
8-51Network Security

Chapter 8 roadmap

8.1 What is network security?
8.2 Principles of cryptography
8.3 Message integrity, authentication
8.4 Securing e-mail
8.5 Securing TCP connections: SSL
8.6 Network layer security: IPsec
8.7 Securing wireless LANs
8.8 Operational security: firewalls and IDS

8-52Network Security

Digital signatures

cryptographic technique analogous to hand-
written signatures:

❖ sender (Bob) digitally signs document, establishing
he is document owner/creator.

❖ verifiable, nonforgeable: recipient (Alice) can prove
to someone that Bob, and no one else (including
Alice), must have signed document

8-53Network Security

simple digital signature for message m:
❖ Bob signs m by encrypting with his private key KB,

creating “signed” message, KB(m)
-

-

Dear Alice
Oh, how I have missed
you. I think of you all the
time! …(blah blah blah).

Bob

Bob’s message, m

Public key
encryption
algorithm

Bob’s private
key

K B
-

Bob’s message, m,
signed (encrypted)
with his private key

m,K B
-
 (m)

Digital signatures

8-54Network Security

-

Alice thus verifies that:
○ Bob signed m
○ no one else signed m
○ Bob signed m and not m‘

non-repudiation:
○ Alice can take m, and signature KB(m) to court and

prove that Bob signed m
-

Digital signatures
❖ suppose Alice receives msg m, with signature: m, KB(m)
❖ Alice verifies m signed by Bob by applying Bob’s public key

KB to KB(m) then checks KB(KB(m)) = m.
❖ If KB(KB(m)) = m, whoever signed m must have used Bob’s

private key.

-

--

+

+ +

8-55Network Security

Message digests

computationally expensive
to public-key-encrypt
long messages

goal: fixed-length, easy- to-
compute digital
“fingerprint”

❖ apply hash function H to
m, get fixed size message
digest, H(m).

Hash function properties:
❖ many-to-1
❖ produces fixed-size msg

digest (fingerprint)
❖ given message digest x,

computationally infeasible
to find m such that x = H
(m)

large
message

m

H: Hash
Function

H(m)

8-56Network Security

Internet checksum: poor crypto hash function

Internet checksum has some properties of hash function:
● produces fixed length digest (16-bit sum) of message
● is many-to-one

But given message with given hash value, it is easy to find
another message with same hash value:

I O U 1
0 0 . 9

9 B O B

49 4F 55 31
30 30 2E 39
39 42 D2 42

message ASCII format

B2 C1 D2 AC

I O U 9
0 0 . 1

9 B O B

49 4F 55 39
30 30 2E 31
39 42 D2 42

message ASCII format

B2 C1 D2 ACdifferent messages
but identical checksums!

8-57Network Security

large
message

m H(m)

Bob’s
private

key K B
-

+

Bob sends digitally signed
message:

Alice verifies signature, integrity
of digitally signed message:

K
B
(H(m))

-

encrypted
msg digest

K
B
(H(m))

-

encrypted
msg digest

large
message

m

H(m) H(m)

Bob’s
public

key K B
+

equal
 ?

Digital signature = signed message digest

8-58Network Security

Hash function algorithms

❖ MD5 hash function widely used (RFC 1321)
▪ computes 128-bit message digest in 4-step process.
▪ arbitrary 128-bit string x, appears difficult to construct

msg m whose MD5 hash is equal to x

❖ SHA-1 is also used
▪ US standard [NIST, FIPS PUB 180-1]

▪ 160-bit message digest

8-59Network Security

Recall: ap5.0 security hole
man (or woman) in the middle attack: Eve poses as Alice (to

Bob) and as Bob (to Alice)

I am Alice I am Alice

R

T
K (R)

-

Send me your public key

T
K

+
A

K (R)
-

Send me your public key

A
K

+

T
K (m)
+

T
m = K (K (m))

+

T

-
Trudy gets

sends m to Alice
encrypted with

Alice’s public key

A
K (m)
+

A
m = K (K (m))

+

A

-

R

8-60Network Security

Public-key certification

❖ motivation: Eve plays pizza prank on Bob
▪ Eve creates e-mail order:

Dear Pizza Store, Please deliver to me four pepperoni
pizzas. Thank you, Bob

▪ Eve signs order with her private key
▪ Eve sends order to Pizza Store
▪ Eve sends to Pizza Store her public key, but says it’s

Bob’s public key
▪ Pizza Store verifies signature; then delivers four

pepperoni pizzas to Bob
▪ Bob doesn’t even like pepperoni

8-61Network Security

Certification authorities

❖ certification authority (CA): binds public key to
particular entity, E.

❖ E (person, router) registers its public key with CA.
▪ E provides “proof of identity” to CA.
▪ CA creates certificate binding E to its public key.
▪ certificate containing E’s public key digitally signed by CA – CA

says “this is E’s public key”

Bob’s
public

key K B
+

Bob’s
identifying

information

CA
private

key
K CA

-

K B
+

certificate for Bob’
s public key,

signed by CA

8-62Network Security

❖ when Alice wants Bob’s public key:
▪ gets Bob’s certificate (Bob or elsewhere).
▪ apply CA’s public key to Bob’s certificate, get Bob’s

public key

Bob’s
public

key K B
+

CA
public

key
K CA

+

K B
+

Certification authorities

8-1Network Security

Chapter 8 roadmap

8.1 What is network security?

8.2 Principles of cryptography

8.3 Message integrity, authentication

8.4 Securing e-mail

8.5 Securing TCP connections: SSL

8.6 Network layer security: IPsec

8.7 Securing wireless LANs

8.8 Operational security: firewalls and IDS

8-2Network Security

Secure e-mail

Alice:

 generates random symmetric private key, KS

 encrypts message with KS (for efficiency)

 also encrypts KS with Bob’s public key

 sends both KS(m) and KB(KS) to Bob

Alice wants to send confidential e-mail, m, to Bob.

KS().

KB().+

+ -

KS(m)

KB(KS)
+

m

KS

KS

KB
+

Internet

KS().

KB().-

KB
-

KS

m
KS(m)

KB(KS)
+

8-3Network Security

Secure e-mail

Bob:

 uses his private key to decrypt and recover KS

 uses KS to decrypt KS(m) to recover m

Alice wants to send confidential e-mail, m, to Bob.

KS().

KB().+

+ -

KS(m)

KB(KS)
+

m

KS

KS

KB
+

Internet

KS().

KB().-

KB
-

KS

m
KS(m)

KB(KS)
+

8-4Network Security

Secure e-mail (continued)

Alice wants to provide sender authentication message integrity

 Alice digitally signs message

 sends both message (in the clear) and digital signature

H(). KA().-

+ -

H(m)KA(H(m))
-

m

KA
-

Internet

m

KA().+

KA
+

KA(H(m))
-

m
H().

H(m)

compare

8-5Network Security

Secure e-mail (continued)

Alice wants to provide secrecy, sender authentication,

message integrity.

Alice uses three keys: her private key, Bob’s public key, newly

created symmetric key

H(). KA().-

+

KA(H(m))
-

m

KA

-

m

KS().

KB().+

+

KB(KS)
+

KS

KB
+

Internet

KS

8-6Network Security

Chapter 8 roadmap

8.1 What is network security?

8.2 Principles of cryptography

8.3 Message integrity

8.4 Securing e-mail

8.5 Securing TCP connections: SSL

8.6 Network layer security: IPsec

8.7 Securing wireless LANs

8.8 Operational security: firewalls and IDS

8-7Network Security

SSL: Secure Sockets Layer

widely deployed security

protocol

 supported by almost all

browsers, web servers

 https

 billions $/year over SSL

mechanisms: [Woo 1994],

implementation: Netscape

variation -TLS: transport layer

security, RFC 2246

provides

 confidentiality

 integrity

 authentication

original goals:

 Web e-commerce
transactions

 encryption (especially
credit-card numbers)

 Web-server authentication

 optional client
authentication

 minimum hassle in doing
business with new
merchant

available to all TCP
applications

 secure socket interface

8-8Network Security

SSL and TCP/IP

Application

TCP

IP

normal application

Application

SSL

TCP

IP

application with SSL

 SSL provides application programming interface

(API) to applications

 C and Java SSL libraries/classes readily available

8-9Network Security

Could do something like PGP:

 but want to send byte streams & interactive data

 want set of secret keys for entire connection

 want certificate exchange as part of protocol: handshake phase

H(). KA().-

+

KA(H(m))
-

m

KA
-

m

KS().

KB().+

+

KB(KS)
+

KS

KB

+

Internet

KS

8-10Network Security

Toy SSL: a simple secure channel

 handshake: Alice and Bob use their certificates,

private keys to authenticate each other and

exchange shared secret

 key derivation: Alice and Bob use shared secret to

derive set of keys

 data transfer: data to be transferred is broken up

into series of records

 connection closure: special messages to securely

close connection

8-11Network Security

Toy: a simple handshake

MS: master secret

EMS: encrypted master secret

8-12Network Security

Toy: key derivation

 considered bad to use same key for more than one

cryptographic operation

 use different keys for message authentication code (MAC) and

encryption

 four keys:

 Kc = encryption key for data sent from client to server

 Mc = MAC key for data sent from client to server

 Ks = encryption key for data sent from server to client

 Ms = MAC key for data sent from server to client

 keys derived from key derivation function (KDF)

 takes master secret and (possibly) some additional random data

and creates the keys

8-13Network Security

Toy: data records
 why not encrypt data in constant stream as we write it to

TCP?

 where would we put the MAC? If at end, no message integrity

until all data processed.

 e.g., with instant messaging, how can we do integrity check over

all bytes sent before displaying?

 instead, break stream in series of records
 each record carries a MAC

 receiver can act on each record as it arrives

 issue: in record, receiver needs to distinguish MAC from
data
 want to use variable-length records

length data MAC

8-14Network Security

Toy: sequence numbers

 problem: attacker can capture and replay record

or re-order records

 solution: put sequence number into MAC:

 MAC = MAC(Mx, sequence||data)

 note: no sequence number field

 problem: attacker could replay all records

 solution: use nonce

8-15Network Security

Toy: control information

 problem: truncation attack:

 attacker forges TCP connection close segment

 one or both sides thinks there is less data than there

actually is.

 solution: record types, with one type for closure

 type 0 for data; type 1 for closure

 MAC = MAC(Mx, sequence||type||data)

length type data MAC

8-16Network Security

Toy SSL: summary
e

n
c
ry

p
te

d

bob.com

8-17Network Security

Toy SSL isn’t complete

 how long are fields?

 which encryption protocols?

 want negotiation?

 allow client and server to support different

encryption algorithms

 allow client and server to choose together specific

algorithm before data transfer

8-18Network Security

SSL cipher suite

 cipher suite
 public-key algorithm

 symmetric encryption algorithm

 MAC algorithm

 SSL supports several cipher

suites

 negotiation: client, server

agree on cipher suite

 client offers choice

 server picks one

common SSL symmetric

ciphers

 DES – Data Encryption

Standard: block

 3DES – Triple strength: block

 RC2 – Rivest Cipher 2: block

 RC4 – Rivest Cipher 4:

stream

SSL Public key encryption

 RSA

8-19Network Security

Real SSL: handshake (1)

Purpose

1. server authentication

2. negotiation: agree on crypto algorithms

3. establish keys

4. client authentication (optional)

8-20Network Security

Real SSL: handshake (2)

1. client sends list of algorithms it supports, along with

client nonce

2. server chooses algorithms from list; sends back:

choice + certificate + server nonce

3. client verifies certificate, extracts server’s public

key, generates pre_master_secret, encrypts with

server’s public key, sends to server

4. client and server independently compute encryption

and MAC keys from pre_master_secret and nonces

5. client sends a MAC of all the handshake messages

6. server sends a MAC of all the handshake messages

8-21Network Security

Real SSL: handshaking (3)

last 2 steps protect handshake from tampering

 client typically offers range of algorithms, some

strong, some weak

 man-in-the middle could delete stronger algorithms

from list

 last 2 steps prevent this

 last two messages are encrypted

8-22Network Security

Real SSL: handshaking (4)

 why two random nonces?

 suppose Trudy sniffs all messages between Alice
& Bob

 next day, Trudy sets up TCP connection with
Bob, sends exact same sequence of records

 Bob (Amazon) thinks Alice made two separate orders
for the same thing

 solution: Bob sends different random nonce for each
connection. This causes encryption keys to be different
on the two days

 Trudy’s messages will fail Bob’s integrity check

8-23Network Security

SSL record protocol

data

data

fragment

data

fragment
MAC MAC

encrypted

data and MAC

encrypted

data and MAC
record

header

record

header

record header: content type; version; length

MAC: includes sequence number, MAC key Mx

fragment: each SSL fragment 214 bytes (~16 Kbytes)

8-24Network Security

SSL record format

content
type SSL version length

MAC

data

1 byte 2 bytes 3 bytes

data and MAC encrypted (symmetric algorithm)

8-25Network Security

Real SSL
connection

TCP FIN follows

everything

henceforth

is encrypted

8-26Network Security

Key derivation

 client nonce, server nonce, and pre-master secret input
into pseudo random-number generator.
 produces master secret

 master secret and new nonces input into another
random-number generator: “key block”
 because of resumption: TBD

 key block sliced and diced:
 client MAC key

 server MAC key

 client encryption key

 server encryption key

 client initialization vector (IV)

 server initialization vector (IV)

8-27Network Security

ARP

 ARP request

 Computer A asks the network, "Who has this IP address?“

8-28Network Security

ARP

 ARP reply

 Computer B tells Computer A, "I have that IP. My Physical Address is

[whatever it is].“

8-29Network Security

ARP

 ARP reply

 Computer B tells Computer A, "I have that IP. My Physical Address is

[whatever it is].“

8-30Network Security

Cache table

 A short-term memory of all the IP addresses and Physical addresses

 Ensures that the device doesn't have to repeat ARP Requests for

devices it has already communicated with

 Implemented as an array of entries

 Entries are updated

8-31Network Security

Cache table

State Queue Attempt Time-out IP Address
Physical Address

R 5 900 180.3.6.1 ACAE32457342

P 2 2 129.34.4.8

P 14 5 201.11.56.7

R 8 450 114.5.7.89 457342ACAE32

P 12 1 220.55.5.7

F

R 9 60 19.1.7.82 4573E3242ACA

P 18 3 188.11.8.71

8-32Network Security

ARP spoofing

 Simplicity also leads to major insecurity

 No Authentication

• ARP provides no way to verify that the responding device is really
who it says it is

• Stateless protocol
– Updating ARP Cache table

 Attacks

 DOS

• Hacker can easily associate an operationally significant IP address
to a false MAC address

 Man-in-the-Middle

• Intercept network traffic between two devices in your network

8-33Network Security

ARP spoofing (MITM)

8-34Network Security

ARP spoofing (MITM)

8-35Network Security

Prevent ARP spoofing

 For Small Network

 Static Arp Cache table

 For Large Network

 Arpwatch

 As an administrator, check for multiple Physical addresses responding

to a given IP address

