
8-51Network Security

Chapter 8 roadmap

8.1 What is network security?
8.2 Principles of cryptography
8.3 Message integrity, authentication
8.4 Securing e-mail
8.5 Securing TCP connections: SSL
8.6 Network layer security: IPsec
8.7 Securing wireless LANs
8.8 Operational security: firewalls and IDS

8-52Network Security

Digital signatures

cryptographic technique analogous to hand-
written signatures:

❖ sender (Bob) digitally signs document, establishing
he is document owner/creator.

❖ verifiable, nonforgeable: recipient (Alice) can prove
to someone that Bob, and no one else (including
Alice), must have signed document

8-53Network Security

simple digital signature for message m:
❖ Bob signs m by encrypting with his private key KB,

creating “signed” message, KB(m)
-

-

Dear Alice
Oh, how I have missed
you. I think of you all the
time! …(blah blah blah).

Bob

Bob’s message, m

Public key
encryption
algorithm

Bob’s private
key

K B
-

Bob’s message, m,
signed (encrypted)
with his private key

m,K B
-
 (m)

Digital signatures

8-54Network Security

-

Alice thus verifies that:
○ Bob signed m
○ no one else signed m
○ Bob signed m and not m‘

non-repudiation:
○ Alice can take m, and signature KB(m) to court and

prove that Bob signed m
-

Digital signatures
❖ suppose Alice receives msg m, with signature: m, KB(m)
❖ Alice verifies m signed by Bob by applying Bob’s public key

KB to KB(m) then checks KB(KB(m)) = m.
❖ If KB(KB(m)) = m, whoever signed m must have used Bob’s

private key.

-

--

+

+ +

8-55Network Security

Message digests

computationally expensive
to public-key-encrypt
long messages

goal: fixed-length, easy- to-
compute digital
“fingerprint”

❖ apply hash function H to
m, get fixed size message
digest, H(m).

Hash function properties:
❖ many-to-1
❖ produces fixed-size msg

digest (fingerprint)
❖ given message digest x,

computationally infeasible
to find m such that x = H
(m)

large
message

m

H: Hash
Function

H(m)

8-56Network Security

Internet checksum: poor crypto hash function

Internet checksum has some properties of hash function:
● produces fixed length digest (16-bit sum) of message
● is many-to-one

But given message with given hash value, it is easy to find
another message with same hash value:

I O U 1
0 0 . 9

9 B O B

49 4F 55 31
30 30 2E 39
39 42 D2 42

message ASCII format

B2 C1 D2 AC

I O U 9
0 0 . 1

9 B O B

49 4F 55 39
30 30 2E 31
39 42 D2 42

message ASCII format

B2 C1 D2 ACdifferent messages
but identical checksums!

8-57Network Security

large
message

m H(m)

Bob’s
private

key K B
-

+

Bob sends digitally signed
message:

Alice verifies signature, integrity
of digitally signed message:

K
B
(H(m))

-

encrypted
msg digest

K
B
(H(m))

-

encrypted
msg digest

large
message

m

H(m) H(m)

Bob’s
public

key K B
+

equal
 ?

Digital signature = signed message digest

8-58Network Security

Hash function algorithms

❖ MD5 hash function widely used (RFC 1321)
▪ computes 128-bit message digest in 4-step process.
▪ arbitrary 128-bit string x, appears difficult to construct

msg m whose MD5 hash is equal to x

❖ SHA-1 is also used
▪ US standard [NIST, FIPS PUB 180-1]

▪ 160-bit message digest

8-59Network Security

Recall: ap5.0 security hole
man (or woman) in the middle attack: Eve poses as Alice (to

Bob) and as Bob (to Alice)

I am Alice I am Alice

R

T
K (R)

-

Send me your public key

T
K

+
A

K (R)
-

Send me your public key

A
K

+

T
K (m)
+

T
m = K (K (m))

+

T

-
Trudy gets

sends m to Alice
encrypted with

Alice’s public key

A
K (m)
+

A
m = K (K (m))

+

A

-

R

8-60Network Security

Public-key certification

❖ motivation: Eve plays pizza prank on Bob
▪ Eve creates e-mail order:

Dear Pizza Store, Please deliver to me four pepperoni
pizzas. Thank you, Bob

▪ Eve signs order with her private key
▪ Eve sends order to Pizza Store
▪ Eve sends to Pizza Store her public key, but says it’s

Bob’s public key
▪ Pizza Store verifies signature; then delivers four

pepperoni pizzas to Bob
▪ Bob doesn’t even like pepperoni

8-61Network Security

Certification authorities

❖ certification authority (CA): binds public key to
particular entity, E.

❖ E (person, router) registers its public key with CA.
▪ E provides “proof of identity” to CA.
▪ CA creates certificate binding E to its public key.
▪ certificate containing E’s public key digitally signed by CA – CA

says “this is E’s public key”

Bob’s
public

key K B
+

Bob’s
identifying

information

CA
private

key
K CA

-

K B
+

certificate for Bob’
s public key,

signed by CA

8-62Network Security

❖ when Alice wants Bob’s public key:
▪ gets Bob’s certificate (Bob or elsewhere).
▪ apply CA’s public key to Bob’s certificate, get Bob’s

public key

Bob’s
public

key K B
+

CA
public

key
K CA

+

K B
+

Certification authorities

8-1Network Security

Chapter 8 roadmap

8.1 What is network security?

8.2 Principles of cryptography

8.3 Message integrity, authentication

8.4 Securing e-mail

8.5 Securing TCP connections: SSL

8.6 Network layer security: IPsec

8.7 Securing wireless LANs

8.8 Operational security: firewalls and IDS

8-2Network Security

Secure e-mail

Alice:

 generates random symmetric private key, KS

 encrypts message with KS (for efficiency)

 also encrypts KS with Bob’s public key

 sends both KS(m) and KB(KS) to Bob

Alice wants to send confidential e-mail, m, to Bob.

KS().

KB().+

+ -

KS(m)

KB(KS)
+

m

KS

KS

KB
+

Internet

KS().

KB().-

KB
-

KS

m
KS(m)

KB(KS)
+

8-3Network Security

Secure e-mail

Bob:

 uses his private key to decrypt and recover KS

 uses KS to decrypt KS(m) to recover m

Alice wants to send confidential e-mail, m, to Bob.

KS().

KB().+

+ -

KS(m)

KB(KS)
+

m

KS

KS

KB
+

Internet

KS().

KB().-

KB
-

KS

m
KS(m)

KB(KS)
+

8-4Network Security

Secure e-mail (continued)

Alice wants to provide sender authentication message integrity

 Alice digitally signs message

 sends both message (in the clear) and digital signature

H(). KA().-

+ -

H(m)KA(H(m))
-

m

KA
-

Internet

m

KA().+

KA
+

KA(H(m))
-

m
H().

H(m)

compare

8-5Network Security

Secure e-mail (continued)

Alice wants to provide secrecy, sender authentication,

message integrity.

Alice uses three keys: her private key, Bob’s public key, newly

created symmetric key

H(). KA().-

+

KA(H(m))
-

m

KA

-

m

KS().

KB().+

+

KB(KS)
+

KS

KB
+

Internet

KS

8-6Network Security

Chapter 8 roadmap

8.1 What is network security?

8.2 Principles of cryptography

8.3 Message integrity

8.4 Securing e-mail

8.5 Securing TCP connections: SSL

8.6 Network layer security: IPsec

8.7 Securing wireless LANs

8.8 Operational security: firewalls and IDS

8-7Network Security

SSL: Secure Sockets Layer

widely deployed security

protocol

 supported by almost all

browsers, web servers

 https

 billions $/year over SSL

mechanisms: [Woo 1994],

implementation: Netscape

variation -TLS: transport layer

security, RFC 2246

provides

 confidentiality

 integrity

 authentication

original goals:

 Web e-commerce
transactions

 encryption (especially
credit-card numbers)

 Web-server authentication

 optional client
authentication

 minimum hassle in doing
business with new
merchant

available to all TCP
applications

 secure socket interface

8-8Network Security

SSL and TCP/IP

Application

TCP

IP

normal application

Application

SSL

TCP

IP

application with SSL

 SSL provides application programming interface

(API) to applications

 C and Java SSL libraries/classes readily available

8-9Network Security

Could do something like PGP:

 but want to send byte streams & interactive data

 want set of secret keys for entire connection

 want certificate exchange as part of protocol: handshake phase

H(). KA().-

+

KA(H(m))
-

m

KA
-

m

KS().

KB().+

+

KB(KS)
+

KS

KB

+

Internet

KS

8-10Network Security

Toy SSL: a simple secure channel

 handshake: Alice and Bob use their certificates,

private keys to authenticate each other and

exchange shared secret

 key derivation: Alice and Bob use shared secret to

derive set of keys

 data transfer: data to be transferred is broken up

into series of records

 connection closure: special messages to securely

close connection

8-11Network Security

Toy: a simple handshake

MS: master secret

EMS: encrypted master secret

8-12Network Security

Toy: key derivation

 considered bad to use same key for more than one

cryptographic operation

 use different keys for message authentication code (MAC) and

encryption

 four keys:

 Kc = encryption key for data sent from client to server

 Mc = MAC key for data sent from client to server

 Ks = encryption key for data sent from server to client

 Ms = MAC key for data sent from server to client

 keys derived from key derivation function (KDF)

 takes master secret and (possibly) some additional random data

and creates the keys

8-13Network Security

Toy: data records
 why not encrypt data in constant stream as we write it to

TCP?

 where would we put the MAC? If at end, no message integrity

until all data processed.

 e.g., with instant messaging, how can we do integrity check over

all bytes sent before displaying?

 instead, break stream in series of records
 each record carries a MAC

 receiver can act on each record as it arrives

 issue: in record, receiver needs to distinguish MAC from
data
 want to use variable-length records

length data MAC

8-14Network Security

Toy: sequence numbers

 problem: attacker can capture and replay record

or re-order records

 solution: put sequence number into MAC:

 MAC = MAC(Mx, sequence||data)

 note: no sequence number field

 problem: attacker could replay all records

 solution: use nonce

8-15Network Security

Toy: control information

 problem: truncation attack:

 attacker forges TCP connection close segment

 one or both sides thinks there is less data than there

actually is.

 solution: record types, with one type for closure

 type 0 for data; type 1 for closure

 MAC = MAC(Mx, sequence||type||data)

length type data MAC

8-16Network Security

Toy SSL: summary
e

n
c
ry

p
te

d

bob.com

8-17Network Security

Toy SSL isn’t complete

 how long are fields?

 which encryption protocols?

 want negotiation?

 allow client and server to support different

encryption algorithms

 allow client and server to choose together specific

algorithm before data transfer

8-18Network Security

SSL cipher suite

 cipher suite
 public-key algorithm

 symmetric encryption algorithm

 MAC algorithm

 SSL supports several cipher

suites

 negotiation: client, server

agree on cipher suite

 client offers choice

 server picks one

common SSL symmetric

ciphers

 DES – Data Encryption

Standard: block

 3DES – Triple strength: block

 RC2 – Rivest Cipher 2: block

 RC4 – Rivest Cipher 4:

stream

SSL Public key encryption

 RSA

8-19Network Security

Real SSL: handshake (1)

Purpose

1. server authentication

2. negotiation: agree on crypto algorithms

3. establish keys

4. client authentication (optional)

8-20Network Security

Real SSL: handshake (2)

1. client sends list of algorithms it supports, along with

client nonce

2. server chooses algorithms from list; sends back:

choice + certificate + server nonce

3. client verifies certificate, extracts server’s public

key, generates pre_master_secret, encrypts with

server’s public key, sends to server

4. client and server independently compute encryption

and MAC keys from pre_master_secret and nonces

5. client sends a MAC of all the handshake messages

6. server sends a MAC of all the handshake messages

8-21Network Security

Real SSL: handshaking (3)

last 2 steps protect handshake from tampering

 client typically offers range of algorithms, some

strong, some weak

 man-in-the middle could delete stronger algorithms

from list

 last 2 steps prevent this

 last two messages are encrypted

8-22Network Security

Real SSL: handshaking (4)

 why two random nonces?

 suppose Trudy sniffs all messages between Alice
& Bob

 next day, Trudy sets up TCP connection with
Bob, sends exact same sequence of records

 Bob (Amazon) thinks Alice made two separate orders
for the same thing

 solution: Bob sends different random nonce for each
connection. This causes encryption keys to be different
on the two days

 Trudy’s messages will fail Bob’s integrity check

8-23Network Security

SSL record protocol

data

data

fragment

data

fragment
MAC MAC

encrypted

data and MAC

encrypted

data and MAC
record

header

record

header

record header: content type; version; length

MAC: includes sequence number, MAC key Mx

fragment: each SSL fragment 214 bytes (~16 Kbytes)

8-24Network Security

SSL record format

content
type SSL version length

MAC

data

1 byte 2 bytes 3 bytes

data and MAC encrypted (symmetric algorithm)

8-25Network Security

Real SSL
connection

TCP FIN follows

everything

henceforth

is encrypted

8-26Network Security

Key derivation

 client nonce, server nonce, and pre-master secret input
into pseudo random-number generator.
 produces master secret

 master secret and new nonces input into another
random-number generator: “key block”
 because of resumption: TBD

 key block sliced and diced:
 client MAC key

 server MAC key

 client encryption key

 server encryption key

 client initialization vector (IV)

 server initialization vector (IV)

8-27Network Security

ARP

 ARP request

 Computer A asks the network, "Who has this IP address?“

8-28Network Security

ARP

 ARP reply

 Computer B tells Computer A, "I have that IP. My Physical Address is

[whatever it is].“

8-29Network Security

ARP

 ARP reply

 Computer B tells Computer A, "I have that IP. My Physical Address is

[whatever it is].“

8-30Network Security

Cache table

 A short-term memory of all the IP addresses and Physical addresses

 Ensures that the device doesn't have to repeat ARP Requests for

devices it has already communicated with

 Implemented as an array of entries

 Entries are updated

8-31Network Security

Cache table

State Queue Attempt Time-out IP Address
Physical Address

R 5 900 180.3.6.1 ACAE32457342

P 2 2 129.34.4.8

P 14 5 201.11.56.7

R 8 450 114.5.7.89 457342ACAE32

P 12 1 220.55.5.7

F

R 9 60 19.1.7.82 4573E3242ACA

P 18 3 188.11.8.71

8-32Network Security

ARP spoofing

 Simplicity also leads to major insecurity

 No Authentication

• ARP provides no way to verify that the responding device is really
who it says it is

• Stateless protocol
– Updating ARP Cache table

 Attacks

 DOS

• Hacker can easily associate an operationally significant IP address
to a false MAC address

 Man-in-the-Middle

• Intercept network traffic between two devices in your network

8-33Network Security

ARP spoofing (MITM)

8-34Network Security

ARP spoofing (MITM)

8-35Network Security

Prevent ARP spoofing

 For Small Network

 Static Arp Cache table

 For Large Network

 Arpwatch

 As an administrator, check for multiple Physical addresses responding

to a given IP address

