Chapter 8 roadmap

8.1 What is network security?

8.2 Principles of cryptography

8.3 Message integrity, authentication

8.4 Securing e-mail

8.5 Securing TCP connections: SSL

8.6 Network layer security: IPsec

8.7 Securing wireless LANs

8.8 Operational security: firewalls and IDS

Network Security 8-51

Digital signatures

cryptographic technique analogous to hand-
written signatures:

» sender (Bob) digitally signs document, establishing
he is document owner/creator.

» verifiable, nonforgeable: recipient (Alice) can prove
to someone that Bob, and no one else (including
Alice), must have signed document

Network Security 8-52

Digital signatures

simple digital signature for message m:

+ Bob 5|gns m by encrypting with his private key K,
creating “signed” message, K a(m)

K- Bob’s private m,K_

Bob’s message, m @-;:—1

Dear Alice
| Bob’s message, m,
Oh, how | have missed Public key signed (encrypted)

you. | think of you all the >
time! ...(blah blah blah). encryption P> \ith his private key

Bob algorithm

Network Security 8-53

Digital signatures

» suppose Alice receives msg m, with signature: m, Ké(m)
- Alice verifies m signed by Bob by applying Bob’s public key
I(;r to K,(m) then checks I(I;(I(B(m)) =m.

If I(E(I(E;(m)) = m, whoever signed m must have used Bob’s
private key.

Alice thus verifies that:

o Bob signed m

o no one else signed m

o Bob signed m and not m’
non-repudiation:

o Alice can take m, and signature I(B(m) to court and
prove that Bob signed m

Network Security 8-54

Message digests

computationally expensive
to public-key-encrypt
long messages

goal: fixed-length, easy- to-
compute digital
“fingerprint”

» apply hash function H to

m, get fixed size message
digest, H(m).

large
message
m

v

H(m)

Hash function properties:
» many-to-1
» produces fixed-size msg

digest (fingerprint)

» given message digest x,

computationally infeasible
to find m such that x = H
(m)

Network Security 8-55

Internet checksum: poor crypto hash function

Internet checksum has some properties of hash function:
o produces fixed length digest (16-bit sum) of message

e IS many-to-one

But given message with given hash value, it is easy to find
another message with same hash value:

message ASCII format message ASCII format
IOU 1 49 4F 55 31 IOU9 49 4F 55 39
00.9 30 30 2E 39 00.1 30 30 2E 31
9BOB 3942 D2 42 9BOB 3942 D2 42

BZ C1 D2 AC\ d|fferent messages — BZ C1 D2 AC
but identical checksums!

Network Security 8-56

Digital signature = sighed message digest

Bob sends digitally signed Alice verifies signature, integrity
message: of digitally signed message:
Ll

message | p| encrypted

m H(m) \%L msg digest

Y Kg(H(m))

Bob's @& digital large - v
private ——ip BELSQEITIEE message ,
A oo Bob's @r= ETTE

puELi; > signature
KB (decrypt)

encrypted
\ msg digest v
(- i
¥ Kg(H(m)) o)
@ TRequal 4

Network Security 8-57

Hash function algorithms

% MD5 hash function widely used (RFC 1321)

= computes 128-bit message digest in 4-step process.

= arbitrary 128-bit string x, appears difficult to construct
msg m whose MD5 hash is equal to x

+ SHA-1is also used
= US standard [NIST, FIPS PUB 180-1]
* 160-bit message digest

Network Security 8-58

Recall: ap5.0 security hole

man (or woman) in the middle attack: Eve poses as Alice (to
Bob) and as Bob (to Alice)

(g'h -
| am Alice) f—.j;,'-;'-'
R — W
K.(R ™
i .
Wmckey
+
T
+
Trudy gets - K.!.(m)
-t
+ m = KT(KT (m))
. KA(m) sends m to Alice
m = KA(KA(m)) encrypted with

Alice’s public key

Network Security 8-59

Public-key certification

+ motivation: Eve plays pizza prank on Bob

= Eve creates e-mail order:
Dear Pizza Store, Please deliver to me four pepperoni
pizzas. Thank you, Bob

Eve signs order with her private key
Eve sends order to Pizza Store

Eve sends to Pizza Store her public key, but says it's
Bob's public key

Pizza Store verifies signature; then delivers four
pepperoni pizzas to Bob

Bob doesn't even like pepperoni

Network Security 8-60

Certification authorities

<+ certification authority (CA): binds public key to
particular entity, E.

+ E (person, router) registers its public key with CA.

= E provides “proof of identity” to CA.

= CA creates certificate binding E to its public key.

= certificate containing E’s public key digitally signed by CA - CA
says “this is E's public key”

public | signature KB
key Kg (encrypt) <

Jrlrlrﬂ certificate for Bob’

Bob’s private K _
identifying ¢ &/ sf key '‘CA S public key,
signed by CA

information m

Network Security 8-61

Certification authorities

» when Alice wants Bob’s public key:
= gets Bob's certificate (Bob or elsewhere).
= apply CA's public key to Bob's certificate, get Bob's

public key
digital = Bob’s
: Kg —> B HEIN - — _ public
(decrypt) Kg key
CA @'?'i
public
key KCA

Network Security 8-62

Chapter 8 roadmaE

8.1 What is network security?

8.2 Principles of cryptography

8.3 Message integrity, authentication

8.4 Securing e-mail

8.5 Securing TCP connections: SSL

8.6 Network layer security: IPsec

8.7 Securing wireless LANs

8.8 Operational security: firewalls and IDS

Network Security 8-1

Secure e-mail

<+ Alice wants to send confidential e-mail, m, to Bob.
Ks &>

—1 Kg(m) Ks(m)
m — K () I—'{Ks(é —> m
._ 1 & LT ¢ -
ﬁ @%’ Internet %@ Ks@:‘g ilﬂﬁff

S Ka(Ks) <ig) e

i

Ks' g Kg' G=

Alice:
<+ generates random symmetric private key, K¢
< encrypts message with K¢ (for efficiency)

< also encrypts K with Bob’ s public key
< sends both K¢(m) and Ky(K¢) to Bob

Network Security 8-2

Secure e-mail

<+ Alice wants to send confidential e-mail, m, to Bob.
Ks &>

r— Kg(m) Ks(m)
MO T ﬁ'@_’ T
3 @ =P Internet :;KS@? ":iiff{f

S Ka(Ks) <ig) e

A

Ks' g Ks' @

Bob:

% uses his private key to decrypt and recover K¢
% uses K to decrypt K¢(m) to recover m

Network Security 8-3

Secure e-mail (continued)

< Alice wants to provide sender authentication message integrity

Ka & KX €=
- v

Ka(H(m)) Ka(H(m))

m—{ H() HKa() 1 o |—>KZ® —I*(m)

A il 5
5 E{)%’ Internet J%g;@ Comjre -
m . HO —hym)

< Alice digitally signs message
< sends both message (in the clear) and digital signature

1
v

Network Security 8-4

Secure e-mail (continued)

< Alice wants to provide secrecy, sender authentication,
message integrity.

KAI@-‘;@

" Ku(H(m))

m=— H() H K0

&4 KO3

m

57
Internet

.7

Alice uses three keys: her private key, Bob’ s public key, newly
created symmetric key

Network Security 8-5

Chapter 8 roadmap

8.1 What is network security?
8.2 Principles of cryptography
8.3 Message integrity

8.4 Securing e-mail

8.5 Securing TCP connections: SSL
8.6 Network layer security: IPsec
8.7 Securing wireless LANs

8.8 Operational security: firewalls and IDS

Network Security 8-6

SSL: Secure Sockets Layer

+widely deployed security = original goals:

rotocol
P " Web e-commerce
= Supported by a|mOSt a.” transactions
browsers, web servers))
" encryption (especially
" https

credit-card numbers)
= billions $/year over SSL

< mechanisms: [Woo 1994],

= Web-server authentication
= optional client

implementation: Netscape authentication
< variation -TLS: transport layer = minimum hassle in doing
security, RFC 2246 business with new
. merchant
* provides ilable to all TCP
= confidentiality *avaifable to a
applications

" integrity

o = secure socket interface
= quthentication

Network Security 8-7

SSL and TCP/IP

Application Application
SSL
TCP
TCP
IP P
normal application application with SSL

< SSL provides application programming interface
(API) to applications
< C and Java SSL libraries/classes readily available

Network Security 8-8

Could do something like PGP:

:KS@%

I
v

=K

M=—> H() H Ka(") A
g (B Ks0)
B T

m

=

B(Ks)

+!

' &
E{)% Internet

Kg @&

< but want to send byte streams & interactive data
< want set of secret keys for entire connection
< want certificate exchange as part of protocol: handshake phase

Network Security 8-9

Toy SSL: a simple secure channel

« handshake: Alice and Bob use their certificates,
private keys to authenticate each other and
exchange shared secret

+ key derivation: Alice and Bob use shared secret to
derive set of keys

« data transfer: data to be transferred is broken up
into series of records

+ connection closure: special messages to securely
close connection

Network Security 8-10

Toy: a simple handshake

hello

@i oublic key certificate cirf
Kg*(MS) = EMS

MS: master secret

EMS: encrypted master secret

Network Security 8-11

Toy: key derivation

+ considered bad to use same key for more than one
cryptographic operation

= use different keys for message authentication code (MAC) and
encryption

« four keys:
= K. = encryption key for data sent from client to server
= M. = MAC key for data sent from client to server
= K, = encryption key for data sent from server to client
= M. = MAC key for data sent from server to client

+ keys derived from key derivation function (KDF)

= takes master secret and (possibly) some additional random data
and creates the keys

Network Security 8-12

Toy: data records

<+ why not encrypt data in constant stream as we write it to
TCP?

= where would we put the MAC! If at end, no message integrity
until all data processed.

" e.g., with instant messaging, how can we do integrity check over
all bytes sent before displaying?
% instead, break stream in series of records
= each record carries a MAC
= receiver can act on each record as it arrives

« issue: in record, receiver needs to distinguish MAC from
data

" want to use variable-length records

length data MAC

Network Security 8-13

Toy: sequence numbers

« problem: attacker can capture and replay record
or re-order records

+ solution: put sequence number into MAC:
= MAC = MAC(M,, sequence||data)

" note: no sequence number field

« problem: attacker could replay all records

< solution: use nonce

Network Security 8-14

Toy: control information

+ problem: truncation attack:

= attacker forges TCP connection close segment

= one or both sides thinks there is less data than there

actually is.

+ solution: record types, with one type for closure

= type O for data; type | for closure
+ MAC = MAC(M,, sequence||type||data)

length | type

data

MAC

Network Security 8-15

Toy SSL: summar

hello

[
—p

certificate, nonce

%; Kg*(MS) = EMS il

— 2

— bob.com

type 0, seq 2, data

type 0, s€d 1, data

encrypted

type 1, seq 4, close

[
—p

1, seq 2, close

type

Network Security 8-16

Toy SSL isn” t complete

+ how long are fields!?
+ which encryption protocols!?
< want negotiation?

= allow client and server to support different
encryption algorithms

= allow client and server to choose together specific
algorithm before data transfer

Network Security 8-17

SSL cipher suite

+ cipher suite
= public-key algorithm
" symmetric encryption algorithm
= MAC algorithm

« SSL supports several cipher
suites

< negotiation: client, server
agree on cipher suite

= client offers choice

= server picks one

common SSL symmetric
ciphers

= DES — Data Encryption
Standard: block

= 3DES - Triple strength: block

= RC2 — Rivest Cipher 2: block

» RC4 - Rivest Cipher 4.
stream

SSL Public key encryption
* RSA

Network Security 8-18

Real SSL: handshake (1)

Purpose
. server authentication

2. negotiation: agree on crypto algorithms

3. establish keys

4. client authentication (optional)

Network Security 8-19

Real SSL: handshake (2)

I. client sends list of algorithms it supports, along with
client nonce

2. server chooses algorithms from list; sends back:
choice + certificate + server nonce

3. client verifies certificate, extracts server s public
key, generates pre_master_secret, encrypts with
server s public key, sends to server

4. client and server independently compute encryption
and MAC keys from pre_master_secret and nonces

5. client sends a MAC of all the handshake messages

6. server sends a MAC of all the handshake messages

Network Security 8-20

Real SSL: handshaking (3)

last 2 steps protect handshake from tampering

+ client typically offers range of algorithms, some
strong, some weak

< man-in-the middle could delete stronger algorithms
from list

+ last 2 steps prevent this

" |ast two messages are encrypted

Network Security 8-21

Real SSL: handshaking (4)

+ why two random nonces!

+ suppose Trudy sniffs all messages between Alice
& Bob

+ next day, Trudy sets up TCP connection with
Bob, sends exact same sequence of records

* Bob (Amazon) thinks Alice made two separate orders
for the same thing

= solution: Bob sends different random nonce for each
connection. This causes encryption keys to be different
on the two days

= Trudy s messages will fail Bob’ s integrity check

Network Security 8-22

SSL record protocol

data
data MAC data MAC
fragment fragment
record encrypted record encrypted
header data and MAC header data and MAC

record header: content type; version; length

MAC: includes sequence number, MAC key M,
fragment: each SSL fragment 2'* bytes (~16 Kbytes)

Network Security 8-23

SSL record format

1 byte 2 bytes 3 bytes
content _
type SSL version length
data
MAC

data and MAC encrypted (symmetric algorithm)

Network Security 8-24

Real SSL et chrvirs

. handshake: ServerHe\\o
C O n n e Ctl O n handshake: Certificate
handshake: ServerHe\\oDone
P
—_ L f_’*
handshake: ClientKeyExchange 9“1
Changec,'ph erSpec

everything handshake: Finisheq

henceforth

IS encrypted \ ChangeCipherspec
handshake: Finished

application datq
app\icat'\on_data

Alert: warning, close_notify
TCP FIN follows

Network Security 8-25

Key derivation

+ client nonce, server nonce, and pre-master secret input
into pseudo random-number generator.
. PI"OdUCGS master secret

< master secret and new nonces input into another
random-number generator: “key block”
" because of resumption: TBD

+ key block sliced and diced:
= client MAC key
= server MAC key
= client encryption key
" server encryption key
= client initialization vector (IV)
= server initialization vector (V)

Network Security 8-26

ARP

>

* ARP request
= Computer A asks the network, "Who has this IP address?*“

Jessica's
Computer:
192.168.0.16

HP LaserJet
Printer:
192.168.0.45

I - —E— il WWho has
192.168.0.457

Network Security 8-27

ARP

< ARP reply

= Computer B tells Computer A, "l have that IP. My Physical Address is
[whatever it is].*

Jessica's
Computer:
192.168.0.16

e

HP LaserJet
Printer:
192.168.0.45

Ihave 192 168 0 45,
DIy DMIAC address
is [PRINTER'S NMAC]

Network Security 8-28

ARP

< ARP reply

= Computer B tells Computer A, "l have that IP. My Physical Address is
[whatever it is].*

Jessica's
Computer:
192.168.0.16

e

HP LaserJet
Printer:
192.168.0.45

Ihave 192 168 0 45,
DIy DMIAC address
is [PRINTER'S NMAC]

Network Security 8-29

Cache table

+ A short-term memory of all the IP addresses and Physical addresses

» Ensures that the device doesn't have to repeat ARP Requests for
devices it has already communicated with

» Implemented as an array of entries

+ Entries are updated

Network Security 8-30

Cache table

State Queue Attempt Time-out IP Address
Physical Address

R 5 900 180.3.6.1 ACAE32457342

P 2 2 129.34.4.8

P 14 5 201.11.56.7

R 8 450 1145789 457342ACAE32

P 12 1 220555.7

F

R 9 60 19.1.7.82 4573E3242ACA

P 18 3 188.11.8.71

Network Security 8-31

ARP spoofing

+ Simplicity also leads to major insecurity

= No Authentication

ARP provides no way to verify that the responding device is really
who it says it is
Stateless protocol

— Updating ARP Cache table

< Attacks

= DOS

Hacker can easily associate an operationally significant IP address
to a false MAC address

" Man-in-the-Middle
* Intercept network traffic between two devices in your network

Network Security 8-32

ARP spoofing (MITM)

Your
Computer:
192.168.0.12

Router:
192.168.0.1

Iam 192 1683.0.12.
DMy DMAC address is
[HACKFER'S NMAC]

Network Security 8-33

ARP spoofing (MITM

Your
Computer:
192.168.0.12

Intermet
Traffic

Forward to
Router

Router: i
192.168.0.1

Sener

Network Security 8-34

Prevent ARP spoofing

For Small Network
= Static Arp Cache table

For Large Network
= Arpwatch

» As an administrator, check for multiple Physical addresses responding
to a given IP address

Network Security 8-35

