
Chapter 4
Network Layer

Computer
Networking: A Top
Down Approach
6th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

Network Layer 4-1

Reti degli Elaboratori
Canale AL
Prof.ssa Chiara Petrioli
a.a. 2014/2015

We thank for the support material Prof. Kurose-Ross
All material copyright 1996-2012
 J.F Kurose and K.W. Ross, All Rights Reserved

Network Layer 4-2

4.1 introduction
4.2 virtual circuit and

datagram networks
4.3 what’s inside a router
4.4 IP: Internet Protocol

§  datagram format
§  IPv4 addressing
§  ICMP
§  IPv6

4.5 routing algorithms
§  link state
§  distance vector
§  hierarchical routing

4.6 routing in the Internet
§  RIP
§  OSPF
§  BGP

4.7 broadcast and multicast
routing

Chapter 4: outline

Network Layer 4-3

ICMP: internet control message protocol

v  used by hosts & routers
to communicate network-
level information
§  error reporting:

unreachable host, network,
port, protocol

§  echo request/reply (used by
ping)

v  network-layer “above” IP:
§  ICMP msgs carried in IP

datagrams
v  ICMP message: type, code

plus first 8 bytes of IP
datagram causing error

Type Code description
0 0 echo reply (ping)
3 0 dest. network unreachable
3 1 dest host unreachable
3 2 dest protocol unreachable
3 3 dest port unreachable
3 6 dest network unknown
3 7 dest host unknown
4 0 source quench (congestion
 control - not used)
8 0 echo request (ping)
9 0 route advertisement
10 0 router discovery
11 0 TTL expired
12 0 bad IP header

Network Layer 4-4

Traceroute and ICMP
v  source sends series of

UDP segments to dest
§  first set has TTL =1
§  second set has TTL=2, etc.
§  unlikely port number

v  when nth set of datagrams
arrives to nth router:
§  router discards datagrams
§  and sends source ICMP

messages (type 11, code 0)
§  ICMP messages includes

name of router & IP address

v  when ICMP messages
arrives, source records
RTTs

stopping criteria:
v  UDP segment eventually

arrives at destination host
v  destination returns ICMP
“port unreachable”
message (type 3, code 3)

v  source stops

3 probes

3 probes

3 probes

Network Layer 4-5

IPv6: motivation
v  initial motivation: 32-bit address space soon to be

completely allocated.
v  additional motivation:

§  header format helps speed processing/forwarding
§  header changes to facilitate QoS

IPv6 datagram format:
§  fixed-length 40 byte header
§  no fragmentation allowed

Network Layer 4-6

IPv6 datagram format

priority: identify priority among datagrams in flow
flow Label: identify datagrams in same “flow.”
 (concept of“flow” not well defined).
next header: identify upper layer protocol for data

data

destination address
(128 bits)

source address
(128 bits)

payload len next hdr hop limit
flow label pri ver

32 bits

Network Layer 4-7

Other changes from IPv4

v  checksum: removed entirely to reduce processing
time at each hop

v  options: allowed, but outside of header, indicated
by “Next Header” field

v  ICMPv6: new version of ICMP
§  additional message types, e.g. “Packet Too Big”
§  multicast group management functions

Network Layer 4-8

Transition from IPv4 to IPv6
v  not all routers can be upgraded simultaneously

§  no “flag days”
§  how will network operate with mixed IPv4 and

IPv6 routers?
v  tunneling: IPv6 datagram carried as payload in IPv4

datagram among IPv4 routers

IPv4 source, dest addr
IPv4 header fields

IPv4 datagram
IPv6 datagram

IPv4 payload

UDP/TCP payload
IPv6 source dest addr

IPv6 header fields

Network Layer 4-9

Tunneling

physical view:
IPv4 IPv4

A B

IPv6 IPv6

E

IPv6 IPv6

F C D

logical view:

IPv4 tunnel
connecting IPv6 routers E

IPv6 IPv6

F A B

IPv6 IPv6

Network Layer 4-10

flow: X
src: A
dest: F

data

A-to-B:
IPv6

Flow: X
Src: A
Dest: F

data

src:B
dest: E

B-to-C:
IPv6 inside

IPv4

E-to-F:
IPv6

flow: X
src: A
dest: F

data

B-to-C:
IPv6 inside

IPv4

Flow: X
Src: A
Dest: F

data

src:B
dest: E

physical view:
A B

IPv6 IPv6

E

IPv6 IPv6

F C D

logical view:

IPv4 tunnel
connecting IPv6 routers E

IPv6 IPv6

F A B

IPv6 IPv6

Tunneling

IPv4 IPv4

Network Layer 4-11

4.1 introduction
4.2 virtual circuit and

datagram networks
4.3 what’s inside a router
4.4 IP: Internet Protocol

§  datagram format
§  IPv4 addressing
§  ICMP
§  IPv6

4.5 routing algorithms
§  link state
§  distance vector
§  hierarchical routing

4.6 routing in the Internet
§  RIP
§  OSPF
§  BGP

4.7 broadcast and multicast
routing

Chapter 4: outline

Network Layer 4-12

1

2 3

IP destination address in
arriving packet’s header

routing algorithm

local forwarding table
dest address output link

address-range 1
address-range 2
address-range 3
address-range 4

3
2
2
1

Interplay between routing, forwarding

routing algorithm determines
end-end-path through network

forwarding table determines
local forwarding at this router

Network Layer 4-13

u

y x

w v

z
2

2
1 3

1

1
2

5
3

5

graph: G = (N,E)

N = set of routers = { u, v, w, x, y, z }

E = set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

Graph abstraction

aside: graph abstraction is useful in other network contexts, e.g.,
P2P, where N is set of peers and E is set of TCP connections

Network Layer 4-14

Graph abstraction: costs

u

y x

w v

z
2

2
1 3

1

1
2

5
3

5 c(x,x’) = cost of link (x,x’)
 e.g., c(w,z) = 5

cost could always be 1, or
inversely related to bandwidth,
or inversely related to
congestion

cost of path (x1, x2, x3,…, xp) = c(x1,x2) + c(x2,x3) + … + c(xp-1,xp)

key question: what is the least-cost path between u and z ?
routing algorithm: algorithm that finds that least cost path

Network Layer 4-15

Routing algorithm classification

Q: global or decentralized
information?

global:
v  all routers have complete

topology, link cost info
v  “link state” algorithms
decentralized:
v  router knows physically-

connected neighbors, link
costs to neighbors

v  iterative process of
computation, exchange of
info with neighbors

v  “distance vector” algorithms

Q: static or dynamic?
static:
v  routes change slowly over

time
dynamic:
v  routes change more

quickly
§  periodic update
§  in response to link

cost changes

Network Layer 4-16

4.1 introduction
4.2 virtual circuit and

datagram networks
4.3 what’s inside a router
4.4 IP: Internet Protocol

§  datagram format
§  IPv4 addressing
§  ICMP
§  IPv6

4.5 routing algorithms
§  link state
§  distance vector
§  hierarchical routing

4.6 routing in the Internet
§  RIP
§  OSPF
§  BGP

4.7 broadcast and multicast
routing

Chapter 4: outline

Network Layer 4-17

A Link-State Routing Algorithm

Dijkstra’s algorithm
v  net topology, link costs

known to all nodes
§  accomplished via “link state

broadcast”
§  all nodes have same info

v  computes least cost paths
from one node (‘source”)
to all other nodes
§  gives forwarding table for

that node
v  iterative: after k

iterations, know least cost
path to k dest.’s

notation:
v  c(x,y): link cost from

node x to y; = ∞ if not
direct neighbors

v  D(v): current value of
cost of path from source
to dest. v

v  p(v): predecessor node
along path from source to
v

v  N': set of nodes whose
least cost path definitively
known

Network Layer 4-18

Dijsktra’s Algorithm
1 Initialization:
2 N' = {u}
3 for all nodes v
4 if v adjacent to u
5 then D(v) = c(u,v)
6 else D(v) = ∞
7
8 Loop
9 find w not in N' such that D(w) is a minimum
10 add w to N'
11 update D(v) for all v adjacent to w and not in N' :
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
14 shortest path cost to w plus cost from w to v */
15 until all nodes in N'

Network Layer 4-19

w 3

4

v

x

u

5

3
7 4

y
8

z
2

7
9

Dijkstra’s algorithm: example
Step

N'

D(v)
p(v)

0
1
2
3
4
5

D(w)
p(w)

D(x)
p(x)

D(y)
p(y)

D(z)
p(z)

u ∞ ∞ 7,u 3,u 5,u
uw ∞ 11,w 6,w 5,u

14,x 11,w 6,w uwx
uwxv 14,x 10,v

uwxvy 12,y

notes:
v  construct shortest path tree by

tracing predecessor nodes
v  ties can exist (can be broken

arbitrarily)

uwxvyz

Network Layer 4-20

Dijkstra’s algorithm: another example

Step
0
1
2
3
4
5

N'
u

ux
uxy

uxyv
uxyvw

uxyvwz

D(v),p(v)
2,u
2,u
2,u

D(w),p(w)
5,u
4,x
3,y
3,y

D(x),p(x)
1,u

D(y),p(y)
∞

2,x

D(z),p(z)
∞
∞

4,y
4,y
4,y

u

y x

w v

z
2

2
1 3

1

1
2

5
3

5

Network Layer 4-21

Dijkstra’s algorithm: example (2)

u

y x

w v

z

resulting shortest-path tree from u:

v
x
y
w
z

(u,v)
(u,x)

(u,x)
(u,x)
(u,x)

destination link

resulting forwarding table in u:

Correttezza

Network Layer 4-22

Se eseguiamo l’algoritmo di Dijkstra su un grafo pesato diretto G=(N,E) con
pesi non negativi, sorgente u, e funzione peso c allora alla terminazione
D(v)=δ(u,v), per ogni nodo v in N. (dove δ(u,v) indica la lunghezza del cammino
di peso minimo tra u e v).
Dim.
D(v) non è più aggiornato nel momento in cui v è inserito in N’. Dovremmo quindi
mostrare che D(v)=δ(u,v) nel momento in cui v è inserito in N’, per ogni v.
Ragioniamo per assurdo. Sia x il primo nodo (nell’ordine di inserimento in N’) per
cui vale D(x)!=δ(u,x) al momento in cui x è inserito nell’insieme N’ (linea 10
dell’algoritmo). x!=u dato che u, nodo sorgente, è inserito nella fase di
inizializzazione e per lui vale D(u)=δ(u,v)=0. Inoltre deve esistere un percorso di
costo non infinito da u a x dato che altrimenti varrebbe che il valore a cui D(x) è
inizializzato (infinito) sarebbe uguale a δ(u,v). Quindi esiste un percorso di costo
minimo p=u…vày…x dove y è il primo nodo sul percorso di costo minimo NON in
N’ (quindi u….v sono TUTTI in N’). Il percorso p può quindi essere diviso in due
percorsi: p1 che va da u a y e p2 che va da y a x.
Da notare che il percorso p1 è anch’esso il percorso di costo minimo che unisce u
a y (se non lo fosse e ci fosse un percorso p3 che unisce u a y di costo < del costo
di p1, allora la concatenazione di p2 e p2 sarebbe un percorso p’ da u a x di costo
< di p,contro l’assunto che p sia un percorso di costo minimo).

…Correttezza

Network Layer 4-23

Se eseguiamo l’algoritmo di Dijkstra su un grafo pesato diretto G=(N,E) con
pesi non negativi, sorgente u, e funzione peso c allora alla terminazione
D(v)=δ(u,v), per ogni nodo v in N. (dove δ(u,v) indica la lunghezza del cammino
di peso minimo tra u e v).
Dim (…continua).
Quando x è inserito in N’ D(y)=δ(u,y). Ifnatti in quel momento v è stato già
inserito in N’ e dopo il suo inserimento y ha ricalcolato D(y)=D(v)+c(v,y)=δ(u,v)
+c(v,y) (dato che per ipotesi x è il primo nodo per cui all’inserimento in N’ la stima
dei costi non corrisponde al percorso di costo minimo)=δ(u,y).
Dato che y precede x sul percorso minimo ed i pesi sugli archi sono non negativi
vale che:
δ(u,x)>=δ(u,y)=D(y)
e quindi anche che
D(x)>=δ(u,x)>=δ(u,y)=D(y)

D’altro canto dato che x viene inserito in N’ prima di y vale che
δ(u,x)<=D(x)<=D(y)=δ(u,y)

Quindi
δ(u,x)=D(x)=D(y)=δ(u,y)
Cosa che porta alla contraddizione.

Network Layer 4-24

Dijkstra’s algorithm, discussion
algorithm complexity: n nodes
v  each iteration: need to check all nodes, w, not in N
v  n(n+1)/2 comparisons: O(n2)
v  more efficient implementations possible: O(nlogn)

oscillations possible:
v  e.g., support link cost equals amount of carried traffic:

A
D

C
B

1 1+e

e 0

e
1 1

0 0

initially

A
D

C
B

given these costs,
find new routing….

resulting in new costs

2+e 0

0 0
1+e 1

A
D

C
B

given these costs,
find new routing….

resulting in new costs

0 2+e

1+e 1
0 0

A
D

C
B

given these costs,
find new routing….

resulting in new costs

2+e 0

0 0
1+e 1

Network Layer 4-25

4.1 introduction
4.2 virtual circuit and

datagram networks
4.3 what’s inside a router
4.4 IP: Internet Protocol

§  datagram format
§  IPv4 addressing
§  ICMP
§  IPv6

4.5 routing algorithms
§  link state
§  distance vector
§  hierarchical routing

4.6 routing in the Internet
§  RIP
§  OSPF
§  BGP

4.7 broadcast and multicast
routing

Chapter 4: outline

Network Layer 4-26

Bellman-Ford
Given a graph G=(N,E) and a node s finds the shortest path

from s to every node in N.
A shortest walk from s to i subject to the constraint that the walk contains at

most h arcs and goes through node s only once, is denoted shortest(<=h)
walk and its length is Dh

i.

Bellman-Ford rule:
Initiatilization Dh

s=0, for all h; ci,k = infinity if (i,k) NOT in E; ck,k =0;
D0

i=infinity for all i!=s.
Iteration:

 Dh+1
i=mink [ci,k + Dh

k]
Assumption: non negative cycles (this is the case in a network!!)
 The Bellman-Ford algorithm first finds the one-arc shortest

walk lengths, then the two-arc shortest walk length, then the
three-arc…etc. àdistributed version used for routing

Network Layer 4-27

Distance vector algorithm

Bellman-Ford equation (dynamic programming)

let
 dx(y) := cost of least-cost path from x to y
then
 dx(y) = min {c(x,v) + dv(y) }

v

cost to neighbor v

min taken over all neighbors v of x

cost from neighbor v to destination y

Network Layer 4-28

Bellman-Ford example

u

y x

w v

z
2

2
1 3

1

1
2

5
3

5
clearly, dv(z) = 5, dx(z) = 3, dw(z) = 3

du(z) = min { c(u,v) + dv(z),
 c(u,x) + dx(z),
 c(u,w) + dw(z) }
 = min {2 + 5,
 1 + 3,
 5 + 3} = 4

node achieving minimum is next
hop in shortest path, used in forwarding table

B-F equation says:

Network Layer 4-29

Distance vector algorithm

v  Dx(y) = estimate of least cost from x to y
§  x maintains distance vector Dx = [Dx(y): y є N]

v  node x:
§  knows cost to each neighbor v: c(x,v)
§ maintains its neighbors’ distance vectors. For

each neighbor v, x maintains
Dv = [Dv(y): y є N]

Network Layer 4-30

Distance Vector Algorithm:

1 Initialization:
2 for all adjacent nodes v:
3 D (*,v) = infinity /* the * operator means "for all rows" */
4 D (v,v) = c(X,v)
5 for all destinations, y
6 send min D (y,w) to each neighbor /* w over all X's neighbors */

X
X

X
w

At all nodes, X:

From the node to whatever destination going through v

Network Layer 4-31

Distance Vector Algorithm (cont.):
8 loop
9 wait (until I see a link cost change to neighbor V
10 or until I receive update from neighbor V)
11
12 if (c(X,V) changes by d)
13 /* change cost to all dest's via neighbor v by d */
14 /* note: d could be positive or negative */
15 for all destinations y: D (y,V) = D (y,V) + d
16
17 else if (update received from V wrt destination Y)
18 /* shortest path from V to some Y has changed */
19 /* V has sent a new value for its min DV(Y,w) */
20 /* call this received new value is "newval" */
21 for the single destination y: D (Y,V) = c(X,V) + newval
22
23 if we have a new min D (Y,w)for any destination Y
24 send new value of min D (Y,w) = of Dx(Y) to all neighbors
25
26 forever

w

X X

X
X

X

w
w

Network Layer 4-32

key idea:
v  from time-to-time, each node sends its own

distance vector estimate to neighbors
v  when x receives new DV estimate from neighbor,

it updates its own DV using B-F equation:

Dx(y) ← minv{c(x,v) + Dv(y)} for each node y ∊ N

v  under minor, natural conditions, the estimate Dx(y)
converge to the actual least cost dx(y)

Distance vector algorithm

Network Layer 4-33

iterative, asynchronous:
each local iteration
caused by:

v  local link cost change
v  DV update message from

neighbor
distributed:
v  each node notifies

neighbors only when its
DV changes
§  neighbors then notify their

neighbors if necessary

wait for (change in local link
cost or msg from neighbor)

recompute estimates

if DV to any dest has
changed, notify neighbors

each node:

Distance vector algorithm

Network Layer 4-34

Network Layer 4-35

Previous lecture. Summary:
Distributed Belman Ford
•  Based on Distributed Bellman Ford Equation

•  Dx(Y,Z) re-computed:
•  Upon reception of updates from the neighbors
•  Upon link cost change

•  min z DX(Y,Z) communicated to the neighbors whenever its
value changes, or periodically

•  How long does it take for the algorithm to converge? ‘good
news travel fast, bad news may notàcount to infinity’

D (Y,Z)
X

distance from X to
Y, via Z as next hop

c(X,Z) + min {D (Y,w)} Z
w

=

=

Cost associated to the (X,Z) link

Network Layer 4-36

Distance Vector: link cost changes

Link cost changes:
❒  node detects local link cost change
❒  updates distance table (line 15)
❒  if cost change in least cost path, notify

neighbors (lines 23,24)
X Z

1 4

50

Y
1

algorithm
terminates

“good
news
travels
fast”

Ydetects change
informs neighbors

Z receives update
updates table, new least
Costàinforms neighbors

Y receives new least
cost; no modification
in the routing table,
No updates sent

Subtitle: Distributed Bellman Ford converges but how fast?

Network Layer 4-37

Distance Vector: link cost changes
Link cost changes:
❒  good news travels fast
❒  bad news travels slow - “count

to infinity” problem! X Z
1 4

50

Y
60

algorithm
continues

on!

Y detects link cost
Increase but think can
Reach X through Z at a
total cost of 6 (wrong!!)

The path is Y-Z-Y-X

Network Layer 4-38

Count-to-infinity –an everyday life example

Which is the problem here?
the info exchanged by the protocol!! ‘the best route to X I have
has the following cost…’ (no additional info on the route)

A Roman example…
-assumption: there is only one route going from Colosseo to
Altare della Patria: Via dei Fori Imperiali. Let us now consider a
network, whose nodes are Colosseo., Altare della Patria, Piazza del
Popolo

Colosseo Altare Patria Piazza del
Popolo

1 Km 1 Km

Network Layer 4-39

Colosseo Al.Patria P.Popolo
1Km 1Km

The Colosseo. and Alt. Patria nodes exchange the following info
•  Colosseo says ‘the shortest route from me to P. Popolo is 2 Km’
•  Alt. Patria says ‘the shortest path from me to P. Popolo is 1Km’
Based on this exchange from Colosseo you go to Al. Patria, and from there to
Piazza del Popolo OK Now due to the big dig they close Via del Corso
(Al. Patria—P.Popolo)
•  Al. Patria thinks ‘I have to find another route from me to P.Popolo.
Look there is a route from Colosseo to P.Popolo that
takes 2Km, I can be at Colosseo in 1Km à I have found
a 3Km route from me to P.Popolo!!’ Communicates the new cost to
Colosseo that updates ‘OK I can go to P.Popolo via Al. Patria in 4Km’
VERY WRONG!! Why is it so? I didn’t know that the route from
Colosseo to P.Popolo was going through Via del Corso from Al.Patria
to P.Popolo (which is closed)!!

Count-to-infinity –everyday life example (2/2)

Network Layer 4-40

Distance Vector: poisoned reverse
If Z routes through Y to get to X :
❒  Z tells Y its (Z’s) distance to X is infinite

(so Y won’t route to X via Z)
❒  will this completely solve count to infinity

problem?

X Z
1 4

50

Y
60

algorithm
terminates

Infinity is advertized by Y
(poisoned reverse)

Network Layer 4-41

Split horizon poison reverse
failure

A B

C

D

Line CD goes down…

1) because of split horizon rule,
 A and B tell C that dist(D)=inf
2) C concludes that D is unreachable
 and reports this to A and B
3) but A knows from B that dist(D)=2, and
 sets its dist=3
4) similarly, B knows from A distance from D…
C estimates new value 4; A and B again through C
estimate a value of 5….then again 1)
… etc until distance = infinite

Regardless the hack used, there is always a network topology
 that makes the trick fail!

Network Layer 4-42

Comparison of LS and DV algorithms

message complexity
v  LS: with n nodes, E links, O(nE)

msgs sent
v  DV: exchange between neighbors

only
§  convergence time varies

speed of convergence
v  LS: O(n2) algorithm requires

O(nE) msgs
§  may have oscillations

v  DV: convergence time varies
§  may be routing loops
§  count-to-infinity problem

robustness: what happens if
router malfunctions?

LS:
§  node can advertise incorrect

link cost
§  each node computes only its

own table
DV:

§  DV node can advertise
incorrect path cost

§  each node’s table used by
others

•  error propagate thru
network

Network Layer 4-43

4.1 introduction
4.2 virtual circuit and

datagram networks
4.3 what’s inside a router
4.4 IP: Internet Protocol

§  datagram format
§  IPv4 addressing
§  ICMP
§  IPv6

4.5 routing algorithms
§  link state
§  distance vector
§  hierarchical routing

4.6 routing in the Internet
§  RIP
§  OSPF
§  BGP

4.7 broadcast and multicast
routing

Chapter 4: outline

Network Layer 4-44

Hierarchical routing

scale: with 600 million
destinations:

v  can’t store all dest’s in
routing tables!

v  routing table exchange
would swamp links!

administrative autonomy
v  internet = network of

networks
v  each network admin may

want to control routing in
its own network

our routing study thus far - idealization
v  all routers identical
v  network “flat”
… not true in practice

Network Layer 4-45

v  aggregate routers into
regions, “autonomous
systems” (AS)

v  routers in same AS
run same routing
protocol
§  “intra-AS” routing

protocol
§  routers in different AS

can run different intra-
AS routing protocol

gateway router:
v  at “edge” of its own AS
v  has link to router in

another AS

Hierarchical routing

Network Layer 4-46

3b

1d

3a
1c

2a AS3

AS1

AS2
1a

2c
2b

1b

Intra-AS
Routing
algorithm

Inter-AS
Routing
algorithm

Forwarding
table

3c

Interconnected ASes

v  forwarding table
configured by both intra-
and inter-AS routing
algorithm
§  intra-AS sets entries

for internal dests
§  inter-AS & intra-AS

sets entries for
external dests

Network Layer 4-47

Inter-AS tasks
v  suppose router in AS1

receives datagram
destined outside of AS1:
§  router should forward

packet to gateway
router, but which one?

AS1 must:
1.  learn which dests are

reachable through AS2,
which through AS3

2.  propagate this
reachability info to all
routers in AS1

job of inter-AS routing!

AS3

AS2

3b

3c
3a

AS1

1c
1a

1d
1b

2a
2c

2b
other
networks

other
networks

Network Layer 4-48

Example: setting forwarding table in router 1d

v  suppose AS1 learns (via inter-AS protocol) that subnet x
reachable via AS3 (gateway 1c), but not via AS2
§  inter-AS protocol propagates reachability info to all internal

routers
v  router 1d determines from intra-AS routing info that its

interface I is on the least cost path to 1c
§  installs forwarding table entry (x,I)

AS3

AS2

3b

3c
3a

AS1

1c
1a

1d
1b

2a
2c

2b
other
networks

other
networks

x …

Network Layer 4-49

Example: choosing among multiple ASes

v  now suppose AS1 learns from inter-AS protocol that subnet
x is reachable from AS3 and from AS2.

v  to configure forwarding table, router 1d must determine
which gateway it should forward packets towards for dest x
§  this is also job of inter-AS routing protocol!

AS3

AS2

3b

3c
3a

AS1

1c
1a

1d
1b

2a
2c

2b
other
networks

other
networks

x …

?

Network Layer 4-50

learn from inter-AS
protocol that subnet
x is reachable via
multiple gateways

use routing info
from intra-AS

protocol to determine
costs of least-cost

paths to each
of the gateways

hot potato routing:
choose the gateway

that has the
smallest least cost

determine from
forwarding table the
interface I that leads

to least-cost gateway.
Enter (x,I) in

forwarding table

Example: choosing among multiple ASes

v  now suppose AS1 learns from inter-AS protocol that subnet
x is reachable from AS3 and from AS2.

v  to configure forwarding table, router 1d must determine
towards which gateway it should forward packets for dest x
§  this is also job of inter-AS routing protocol!

v  hot potato routing: send packet towards closest of two
routers.

