around 61% of tracks are played in a predictable order (i.e., the previous 
track has finished, or the user has skipped to the next track)
○ playback latency can be reduced by predicting what is going to be 

played next.
● The remaining 39% are played in random order (e.g., the user suddenly 

changes album, or playlist)
○ predicting what the user is going to play next is too hard. Playback 

latency may be higher



Spotify: Random Access

● When tracks are played in an unpredictable (random) order, fetching them 
just using the P2P network would negatively impact the playback delay.

● Why?
○ searching for peers who can serve the track takes time (mostly 

because of multiple messages need to be exchanged with each peer)
○ some peers may have poor upload bandwidth capacity (or may be 

busy uploading the track to some other client)
○ a new connection to a peer requires some time before start working at 

full rate (check out the lectures about TCP congestion control)

○ P2P connections are unreliable (e.g., may fail at any time)



Spotify: Random Access (cont’d)

● How to solve the problem?
● Possible solution: use the fast Spotify Content Delivery Network (CDN)

○ drawback: more weight on the Spotify CDN (higher monetary cost for 
Spotify.. and possibly to its users too)

● Better solution: use the Spotify CDN asking for the first 15 seconds of the track 
only.
○ advantage: this buys a lot of time the client can use to search the peer-to-

peer network for peers who can serve the track.
○ advantage: the Spotify CDN is used just to recover from a critical situation 

(in this case, when the user has started playing a random track)



Spotify: Sequential Access
● When users listen to tracks in a predictable order (i.e., a playlist, or an album), the 

client has plenty of time to prefetch the next track before the current one finishes.
● Problem: you don’t really know whether the user is actually going to listen to the next 

track or not. If the user plays a random track instead of the predicted one, you end up 
having wasted bandwidth resources.

● Solution: start prefetching the next track only when the previous track is about to 
finish, as Spotify has experimentally observed that: 
○ when the current track has only 30 seconds left, the user is going to listen to the 

following one in 92% of the cases.
○ when 10 seconds are left, the percentage rises to 94%

● The final strategy is:
○ 30 seconds left: start searching for peers who can serve the next track
○ 10 seconds left: if no peers are found (critical scenario!), use the Spotify CDN



Spotify: Regular Streaming
● Tracks are split in 16KB chunks.
● A track can be simultaneously downloaded from the CDN and the P2P 

network.
● If both CDN and P2P are used, the client never downloads from the Spotify 

CDN more than 15 seconds ahead of the current playback point.
● To select the peers to request the chunks from, the client sorts them by 

their expected download times and greedily requests the most urgent 
chunk from the top peer.
○ expected download times are computed using the average download 

speed received from the peers
○ if a peer happens to be too slow, another peer is used



Spotify: Regular Streaming (cont’d)

● The client continuously monitors the playout buffer (i.e., the portion of the 
song that has been downloaded so far but not already played)

● If the buffer becomes too low (< 3 seconds) the client enters an 
emergency mode, where:
○ it stops uploading to the other peers

■ this is especially useful in asymmetric connections (e.g., aDSL), 
whose download capacity is negatively affected by concurrent 
uploads (check out the lectures on TCP) 

○ it uses the Spotify CDN
■ this helps in the case the client fails to find a reliable and fast set 

of peers to download the chunks from



Understanding P2P protocols



BitTorrent
● P2P file distribution system
● Designed and implemented (Python) by 

Bram Cohen in 2001
● Dozen of free clients
● January 2012: 150 million active users
● Used to distribute large amounts of data over 

the Internet: not only media content, but also 
Linux distributions, scientific data sets, ...



BitTorrent overview

● The set of all peers participation in the 
distribution of a file is called a torrent

● A separate torrent for each file
● Peers simultaneously upload and download 

pieces of file within the torrent
● The set of all active peers in a torrent 

is called the swarm



Two types of peers
For each torrent the set of active peers is 
divided into:

Seeds: clients that have a complete copy 
of the file and that continue to serve other 
peers
Leechers: clients that are still 
downloading the file (Alice)



How to download a file?

● Users need to discover which peers hold a 
copy of the file (at least a seeder!)

● Search for a .torrent file on the Web
● Torrent file include the address of a 

centralized server (the tracker) that helps 
peers finding each other

● Connect to the tracker and receive the list of 
peers having a copy of the file



Discovering peers for a file F

Download torrent 

Tracker server

Get tracker IP address from torrent and 
connect to tracker

Search the Web and find a .torrent file for file F

Alice
Tracker sends back list of peers (50)

.torrent



The Tracker

● Not involved in the actual distribution of files!
● Keeps information about peers currently 

active
● Peers report their state to the tracker every 

30 minutes, and when joining or leaving the 
network

● New clients receive from the tracker the IP 
address of 50 randomly chosen active peers



Contacting peers

● Once received the list of IP addresses from 
the tracker, Alice tries to establish a TCP 
connection with each of them

● Peer set: peers to which Alice is connected
● It changes over time!
● If nodes in the peers set become less than 

20, Alice contacts the tracker again to obtain 
a new list



File chunks
● In BitTorrent files are divided into pieces (chunks) of size between 

64 KB and 1 MB (typically 256 Kb)

● When Alice enters the torrent for file F, she has no chunks 
● Each peer in the peers set have a subset of chunks from F
● Alice periodically asks each node in the peers set for the list of 

chunks they have

File F



Peers send their chunks list to Alice

Peers set

Alice

A

whole file: A, B, C, D

B, C



Downloading chunks

● Alice downloads chunks from multiple peers 
and keeps track of the download rate from each 
of them

● In which order file chunks are downloaded?
● (Local) rarest first: based on the chunks list 

received by her peers set, Alice determines 
which chunk (among those she does not have) 
is the rarest one in her peers set



Uploading chunks

● As soon as Alice downloads her first chunk, 
she can start uploading to other peers

● Alice has a limited number of upload slots to 
allocate to other peers

● How to choose which peers to serve?
● Tit for tat: exchanging upload bandwidth for 

download bandwidth



Trading chunks

● Alice continuously measures her download 
rate from the other peers

● She uploads chunks to the 4 peers from 
which she is downloading at the highest rate 

● Every 10 seconds she recalculates the four 
top peers

● In addition, every 30 seconds she picks a 
peer at random and uploads chunks to her



Choking & Unchoking

● The five peers to which Alice uploads are 
said to be unchoked

● All the other peers in the swarm are choked, 
i.e., they do not receive any chunk from Alice

● Unchoking a random peer every 30 seconds
○ allows to discover better partners
○ ensures that newcomers get a chance to join the 

swarm



BitTorrent Pros and Cons
Pros:
● Proficiently uses partially downloaded files
● Discourage free-loading by rewarding fast uploaders
● Works well for hot content
Cons:
● High latency and overhead for small files
● Less useful for unpopular content
● Does not support streaming
● Leech problem
● Not a pure P2P protocol: single point of failure



Want to know more?

Incentives Build Robustness in BitTorrent, Bram Cohen
Workshop on Economics of Peer-to-Peer Systems, June 2003


