Chapter 4 Network Layer

Reti degli Elaboratori Canale AL Prof.ssa Chiara Petrioli a.a. 2013/2014

We thank for the support material Prof. Kurose-Ross All material copyright 1996-2012 C J.F Kurose and K.W. Ross, All Rights Reserved

KUROSE ROSS

Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Broadcast routing

deliver packets from source to all other nodes
source duplication is inefficient:

source duplication: how does source determine recipient addresses?

- flooding: when node receives broadcast packet, sends copy to all neighbors
 - problems: cycles & broadcast storm
- controlled flooding: node only broadcasts pkt if it hasn't broadcast same packet before
 - node keeps track of packet ids already broadacsted
 - or reverse path forwarding (RPF): only forward packet if it arrived on shortest path between node and source
- spanning tree:
 - no redundant packets received by any node

Unicast ad N vie

Inefficiente

source duplication

- Un singolo collegamento attraversato da N copie del messaggio se il nodo origine è connesso al resto della rete tramite un unico collegamento
- Indirizzi di tutte le destinazioni devono essere noti al mittente
 - altri meccanismi protocollari sono richiesti
- Broadcast può essere usato per inoltrare informazioni di topologia in una situazione in cui le rotte non sono ancora note
 - es. OSPF

Broadcast Routing

- deliver packets from source to all other nodes
- source duplication is inefficient:

source duplication: how does source determine recipient addresses?

- Icoding: when node receives brdcst pckt, sends copy to all neighbors <u>EXCEPT the one from</u> which the pckt was received
 - Problems: cycles & broadcast storm

- flooding: when node receives brdcst pckt, sends copy to all neighbors
 - Problems: cycles & broadcast storm

- flooding: when node receives brdcst pckt, sends copy to all neighbors
 - Problems: cycles & broadcast storm

E ricominciamo come nella prima situazione Bisogna saper distinguere tra quando mandiamo un nuovo messaggio e quando stiamo ritrasmettendo qualcosa che abbiamo già visto

→ Sequence numbers!

Broacast storm

Broacast storm

Broacast storm

Il numero di pacchetti in rete cresce significativamente!!

Controlled flooding

- Il nodo origine pone il proprio indirizzo ed il numero di sequenza nei pacchetti che invia in broadcast
- Ciascun nodo mantiene una lista di ID origine, SEQN per i broadcast ricevuti, trasmesso o inoltrato
- Se riceve un pacchetto broadcast per prima cosa verifica se <ID, SEQN> compare nella lista dei pacchetti già gestiti
 - Se si scarta
 - Altrimenti riinvia su tutte le interfacce tranne quella da cui ha ricevuto

Controlled flooding, altre opzioni

 Reverse path forwarding (RPF): only forward pckt (on all links but the one from which the packet was received) if it arrived on shortest path between node and source

- flooding: when node receives broadcast packet, sends copy to all neighbors
 - problems: cycles & broadcast storm
- controlled flooding: node only broadcasts pkt if it hasn't broadcast same packet before
 - node keeps track of packet ids already broadcasted
 - or reverse path forwarding (RPF): only forward packet if it arrived on shortest path between node and source
- spanning tree:
 - no redundant packets received by any node

Spanning Tree

- First construct a spanning tree
- Nodes forward copies only along spanning tree

(a) Broadcast initiated at A

(b) Broadcast initiated at D

Minimum spanning tree- Prim's Algorithm

Prim's algorithm:

 let T be a single vertex x
 while (T has fewer than n vertices) {
 Find the smallest edge connecting T to G-T
 Add it to T
 }

Minimum spanning tree--Kruskal algorithm

Kruskal's algorithm:

Sort the edges of G in increasing order of weight

Keep a subgraph S of G, initially empty For each edge e in sorted order

> If the endpoints of e are disconnected in S then add e to S

Return S

- first construct a spanning tree
- nodes then forward/make copies only along spanning tree

(a) broadcast initiated at A

Spanning tree: creation

- center node
- each node sends unicast join message to center node
 - message forwarded until it arrives at a node already belonging to spanning tree

(b) constructed spanning tree

Multicasting

- Molte applicazioni richiedono il trasferimento di pacchetti da uno o più mittenti ad un gruppo di destinatari
 - trasferimento di un aggiornamento SW su un gruppo di macchine
 - streaming (audio/video) ad un gruppo di utenti o studenti
 - applicazioni con dati condivisi (lavagna elettronica condivisa da più utenti)
 - aggiornamento di dati (adnamento di borsa)
 - giochi multi-player interattivi
 - • •

Indirizzamento Multicast

- L'identificatore che rappresenta un gruppo multicast è un indirizzo IP multicast di classe D
- Come ci si affilia ad un indirizzo multicast? Come vengono gestiti i cambiamenti dinamici (join/ remove) nel gruppo?
 - Gestione dinamica del gruppo OLTRE a
 - Algoritmi per la consegna delle informazioni ad un gruppo multicast

IGMP Internet Group Management Protocol

- Messaggi incapsulati in datagrammi IP, con IP protocol number 2
- Mandati con TTL a I
- Messaggi IGMP
 - Type (8bit) Query (richiesta dal router)/ Membership Report (risposta dagli host)/ Leave group (ma anche possible timeout + mancata risposta alla richiesta del router→ soft state)
- Max Response Time (per rispondere ad una query)
- Checksum
- Group Address (0 se si manda una general query, indirizzo IP del gruppo nel caso di una group specific query con cui si richiede chi sia affiliato a quel gruppo)

IGMP Internet Group Management Protocol

- IGMP consente ad un router di imparare quali gruppi multicast hanno affiliati sulle sottoreti connesse a ciascuna delle loro interfacce
- ♦ Un router multicast tiene una lista per ciascuna sottorete dei multicast group (multicast group membership→ almeno un elemento del gruppo fa parte della sottorete) con un timer per membership
 - la membership deve essere aggiornata da report inviati prima della scadenza del timer
 - può essere anche aggiornata tramite messaggi di leave espliciti

Multicast routing: problem statement

goal: find a tree (or trees) connecting routers having local mcast group members legend

- tree: not all paths between routers used
- * shared-tree: same tree used by all group members
- **source-based:** different tree from each sender to rcvrs

Approaches for building mcast trees

approaches:

- source-based tree: one tree per source
 - shortest path trees
 - reverse path forwarding
- shared tree: group uses one tree
 - minimal spanning (Steiner)
 - center-based trees

...we first look at basic approaches, then specific protocols adopting these approaches

Shortest path tree

- mcast forwarding tree: tree of shortest path routes from source to all receivers
 - Dijkstra' s algorithm

LEGEND

group member

router with no attached group member

link used for forwarding,
 i indicates order link
 added by algorithm

Reverse path forwarding

- rely on router's knowledge of unicast shortest path from it to sender
- each router has simple forwarding behavior:

if (mcast datagram received on incoming link on shortest path back to center)
 then flood datagram onto all outgoing links
 else ignore datagram

Reverse path forwarding: example

- result is a source-specific reverse SPT
 - may be a bad choice with asymmetric links

Reverse path forwarding: pruning

- forwarding tree contains subtrees with no mcast group members
 - no need to forward datagrams down subtree
 - "prune" msgs sent upstream by router with no downstream group members

LEGEND

router with attached group member

- router with no attached group member
- prune message
- links with multicast forwarding

Shared-tree: steiner tree

- steiner tree: minimum cost tree connecting all routers with attached group members
- problem is NP-complete
- excellent heuristics exists
- not used in practice:
 - computational complexity
 - information about entire network needed
 - monolithic: rerun whenever a router needs to join/ leave

Center-based trees

- single delivery tree shared by all
- one router identified as "center" of tree
- to join:
 - edge router sends unicast join-msg addressed to center router
 - join-msg "processed" by intermediate routers and forwarded towards center
 - join-msg either hits existing tree branch for this center, or arrives at center
 - path taken by join-msg becomes new branch of tree for this router

Center-based trees: example

suppose R6 chosen as center:

LEGEND

- router with attached group member
 - router with no attached group member
 - path order in which join messages generated

Internet Multicasting Routing: DVMRP

- DVMRP: distance vector multicast routing protocol, RFC1075
- Icod and prune: reverse path forwarding, sourcebased tree
 - RPF tree based on DVMRP's own routing tables constructed by communicating DVMRP routers
 - no assumptions about underlying unicast
 - initial datagram to mcast group flooded everywhere via RPF
 - routers not wanting group: send upstream prune msgs

DVMRP: continued...

- soft state: DVMRP router periodically (1 min.) "forgets" branches are pruned:
 - mcast data again flows down unpruned branch
 - downstream router: reprune or else continue to receive data
- routers can quickly regraft to tree
 - following IGMP join at leaf
- odds and ends
 - commonly implemented in commercial router

PIM: Protocol Independent Multicast

- not dependent on any specific underlying unicast routing algorithm (works with all)
- * two different multicast distribution scenarios :

dense:

- group members densely packed, in "close" proximity.
- bandwidth more plentiful

sparse:

- # networks with group members small wrt # interconnected networks
- group members "widely dispersed"
- bandwidth not plentiful

Consequences of sparse-dense dichotomy:

dense

- group membership by routers assumed until routers explicitly prune
- data-driven construction on mcast tree (e.g., RPF)
- bandwidth and non-grouprouter processing profligate

sparse:

- no membership until routers explicitly join
- receiver- driven construction of mcast tree (e.g., centerbased)
- bandwidth and non-grouprouter processing conservative

PIM- dense mode

flood-and-prune RPF: similar to DVMRP but...

- underlying unicast protocol provides RPF info for incoming datagram
- less complicated (less efficient) downstream flood than DVMRP reduces reliance on underlying routing algorithm
- has protocol mechanism for router to detect it is a leaf-node router

PIM - sparse mode

- center-based approach
- router sends join msg to rendezvous point (RP)
 - intermediate routers update state and forward join
- after joining via RP, router can switch to sourcespecific tree
 - increased performance: less concentration, shorter paths

PIM - sparse mode

sender(s):

- unicast data to RP, which distributes down RP-rooted tree
- RP can extend mcast tree upstream to source
- RP can send stop msg if no attached receivers
 - "no one is listening!"

Chapter 4: done!

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format, IPv4 addressing, ICMP, IPv6

4.5 routing algorithms

- link state, distance vector, hierarchical routing
- 4.6 routing in the Internet
 - RIP, OSPF, BGP
- 4.7 broadcast and multicast routing
- understand principles behind network layer services:
 - network layer service models, forwarding versus routing how a router works, routing (path selection), broadcast, multicast
- instantiation, implementation in the Internet