
Transport Layer 3-1

Chapter 3
Transport Layer

Computer
Networking: A Top
Down Approach

6th edition
Jim Kurose, Keith Ross

Addison-Wesley
March 2012

Reti degli Elaboratori
Canale AL
Prof.ssa Chiara Petrioli
a.a. 2018/2019

We thank for the support material Prof. Kurose-Ross
All material copyright 1996-2012

J.F Kurose and K.W. Ross, All Rights Reserved

Transport Layer 3-2

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
§ segment structure
§ reliable data transfer
§ flow control
§ connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-3

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

v full duplex data:
§ bi-directional data flow

in same connection
§ MSS: maximum segment

size
v connection-oriented:

§ handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange

v flow controlled:
§ sender will not

overwhelm receiver

v point-to-point:
§ one sender, one receiver

v reliable, in-order byte
steam:
§ no �message

boundaries�
v pipelined:

§ TCP congestion and
flow control set window
size

Transport Layer 3-4

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

receive window

Urg data pointerchecksum
FSRPAUhead

len
not

used

options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Transport Layer 3-5

TCP seq. numbers, ACKs
sequence numbers:
§byte stream �number� of
first byte in segment�s
data

acknowledgements:
§seq # of next byte
expected from other side

§cumulative ACK
Q: how receiver handles
out-of-order segments
§A: TCP spec doesn�t say,
- up to implementor source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(�in-
flight�)

usable
but not
yet sent

not
usable

window size
N

sender sequence number space

source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

outgoing segment from sender

Transport Layer 3-6

TCP seq. numbers, ACKs

User
types
�C�

host ACKs
receipt

of echoed
�C�

host ACKs
receipt of
�C�, echoes
back �C�

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = �C�

Seq=79, ACK=43, data = �C�

Seq=43, ACK=80

Transport Layer 3-7

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
§ segment structure
§ reliable data transfer
§ flow control
§ connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-8

TCP reliable data transfer
v TCP creates rdt service

on top of IP�s unreliable
service
§ pipelined segments
§ cumulative acks
§ single retransmission

timer
v retransmissions

triggered by:
§ timeout events
§ duplicate acks

let�s initially consider
simplified TCP sender:
§ ignore duplicate acks
§ ignore flow control,

congestion control

Transport Layer 3-9

TCP sender events:
data rcvd from app:
v create segment with

seq #
v seq # is byte-stream

number of first data
byte in segment

v start timer if not
already running
§ think of timer as for

oldest unacked
segment

§ expiration interval:
TimeOutInterval

timeout:
v retransmit segment

that caused timeout
v restart timer
ack rcvd:
v if ack acknowledges

previously unacked
segments
§ update what is known

to be ACKed
§ start timer if there are

still unacked segments

Transport Layer 3-10

TCP sender (simplified)

wait

for

event

NextSeqNum = InitialSeqNum

SendBase = InitialSeqNum

L

create segment, seq. #: NextSeqNum
pass segment to IP (i.e., �send�)
NextSeqNum = NextSeqNum + length(data)
if (timer currently not running)

start timer

data received from application above

retransmit not-yet-acked segment
with smallest seq. #

start timer

timeout

if (y > SendBase) {
SendBase = y

/* SendBase–1: last cumulatively ACKed byte */
if (there are currently not-yet-acked segments)

start timer
else stop timer

}

ACK received, with ACK field value y

Transport Layer 3-11

TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xtim
eo

ut

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

tim
eo

ut

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

Transport Layer 3-12

TCP: retransmission scenarios

X

cumulative ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=120

Transport Layer 3-13

TCP round trip time, timeout

Q: how to set TCP
timeout value?

v longer than RTT
§ but RTT varies

v too short: premature
timeout, unnecessary
retransmissions

v too long: slow reaction
to segment loss

Q: how to estimate RTT?
v SampleRTT: measured

time from segment
transmission until ACK
receipt
§ ignore retransmissions

v SampleRTT will vary, want
estimated RTT �smoother�
§ average several recent

measurements, not just
current SampleRTT

Transport Layer 3-14

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T

(m
ill

is
ec

on
ds

)

SampleRTT Estimated RTT

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT
v exponential weighted moving average
v influence of past sample decreases exponentially fast
v typical value: a = 0.125

TCP round trip time, timeout

RT
T

(m
illi

se
co

nd
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT
EstimatedRTT

time (seconds)

Transport Layer 3-15

v timeout interval: EstimatedRTT plus �safety margin�
§ large variation in EstimatedRTT -> larger safety margin

v estimate SampleRTT deviation from EstimatedRTT:
DevRTT = (1-b)*DevRTT +

b*|SampleRTT-EstimatedRTT|

TCP round trip time, timeout

(typically, b = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT �safety margin�

Transport Layer 3-16

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that
partially or completely fills gap

TCP receiver action
delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative
ACK, ACKing both in-order segments

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer 3-17

TCP fast retransmit
v time-out period often

relatively long:
§ long delay before

resending lost packet
v detect lost segments

via duplicate ACKs.
§ sender often sends

many segments back-
to-back

§ if segment is lost, there
will likely be many
duplicate ACKs.

if sender receives 3
ACKs for same data
(�triple duplicate ACKs�),
resend unacked
segment with smallest
seq #
§ likely that unacked

segment lost, so don�t
wait for timeout

TCP fast retransmit

(�triple duplicate ACKs�),

Transport Layer 3-18

X

fast retransmit after sender
receipt of triple duplicate ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

tim
eo

ut ACK=100

ACK=100

ACK=100

TCP fast retransmit

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

Transport Layer 3-19

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
§ segment structure
§ reliable data transfer
§ flow control
§ connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-20

TCP flow control
application
process

TCP socket
receiver buffers

TCP
code

IP
code

application
OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering
(sender is sending)

from sender

receiver controls sender, so
sender won�t overflow
receiver�s buffer by transmitting
too much, too fast

flow control

Transport Layer 3-21

TCP flow control

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process
v receiver �advertises� free

buffer space by including
rwnd value in TCP header
of receiver-to-sender
segments
§ RcvBuffer size set via

socket options (typical default
is 4096 bytes)

§ many operating systems
autoadjust RcvBuffer

v sender limits amount of
unacked (�in-flight�) data to
receiver�s rwnd value

v guarantees receive buffer
will not overflow

receiver-side buffering

Transport Layer 3-22

Dynamic window - example
sender receiver Rec. Buffer

EMPTY
Exchanged param: MSS=2K,
sender ISN=2047, WIN=4K
(carried by receiver SYN)

0 4K
TCP CONN

SETUP

Application
does a 2K write 2K, seq=2048 0 4K

2K
Ack=4096, win=2048

Application
does a 3K write 2K, seq=4096

Sender blocked Ack=6144, win=0

0 4K
FULL

Application
does a 2K read

A B

Transport Layer 3-23

Dynamic window - example
sender receiver Rec. Buffer

EMPTY
Exchanged param: MSS=2K,
sender ISN=2047, WIN=4K
(carried by receiver SYN)

0 4K
TCP CONN

SETUP

Application
does a 2K write 2K, seq=2048 0 4K

2K
Ack=4096, win=2048

Application
does a 3K write 2K, seq=4096

Sender blocked Ack=6144, win=0

0 4K
FULL

Application
does a 2K readAck=6144, win=2048

0 4K
2K

Sender unblocks
may send last 1K 1K, seq=6144

Piggybacked in a packet sent from B to A

A B

Window -thus source rate- limited by reading speed and buffer size at the receiver

Transport Layer 3-24

Blocked sender deadlock problem
sender receiver Rec. Buffer

0 4K
FULL

Application read
0 4K

2K

BLOCKED

ACK=X, WIN=2K

REMAINS
BLOCKED
FOREVER!!

Since ACK does not
carry data, no ack
from sender
expected….

Transport Layer 3-25

Solution: Persist timer
r When win=0 (blocked sender), sender starts a “persist” timer

• Initially 500ms (but depends on implementation)

r When persist timer elapses AND no segment received during this
time, sender transmits “probe”
m Probe = 1byte segment; makes receiver reannounce next byte expected

and window size
• this feature necessary to break deadlock
• if receiver was still full, rejects byte
• otherwise acks byte and sends back actual win

r Persist time management (exponential backoff):
m Doubles every time no response is received
m Maximum = 60s

Transport Layer 3-26

The silly window syndrome

Ack=X, win=1
1 byte read

1 byte read

Network loaded with
tinygrams (40bytes

header + 1 payload!!)

Forever!

1 byte
Buffer FULLAck=X+1, win=0

Ack=X+1, win=1

Buffer FULL
1 byte

Ack=X+2, win=0

Buffer FULLFill up buffer until win=0

Anche se il ricevitore e’ veloce
A passare i dati al livello

applicativo inviare segmenti
piccoli in un bulk di dati

ha questo effetto

Transport Layer 3-27

Silly window solution
v Problem discovered by David Clark (MIT),

1982
v easily solved, by preventing receiver to

send a window update for 1 byte
v rule: send window update when:

• receiver buffer can handle a whole MSS
or

• half received buffer has emptied (if smaller than
MSS)

v sender also may apply rule
• by waiting for sending data when win low

Transport Layer 3-28

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
§ segment structure
§ reliable data transfer
§ flow control
§ connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-29

Connection Management
before exchanging data, sender/receiver �handshake�:
v agree to establish connection (each knowing the other willing

to establish connection)
v agree on connection parameters

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client

application

network

Socket clientSocket =
newSocket("hostname","port
number");

Socket connectionSocket =
welcomeSocket.accept();

Transport Layer 3-30

Connection establishment:
simplest approach (non TCP)

Connection request

Connection granted

Transmit data

time
time

Transport Layer 3-31

Delayed duplicate problem
REQ

ACK

Data

REQ
duplicate

duplicate

Application:
transactional (sell
100000$ stocks)

Selling other 100000$
stocks!!!!!

USER BANK

Data
What is this?
Oh my God!
Too late!!!

Transport Layer 3-32

Solution: three way handshake
Tomlinson 1975

SRC DEST
Connection request (seq=X)

Connection granted (seq=Y,ack=X+1)

Acknowledge + data (seq=X+1, ack=Y+1)

time
time

Transport Layer 3-33

Delayed duplicate detection
SEQ X

SEQ Y, ACK X+1

Data SEQ X+1, ACK Y+1

SEQ X
duplicate

duplicate

Application:
transactional (selling stocks)

What is this??? Should be
SEQ X, ACK Z!!!! STOP...

USER BANK

SEQ Z, ACK X+1

Data SEQ X+1, ACK Y+1
What is this?
Not too late: Reject SEQ X+1, ACK Z+1

Ah ah! Got the problem!

??? What a case: request with
same indicator X? anyway...

Disaster could not be avoided with a two-way handshake

Transport Layer 3-34

Three way handshake in TCP
SRC DEST

Connection request (SYN, ISN=100)

Connection granted (SYN, ISN=350, ACK=101)

Data segment (seq=101, ACK=351)

time
time

Full duplex connection: opened in both ways
SRC: performs ACTIVE OPEN

DEST: Performs PASSIVE OPEN

ACTIVE
OPEN

PASSIVE
OPEN

Transport Layer 3-35

Initial Sequence Number
v Should change in time

§RFC 793 (but not all implementations are
conforming) suggests to generate ISN as a
sample of a 32 bit counter incrementing at 4µs
rate (4.55 hour to wrap around—Maximum
Segment Lifetime much shorter)

v transmitted whenever SYN (Synchronize
sequence numbers) flag active
§ note that both src and dest transmit THEIR

initial sequence number (remember: full
duplex)

v Data Bytes numbered from ISN+1
§ necessary to allow SYN segment ack

Transport Layer 3-36

Forbidden Region
v Obiettivo: due sequence number identici non devono trovarsi in rete allo stesso tempo

v Aging dei pacchettià dopo un certo tempo MSL (Maximum Segment Lifetime) i pacchetti
eliminati dalla rete

v Initial sequence numbers basati sul clock
v Un ciclo del clock circa 4 ore; MSL circa 2 minuti.
v à Se non ci sono crash che fanno perdere il valore dell’ultimo initial sequence number

usato NON ci sono problemi (si riusa lo stesso initial sequence number ogni 4 ore circa,
quando il segmento precedentemente trasmesso con quel sequence number non è più in
rete) e non si esauriscono in tempo <MSL i sequence number

v à Cosa succede nel caso di crash? RFC suggerisce l’uso di un ‘periodo di silenzio’ in cui
non vengono inviati segmenti dopo il riavvio pari all’MSL (per evitare che pacchetti
precedenti connessioni siano in giro).

T

Forbidden region

Time

Se
qu

en
ce

 n
um

be
rs

Transport Layer 3-37

TCP Connection Management:Summary
Recall: TCP sender, receiver

establish �connection� before
exchanging data segments

v initialize TCP variables:
§ seq. #s
§ buffers, flow control info

(e.g. RcvWindow)
§ MSS

v client: connection initiator
Socket clientSocket = new
Socket("hostname","port
number");

v server: contacted by client
Socket connectionSocket =
welcomeSocket.accept();

Three way handshake:
Step 1: client host sends TCP SYN

segment to server
§ specifies initial seq #
§ no data

Step 2: server host receives SYN,
replies with SYNACK segment

§ server allocates buffers
§ specifies server initial seq. #

Step 3: client receives SYNACK,
allocates buffer and
variables,replies with ACK
segment, which may contain data

Per chiudere la connessione uno dei due estremi invia un messaggio con FIN flag a 1
a cui l’altro estremo della connessione risponde con ACK

Transport Layer 3-38

Problema dei due eserciti
v L’esercito rosso e’ globalmente più debole. Se le due pattuglie verdi attaccano

insieme lo sconfiggono, altrimenti perdono. Possono scambiarsi messaggi
relativi all’orario in cui attaccheranno e di ACK di un messaggio ricevuto. I
messaggeri che li portano possono pero’ essere catturati e quindi il messaggio
può non arrivare correttamente a destinazione. Come fanno a mettersi
d’accordo per attaccare insieme?

Transport Layer 3-39

Problema dei due eserciti
v L’esercito rosso e’ globalmente più debole. Se le due pattuglie verdi attaccano

insieme lo sconfiggono, altrimenti perdono. Possono scambiarsi messaggi
relativi all’orario in cui attaccheranno e di ACK di un messaggio ricevuto. I
messaggeri che li portano possono pero’ essere catturati e quindi il messaggio
può non arrivare correttamente a destinazione. Come fanno a mettersi
d’accordo per attaccare insieme?

Attacco alle 6

Senza ACK 1 non
Attacchera’ perche’

Non sa se 2 ha ricevuto
Il messaggio

Pattuglia 1 Pattuglia 2

Transport Layer 3-40

Problema dei due eserciti
v L’esercito rosso e’ globalmente più debole. Se le due pattuglie verdi attaccano

insieme lo sconfiggono, altrimenti perdono. Possono scambiarsi messaggi
relativi all’orario in cui attaccheranno e di ACK di un messaggio ricevuto. I
messaggeri che li portano possono pero’ essere catturati e quindi il messaggio
può non arrivare correttamente a destinazione. Come fanno a mettersi
d’accordo per attaccare insieme?

Pattuglia 1 Pattuglia 2
Attacco alle 6

OK Attacco alle 6

Senza ACK del secondo
Messaggio 2 non

attacchera’ perche’
Non sa se 1 ha ricevuto

il messaggio e sa che senza ACK
del primo messaggio 1 non

Attacchera’

Transport Layer 3-41

Problema dei due eserciti
v In generale: se N scambi di messaggi /Ack etc. necessari a raggiungere la

certezza dell’accordo per attaccare allora cosa succede se l’ultimo messaggio
‘necessario’ va perso?

v àE’ impossibile raggiungere questa certezza. Le due pattuglie non
attaccheranno mai!!

Transport Layer 3-42

Problema dei due eserciti: cosa ha
a che fare con le reti e TCP??
v Chiusura di una connessione. Vorremmo

un accordo tra le due peer entity o
rischiamo di perdere dati.

Connection Request

Accept
Data

Data

Disconnection Request (FIN)

connectedconnected

A B

A pensa che il secondo pacchetto sia stato ricevuto. La connessione e’
Stata chiusa da B prima che ciò avvenisseà secondo pacchetto perso!!!

Transport Layer 3-43

Quando si può dire che le due peer entity
abbiano raggiunto un accordo???

v Problema dei due eserciti!!!

Connection Request

Accept
Data

Data

Disconnection Request

connectedconnected

A B

Ack

Ma se l’ACK va perso????
Soluzione: si e’ disposti a correre piu’ rischi quando si butta giu’ una connessione
d quando si attacca un esercito nemico. Possibili malfunzionamenti. Soluzioni ‘di

recovery’ in questi casi

Transport Layer 3-44

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system sends
TCP FIN control segment to
server

Step 2: server receives FIN,
replies with ACK. Closes
connection, sends FIN.

client

FIN

server

ACK

ACK

FIN

close

closing

closed

tim
ed

 w
ai

t

Since it is impossible to solve the proble use simple solution:
two way handshake

Transport Layer 3-45

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

§ Enters �timed wait� - will
respond with ACK to
received FINs

Step 4: server, receives ACK.
Connection closed.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

tim
ed

 w
ai

t
closed

Transport Layer 3-46

TCP Connection Management (examples)

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

tim
ed

 w
ai

t

closed

client

FIN

server

ACK

FIN

closing

closing

closed

FIN ACK

FIN

ACK

Transport Layer 3-47

Connection states - Client

Transport Layer 3-48

Connection States - Server

Transport Layer 3-49

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait
for 2*max

segment lifetime

CLOSED

TCP: closing a connection

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state

ESTABESTAB

Transport Layer 3-50

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
§ segment structure
§ reliable data transfer
§ flow control
§ connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-51

congestion:
v informally: �too many sources sending too much

data too fast for network to handle�
v different from flow control!
v manifestations:

§ lost packets (buffer overflow at routers)
§ long delays (queueing in router buffers)

v a top-10 problem!

Principles of congestion control

Transport Layer 3-52

Causes/costs of congestion: scenario 1

v two senders, two
receivers

v one router, infinite
buffers

v no retransmission

v large delays when
congested

v maximum
achievable
throughput

unlim ited shared
output link buffers

H ost A
l in : orig inal data

H ost B

lout

Transport Layer 3-53

Causes/costs of congestion: scenario 2

v one router, finite buffers
v sender retransmission of lost packet

finite shared output
link buffers

Host A l in : original
data

Host B

lout

l 'in : original data, plus
retransmitted data

Transport Layer 3-54

Causes/costs of congestion: scenario 2
v always we want: (goodput)
v Second step …retransmission only when loss:

v retransmission of delayed (not lost) packet makes larger (than
second case) for same

lin lout=

lin lout>

lin
lout

�costs� of congestion:
r more work (retrans) for given �goodput�
r unneeded retransmissions: link carries multiple copies of pkt

Caso in cui ciascun pacchetto instradato
Sia trasmesso mediamente due volte dal router

Transport Layer 3-55

Causes/costs of congestion: scenario 3
v four senders
v multihop paths
v timeout/retransmit

linQ: what happens as
and increase ?lin

finite shared output
link buffers

H ost A
l in : original data

H ost B
lout

l 'in : original data, plus
retransmitted data

D-B traffic high

D

Transport Layer 3-56

Causes/costs of congestion: scenario 3

Another �cost� of congestion:
r when packet dropped, any �upstream transmission

capacity used for that packet was wasted!

H
o
s
t
A

H
o
s
t
B

l
o
u
t

Transport Layer 3-57

Approaches towards congestion control

two broad approaches towards congestion control:

end-end congestion
control:

v no explicit feedback
from network

v congestion inferred
from end-system
observed loss, delay

v approach taken by
TCP

network-assisted
congestion control:

v routers provide
feedback to end systems
§single bit indicating

congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

§explicit rate for
sender to send at

Transport Layer 3-58

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
§ segment structure
§ reliable data transfer
§ flow control
§ connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-59

TCP congestion control: additive increase
multiplicative decrease

v approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs
§ additive increase: increase cwnd by 1 MSS every

RTT until loss detected
§multiplicative decrease: cut cwnd in half after loss
cw

nd
:

TC
P

 s
en

de
r

co
ng

es
tio

n
w

in
do

w
 s

iz
e

AIMD saw tooth
behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

Transport Layer 3-60

TCP Congestion Control: details

v sender limits transmission:

v cwnd is dynamic, function
of perceived network
congestion

TCP sending rate:
v roughly: send cwnd

bytes, wait RTT for
ACKS, then send
more bytes

last byte
ACKed sent, not-

yet ACKed
(�in-
flight�)

last byte
sent

cwnd

LastByteSent-
LastByteAcked

< cwnd

sender sequence number space

rate ~~
cwnd
RTT

bytes/sec

Transport Layer 3-61

TCP Slow Start
v when connection begins,

increase rate
exponentially until first
loss event:
§ initially cwnd = 1 MSS
§ double cwnd every RTT
§ done by incrementing
cwnd for every ACK
received

v summary: initial rate is
slow but ramps up
exponentially fast

Host A

one segment

R
TT

Host B

time

two segments

four segments

Transport Layer 3-62

TCP: detecting, reacting to loss

v loss indicated by timeout:
§cwnd set to 1 MSS;
§window then grows exponentially (as in slow start)

to threshold, then grows linearly
v loss indicated by 3 duplicate ACKs: TCP RENO

§ dup ACKs indicate network capable of delivering
some segments

§cwnd is cut in half window then grows linearly
v TCP Tahoe always sets cwnd to 1 (timeout or 3

duplicate acks)

Transport Layer 3-63

Q: when should the
exponential
increase switch to
linear?

A: when cwnd gets
to 1/2 of its value
before timeout.

Implementation:
v variable ssthresh
v on loss event, ssthresh

is set to 1/2 of cwnd just
before loss event

TCP: switching from slow start to CA

Transport Layer 3-64

Summary: TCP Congestion Control

tim eout

ssthresh = cw nd/2
cw nd = 1 M SS

dupAC Kcount = 0
retransm it m issing segm ent

L

cw nd > ssthresh

congestion
avoidance

cw nd = cw nd + M SS (M SS/cw nd)
dupAC Kcount = 0

transm it new segm ent(s), as a llow ed

new AC K.

dupAC Kcount++

duplicate AC K

fast
recovery

cw nd = cw nd + M SS
transm it new segm ent(s), as a llow ed

duplicate AC K

ssthresh= cw nd/2
cw nd = ssthresh + 3

retransm it m issing segm ent

dupAC Kcount == 3

tim eout

ssthresh = cw nd/2
cw nd = 1
dupAC Kcount = 0
retransm it m issing segm ent

ssthresh= cw nd/2
cw nd = ssthresh + 3
retransm it m issing segm ent

dupAC Kcount == 3cw nd = ssthresh
dupAC Kcount = 0

N ew AC K

slow
start

tim eout

ssthresh = cw nd/2
cw nd = 1 M SS

dupAC Kcount = 0
retransm it m issing segm ent

cw nd = cw nd+M SS
dupAC Kcount = 0
transm it new segm ent(s), as a llow ed

new AC KdupAC Kcount++

duplicate AC K

L

cw nd = 1 M SS
ssthresh = 64 KB
dupAC Kcount = 0

New
ACK!

New
ACK!

New
ACK!

Transport Layer 3-65

TCP throughput
v avg. TCP throughput as function of window size, RTT?

§ ignore slow start, assume always data to send
v W: window size (measured in bytes) where loss occurs

§ avg. window size (# in-flight bytes) is ¾ W
§ avg. thruput is 3/4W per RTT

W

W/2

avg TCP thruput = 3
4

W
RTT bytes/sec

Transport Layer 3-66

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP Fairness

TCP connection 2

Transport Layer 3-67

Why is TCP fair?
two competing sessions:
v additive increase gives slope of 1, as throughout increases
v multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

C
on

ne
ct

io
n

2
th

ro
ug

hp
ut

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Transport Layer 3-68

Fairness (more)
Fairness and UDP
v multimedia apps often

do not use TCP
§ do not want rate

throttled by congestion
control

v instead use UDP:
§ send audio/video at

constant rate, tolerate
packet loss

Fairness, parallel TCP
connections

v application can open
multiple parallel
connections between two
hosts

v web browsers do this
v e.g., link of rate R with 9

existing connections:
§ new app asks for 1 TCP, gets rate

R/10
§ new app asks for 11 TCPs, gets R/2

Transport Layer 3-69

network-assisted congestion control:
§ two bits in IP header (ToS field) marked by network router

to indicate congestion
§ congestion indication carried to receiving host
§ receiver (seeing congestion indication in IP datagram))

sets ECE bit on receiver-to-sender ACK segment to
notify sender of congestion

Explicit Congestion Notification (ECN)

source
application
transport
network
link

physical

destination
application
transport
network
link

physical

ECN=00 ECN=11

ECE=1

IP datagram

TCP ACK segment

Transport Layer 3-70

Chapter 3: summary
v principles behind

transport layer services:
§multiplexing,

demultiplexing
§ reliable data transfer
§ flow control
§ congestion control

v instantiation,
implementation in the
Internet
§ UDP
§ TCP

next:
v leaving the

network �edge�
(application,
transport layers)

v into the network
�core�

