Computer Networking
C h a Pte r 3 A Top-Down Approach
\ — = o

Transport Laxer

KUROSE | ROSS

Reti degli Elaboratori Computer

Canale AL . Networking: A Top
Prof.ssa Chiara Petrioli Down Approach

a.a. 2013/2014 6t edition

Jim Kurose, Keith Ross
Addison-Wesley
March 2012

We thank for the support material Prof. Kurose-Ross

All material copyright 1996-2012
© J.F Kurose and K.W. Ross, All Rights Reserved

Transport Layer 3-1

rdt3.0 in action

sender receiver
send pkt0 ktO
\ rcv pkto
ac send ackO
rcv ackO 4/0/
send pktl \W\‘
rcv pktl
ack send ackl
rcv ackl
send pkt0 \Im\‘
rcv pktO
ack send ack0

(a) no loss

sender receiver
send pkt0 ktO
\ rcv pkto
ac send ackO
rcv ackO /Q/
send pktl_ kt1
X
loss
imeout _
resend pktl \K
rcv pktl
ack send ackl
rcv ackl
send pkt0 \;to\‘
rcv pktO
ack send ack0

i

(b) packet loss

Transport Layer 3-2

rdt3.0 in action_

sender receiver
send pktO ktO
\ Frcv pkto
ac send ackO
rcv ack0 /ﬂ/
send pktl_ \K
rcv pktl
okl—" send ack1
- loss
imeout -
resend pktl \K rev pktl
a1 — S SR
rcv ackl
send pkt0 \;to\‘
rcv pktO
ack send ackO
(c) ACK loss

sender receiver
send pktO
\ rcv pkto
send ackO
rcv ackO /Q/
send pktl_ \\
rcv pktl

send ackl
ack1
/meout -
resend pktl rcv pkti
rcv ackl (detect du Ilcate)

send pktO}ktO< send ac
rcv ac 1 rcv ktO

send pkt0 send ackO
rcv pktO

/ (detect duplicate)
send ackO
(d) premature timeout/ delayed ACK

Transport Layer 3-3

Performance of rdt3.0

+ rdt3.0 is correct, but performance stinks
+» e.g.. | Gbps link, 15 ms prop. delay, 8000 bit packet:

= 8000 bits = 8 microsecs

b oL
trans — R 1079 bits/sec

= U : utilization — fraction of time sender busy sending

sender*
U L/R .008 — 0.00027

sender RTT +L /R ~ 30.008

" if RTT=30 msec, | KB pkt every 30 msec: 33kB/sec thruput
over | Gbps link

+ network protocol limits use of physical resources!

Transport Layer 3-4

rdt3.0: stop-and-wait operation

sender

first packet bit transmitted, t = 0
last packet bit transmitted, t = L/ R1]

RTT

ACK arrives, send next]

packet, t = RTT + L /R [~
N

U L/R

receiver

— first packet bit arrives
—last packet bit arrives, send ACK

sender RTIT +L/R 30.008

0.00027

Transport Layer 3-5

Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-
to-be-acknowledged pkts
" range of sequence numbers must be increased
* buffering at sender and/or receiver

data polckeT—b data packets—» "

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

% two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-6

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —fe------=---=occococee
last bit transmitted, t =L/ RT

first packet bit arrives
last packet bit arrives, send ACK

last bit of 2" packet arrives, send ACK
last bit of 3" packet arrives, send ACK

RTT

ACK arrives, send next]
packet, t=RTT+L/R’|

.............. 3-packet pipelining increases
"""""""""" utilization by a factor of 3!

3L/R 0024 /
U _ —c _
sender™ rr e T~ iooos ~ 0-00081

Transport Layer 3-7

Pipelined protocols: overview

Go-back-N:

<+ sender can have up to
N unacked packets in
pipeline

<« receiver only sends
cumulative ack

= doesn’ t ack packet if
there’ s a gap
<« sender has timer for
oldest unacked packet

" when timer expires,
retransmit all unacked
packets

Selective Repeat:

+ sender can have up to N
unack ed packets in
pipeline

% rcvr sends individual ack
for each packet

< sender maintains timer
for each unacked packet

" when timer expires,
retransmit only that
unacked packet

Transport Layer 3-8

Go-Back-N: sender

+ k-bit seq # in pkt header
+ “window of up to N, consecutive unack ed pkts allowed

send_base nexfsegnum dlready Lsable. hof
lv i ack’ed yet sent
TR0 LTNELO0000I0 | semtmgre [otuscor
t __ window size—%
N

= ACK(n):ACKs all pkts up to, including seq # n - “cumulative
ACK”

" may receive duplicate ACKs (see receiver)
+ timer for oldest in-flight pkt

+ timeout(n): retransmit packet n and all higher seq # pkts in
window

Transport Layer 3-9

GBN: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)

udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum-++
A else
— ., refuse_data(data
base=1 — ()

nextseqnum=1

‘ timeout
start_timer
3 udt_send(sndpkt[base])
O Q udt_send(sndpkt[base+1])

udt_send(sndpkt[nextseqnum-1]

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

rdt_rcv(rcvpkt) &&)
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)
stop_timer
else if modified base

start_timer
- Transport Layer 3-10

GBN: receiver extended FSM

default

udt_send(sndpkt) rdt_rcv(revpkt)
- C D && notcurrupt(rcvpkt)

A T~a o - && hasseqnum(rcvpkt,expectedseqnum)
= -

expectedsegnum=1 AQextract(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedseqnum,ACK,chksum) sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedsegnum++

ACK-only: always send ACK for correctly-received
pkt with highest in-order seq #

" may generate duplicate ACKs

" need only remember expectedseqnum
+ out-of-order pkt:

= discard (don’ t buffer): no receiver buffering!

" re-ACK pkt with highest in-order seq #

Transport Layer 3-11

GBN in action

sender window (N=4) sender receiver
EPEl25678 send pktO
(EIPX]4 5678 send pktl \ _
kt0, send ackO
EBE+5678 send pkt2- receive pxty,
KK 5678 send pkt3 TXioss receive pktl, send ackl

(wait) receive pkt3, discard,
ofEEMls678 rcv ack0, send pkt4 (re)send ackl

0 1EE¥Is 78 rcv ackl, send pkt5 receive pkt4, discard,

(re)send ack1l
receive pkt5, discard,
(re)send ackl

ignore duplicate ACK

pkt 2 timeout _

0 1EEE]6 7 8 send pkt2
0 1EEEN6 7 8 send pkt3 \ _
Rl 2 3 4 5[R&: send pkt4 rcv pkt2, deliver, send ack2

0 1BE¥Es 7 8 send pkt5 rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

Transport Layer 3-12

Selective repeat

% receiver individually acknowledges all correctly
received pkts

" buffers pkts, as needed, for eventual in-order delivery
to upper layer

+ sender only resends pkts for which ACK not
received

= sender timer for each unACKed pkt

% sender window
= N consecutive seq # s
" limits seq #s of sent, unACKed pkts

Transport Layer 3-13

Selective repeat: sender, receiver windows

send_base nhextsegnum dlready Lsable. not
iv ‘L ack’ed yet sent
OO0 CDCRCDNDEROO00ND | o oo
f—windowsize
N

(a) sender view of sequence numbers

out of order

acceptable
(buffered) but (within window)
already ack’ed

ﬂl]ﬂﬂl]ﬂﬂ[lﬂ||||||||||||||]|]|] |opactes et || rerescete

t _ window size—4

1 N

rcv_base

(b) receiver view of sequence numbers

Transport Layer 3-14

Selective repeat

— sender
data from above:

+ if next available seq # in
window, send pkt

timeout(n):

+ resend pkt n, restart
timer

ACK(n) iN [sendbase,sendbase+N]:
<+ mark pkt n as received

« if n smallest unACKed
pkt, advance window base
to next unACKed seq #

— receiver
Pl(t N IN [rcvbase, revbase+N-1]
+ send ACK(n)

+ out-of-order: buffer

+ in-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

Pl(t N IN [rcvbase-N,rcvbase-1]
+» ACK(n)

otherwise:

< ignore

Transport Layer 3-15

Selective repeat in action

sender window (N=4) sender receiver

IEPEl:5678 send pkt0

4 5678 Send pkt]_ \ receive pktO Send aCkO
EPEl25678 send pkt2- : !

[EPE 456738 send pkt3 T~Xloss receive pktl, send ackl
] (wait)

receive pkt3, buffer,
ofEEs678 rcv ackO, send pkt4 send ack3

01PEEE678 rcv ackl, send pkt5 receive pkt4, buffer

send ack4
_record ack3 arrived receive pkt5, buffer,
. n Kk

pkt 2 timeout send ack>
R] 2 3 4 5[RA: send pkt2
0 1R 6 7 8 record ack4 arrived rev pkt2; deliver pkt2
0 1- 34 SNES . / ’
0 16 - record ack4 arrived / pkt3, pkt4, pkt5; send ack?

Q: what happens when ack2 arrives?

Transport Layer 3-16

Selective repeat:

dilemma

example:

K/
0‘0

0’0

0

seq# s:0, 1,2, 3
window size=3
receiver sees no

difference in two
scenarios!

duplicate data
accepted as new in

(b)

Q: what relationship

between seq # size
and window size to
avoid problem in (b)?

sender window
(after receipt)

receiver window
(after receipt)

ERso012 RO

LRI 0 12 —— oflEEo 12

0 12 K 2 — o (BRI 2

<, 23015

v/ 12 3K 2

2300 z]
pktO —— will accept packet

(a) no problem with seq number 0

receiver can’t see sender side.
receiver behavior identical in both cases!
something’s (very) wrong!

B30 12 —BKU
0 1 2K \p\ — ofEEo 12
KRz 012 — 011 2
— 01 2ElKI2
timeout
retransmit pktO
N3 012
I \p\ —, will accept packet
ith seq number 0
(b) oops! i q number

Transport Layer 3-17

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-18

TCP: Overview Recs: 79311221323, 2018, 2581

% point-to-point: < full duplex data:

" one sender, one receiver = bi-directional data flow
+ reliable, in-order byte IARSAINE CONNECEION

steam: = MSS: maximum segment
“ size
" no "message . .
boundaries % connection-oriented:

+ pipelined: * handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

< flow controlled:

= sender will not
overwhelm receiver

* TCP congestion and flow
control set window size

Transport Layer 3-19

TCP sesment structure

32 bits >

A

URG: urgent data
(generally not used)\

ACK: ACK #

counting
by bytes
of data

source port # dest port #
"\ sequence number

valid

(not segments!)

\\eIQowIedgement number

PSH: push data now
(generally not used) ——

hliid ;Ib,l,bs F| receive window

us
7

bytes
rcvr willing

Urg data pointer

RST, SYN, FIN— |
connection estab

to accept

op/@{ (variable length)

(setup, teardown
commands)

Internet /

checksum
(as in UDP)

/ application

data
(variable length)

Transport Layer 3-20

TCP seq. numbers, ACKs

outgoing segment from sender

sequence numberS'

"byte stream number of
first byte in segment’ s
data

acknowledgements:

"seq # of next byte
expected from other side

= cumulative ACK

Q: how receiver handles
out-of-order segments

= A: TCP spec doesn’ t say,
- up to implementor

source port #

sequence number

acknowledgement number

dest port #

rwnd

checksum

urg pointer

window size

< N

sender sequence number space

sent
ACKed

sent, not- usable not
yet ACKed but not usable

(“in- yet sent

flight™)

incoming segment to sender
source port # dest port #

sequence number

I acknowledgement number

A rwnd

urg pointer

checksum

Transport Layer 3-21

TCP seq. numbers, ACKs

Host A Host B
User 5l
tYI?e,S \
C Seq=42, ACK=79, data = ‘C
host ACKs
receipt of
/ ‘C’, echoes
Seq=79, ACK=43, data = ‘C’ ‘(~r
host ACKs back "C
receipt
of echoed ——____
‘C’

Seq=43, ACK=80____

simple telnet scenario

Transport Layer 3-22

TCP round trip time, timeout

Q: how to set TCP Q how to estimate RTT?

timeout value!? +» SampleRTT: measured
+ longer than RTT Eransmission until ACK
" but RTT varies receipt
< too short: premature " [gnore retransmissions
timeout, unnecessary +» SampleRTT W|II vary, want
retransmissions estimated RTT “smoother”

. t00 long: sl : " average several recent
* 100 ong: slow reaction measurements, not just

to segment loss current SampleRTT

Transport Layer 3-23

TCP round trip time, timeout

EstimatedRTT = (1- o) *EstimatedRTT + a*SampleRTT

<+ exponential weighted moving average
+ influence of past sample decreases exponentially fast
+ typical value:a =0.125

RTT (milliseconds)

350 -

300

250

200 -

150

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr,

1 T N\ﬂm

& sampleRTT

EstimatedRTT

1

8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconds) Transport Layer 3-24

TCP round trip time, timeout

% timeout interval: EstimatedRTT plus “safety margin”
* large variation in EstimatedRTT -> larger safety margin

» estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-B)*DevRTT +
B* | SampleRTT-EstimatedRTT |

(typically, P = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Transport Layer 3-25

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-26

TCP reliable data transfer

< TCP creates rdt service
on top of IP s unreliable

service
" pipelined segments ,
= cumulative acks let” s initially consider
= single retransmission simplified TCP sender:
timer " ignore duplicate acks
& retransmissions " ignore flow control,

congestion control

triggered by:
" timeout events
" duplicate acks

Transport Layer 3-27

TCP sender events:

data rcvd from app:

<« Create segment with
seq #

<+ seq # is byte-stream
number of first data
byte in segment

<+ start timer if not
already running

= think of timer as for
oldest unacked
segment

= expiration interval:
TimeOutInterval

timeout;

< retransmit segment
that caused timeout

< restart timer
ack rcvd:

+ if ack acknowledges
previously unacked
segments

= update what is known
to be ACKed

= start timer if there are
still unacked segments

Transport Layer 3-28

TCP sender (simplified)

data received from application above

create segment, seq. #: NextSegNum
pass segment to IP (i.e., “send”)
NextSegNum = NextSegNum + length(data)
if (timer currently not running)
A T start timer

NextSegNum = InitialSeqNum
SendBase = InitialSeqgNum

timeout

retransmit not-yet-acked segment

with smallest seq. #
start timer

ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y
/* SendBase—1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

}

Transport Layer 3-29

TCP: retransmission scenarios

Host A Hos
g
\
Seq=92, 8 bytes of data
/
ACK=100

le—— timeout —

y

Seq=92, 8 bytes of data

/

ACK=100

/

=

lost ACK scenario

Host A
=L

SendBase=92

/

/
/

e—— timeout ——

SendBase=100
SendBase=120

SendBase=120

Seq=92, 8 bytes of data
Seq=100, 20 bytes of dat

\

ACK=100
ACK=120

\

Seq=92, 8

bytes of data\

\

ACK=120

premature timeout

Transport Layer 3-30

TCP: retransmission scenarios

I
(@]
wn
~t
>

ha

fo——— timeout —

Ho

e

0

/

Seq=92, 8 bytes of data

/
/

Seq=100, 20 bytes of da

ACK=100
X

ACK=120
\

Seq=120, 15 bytes of data

it

/

cumulative ACK

—

==

Transport Layer 3-31

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver T'CP receiver action
arrival of in-order segment with delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,

expected seq # already ACKed send ACK

arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-32

TCP fast retransmit

% time-out period often

relatively long: - TCP fast retransmit —
= |long delay before if sender receives 3
resending lost packet ACKs for same data
+ detect lost segments (“triple duplicate ACKs”),
via duplicate ACKs. resend unacked
= sender often sends segment with smallest
many segments back- seq #
Fo-back . " |ikely that unacked
" if segment is lost, there segment lost, so don’ t
will likely be many wait for timeout
duplicate ACKs.

Transport Layer 3-33

TCP fast retransmit

Host A Host B

— Seq=92, 8 bytes of data

\seq=1oow
\X

ACK=100

timeout

/
_ACK=100
TSeq=100, 20 bytes of data

A

A\ 4 v
fast retransmit after sender

receipt of triple duplicate ACK
Transport Layer 3-34

