Chapter 4 Network Layer

Reti di Elaboratori
Corso di Laurea in Informatica

Università degli Studi di Roma "La Sapienza"
Canale A-L
Prof.ssa Chiara Petrioli

Parte di queste slide sono state prese dal materiale associato al libro Computer Networking: A Top Down Approach, 5th edition. All material copyright 1996-2009 J.F Kurose and K.W. Ross, All Rights Reserved

Thanks also to Antonio Capone, Politecnico di Milano, Giuseppe Bianchi and Francesco LoPresti, Un. di Roma Tor Vergata

Chapter 4: Network Layer

4.1 Introduction
4.2 Virtual circuit and datagram networks
r 4.3 What's inside a router
r 4.4 IP: Interne \dagger Protocol
m Datagram format
m IPv4 addressing
m ICMP
m IPv6
r 4.5 Routing algorithms
m Link state
m Distance Vector
m Hierarchical routing
r 4.6 Routing in the Internet
m RIP
m OSPF
m BGP
r 4.7 Broadcast and multicast routing

Interplay between routing, forwarding

Graph abstraction

Graph: $G=(N, E)$

$N=$ set of routers $=\{u, v, w, x, y, z\}$
$E=$ set of links $=\{(u, v),(u, x),(v, x),(v, w),(x, w),(x, y),(w, y),(w, z),(y, z)\}$

Remark: Graph abstraction is useful in other network contexts
Example: P2P, where N is set of peers and E is set of TCP connections

Graph abstraction: costs

- $c\left(x, x^{\prime}\right)=$ cost of link $\left(x, x^{\prime}\right)$
- e.g., $c(w, z)=5$
- cost could always be 1 , or inversely related to bandwidth, or inversely related to congestion

Cost of path $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{p}\right)=c\left(x_{1}, x_{2}\right)+c\left(x_{2}, x_{3}\right)+\ldots+c\left(x_{p-1}, x_{p}\right)$
Question: What's the least-cost path between u and z ?

Routing algorithm: algorithm that finds least-cost path

Routing Algorithm classification

Global or decentralized information?

Global:

r all routers have complete topology, link cost info
r "link state" algorithms
Decentralized:
r router knows physicallyconnected neighbors, link costs to neighbors
r iterative process of computation, exchange of info with neighbors
r "distance vector" algorithms

Static or dynamic?

Static:
r routes change slowly over time
Dynamic:
r routes change more quickly
m periodic update
m in response to link cost changes

Chapter 4: Network Layer

4.1 Introduction
r 4.2 Virtual circuit and datagram networks
r 4.3 What's inside a router
r 4.4 IP: Interne \dagger Protocol
m Datagram format
m IPv4 addressing
m ICMP
m IPv6
r 4.5 Routing algorithms
m Link state
m Distance Vector
m Hierarchical routing
r 4.6 Routing in the
Internet
m RIP
m OSPF
m BGP
r 4.7 Broadcast and multicast routing

A Link-State Routing Algorithm

Dijkstra's algorithm
r net topology, link costs known to all nodes
m accomplished via "link state broadcast"
m all nodes have same info
r computes least cost paths from one node ('source") to all other nodes
m gives forwarding table for that node
r iterative: after k iterations, know least cost path to k dest.'s

Notation:
$r \quad c(x, y)$: link cost from node x to y; $=\infty$ if not direct neighbors
$r \quad D(v)$: current value of cost of path from source to dest. v
$r \mathrm{p}(\mathrm{v})$: predecessor node along path from source to v
r N': set of nodes whose least cost path definitively known

Dijsktra's Algorithm

1 Initialization:
$2 \mathrm{~N}^{\prime}=\{\mathrm{u}\}$
3 for all nodes v
4 if v adjacent to u
5 then $D(v)=c(u, v)$
6 else $D(v)=\infty$
7
Loop
9 find w not in N^{\prime} such that $D(w)$ is a minimum
10 add w to N^{\prime}
11 update $\mathrm{D}(\mathrm{v})$ for all v adjacent to w and not in N^{\prime} :
$12 \quad D(v)=\min (D(v), D(w)+c(w, v))$
$13 /^{*}$ new cost to v is either old cost to v or known
14 shortest path cost to w plus cost from w to v*/
15 until all nodes in $\mathbf{N}^{\mathbf{\prime}}$

Dijkstra's algorithm: example

Step	N^{\prime}	$\mathrm{D}(\mathrm{v}) \mathrm{p}(\mathrm{v})$	$D(w), p(w)$	$D(x), p(x)$	$D(y), p(y)$	$D(z), p(z)$
0	u	2,u	5,u	- $1, u$	∞	∞
1	UX	2,u	4, x		2,x	∞
2	uxy	-2,u	3,y			4,y
3	uxyv	-	-3, y			4,y
4	uxyvw					4,y
5	uxyvwz					

Network Layer 4-10

Dijkstra's algorithm: example (2)

Resulting shortest-path tree from u:

Resulting forwarding table in u:

destination	link
v	(u, v)
x	(u, x)
y	(u, x)
w	(u, x)
z	(u, x)

Dijkstra's algorithm, discussion

Algorithm complexity: n nodes
r each iteration: need to check all nodes, w, not in N
$r n(n+1) / 2$ comparisons: $O\left(n^{2}\right)$
r more efficient implementations possible: O (nlogn)
Oscillations possible:
r e.g., link cost = amount of carried traffic

initially

... recompute routing

... recompute

... recompute

Chapter 4: Network Layer

4.1 Introduction
r 4.2 Virtual circuit and datagram networks
r 4.3 What's inside a router
r 4.4 IP: Interne \dagger Protocol
m Datagram format
m IPv4 addressing
m ICMP
m IPv6
r 4.5 Routing algorithms
m Link state
m Distance Vector
m Hierarchical routing
r 4.6 Routing in the
Internet
m RIP
m OSPF
m BGP
r 4.7 Broadcast and multicast routing

Bellman-Ford

Given a graph $G=(N, A)$ and a node s finds the shortest path from s to every node in N.
A shortest walk from s to i subject to the constraint that the walk contains at most h arcs and goes through node sonly once, is denoted shortest (<=h) walk and its length is D_{i}.

Bellman-Ford rule:
Initiatilization $D_{s}=0$, for all $h ; w_{i, k}=$ infinity if (i,k) NOT in $A ; w_{k, k}=0$; $D_{i}^{0}=$ infinity for all il=s.
Iteration:

$$
D^{h+1}=\min _{k}\left[w_{i, k}+D_{k}{ }_{k}\right]
$$

Assumption: non negative cycles (this is the case in a network!!) The Bellman-Ford algorithm first finds the one-arc shortest walk lengths, then the two-arc shortest walk length, then the three-arc...etc. \rightarrow distributed version used for routing

Bellman-Ford

$$
D^{h+1}=\min _{k}\left[w_{i, k}+D_{k}^{h_{k}}\right]
$$

Can be computed locally. What do I need?

For each neighbor k, I need to know
-the cost of the link to it (known info)
-The cost of the best route from the neighbor k to the destination (\leftarrow this is an info that each of my neighbor has to send to me via messages)

In the real world: I need to know the best routes among each pair of nodes \rightarrow we apply distributed Bellman Ford to get the best route for each of the possible destinations

Distance Vector Routing Algorithm - Distributed Bellman Ford

iterative:
r continues until no nodes exchange info.
r self-terminating: no "signal" to stop
asynchronous:
r nodes need not exchange info/iterate in lock step!
Distributed, based on local info:
r each node communicates only with directly-attached neighbors

Distance Table data structure each node has its own
r row for each possible destination
r column for each directlyattached neighbor to node
r example: in node X, for dest. Y via neighbor Z :

Cost associated to the (X, Z) link
$\left.\begin{array}{rl}D^{X}(Y, Z) & =\begin{array}{l}\text { distance from } X \text { to } \\ Y, \text { via } Z \text { as next hop }\end{array} \\ = & c(X, Z)+\min _{w}\left\{D^{Z}(Y, w)\right\}\end{array}\right\}$

Distance Table: example

Distance table in node E after the algorithm has converged

$$
\begin{aligned}
D^{E}(C, D) & =c(E, D)+\min _{w}\left\{D^{D}(C, w)\right\} \\
& =2+2=4 \\
D^{E}(A, D) & =c(E, D)+\min _{w}\left\{D^{D}(A, w)\right\} \\
& =2+3=5
\end{aligned}
$$

$$
\begin{aligned}
D^{E}(A, B) & =c(E, B)+\min _{w}\left\{D^{B}(A, w)\right\} & & \begin{array}{l}
\text { First } \\
\\
\\
\end{array}{ }^{=} 8+6=14 \text { example }
\end{aligned}
$$

Distance table gives routing table

$\mathrm{D}^{\mathrm{E}}()$	A	B	D
A	(1)	14	5
ᄃ B	7	8	5)
- ${ }_{\text {¢ }}^{\text {¢ }}$	6	9	
D	4	11	(2)

Distance table \longrightarrow Routing table

Distance Vector Routing: overview

Iterative, asynchronous: each local iteration caused by:
r local link cost change
r message from neighbor: its least cost path change from neighbor
Distributed:
r each node notifies neighbors only when its least cost path to any destination changes
m neighbors then notify their neighbors if necessary

Each node:

wait for (change in local link cost of msg from neighbor)

recompute distance table
if least cost path to any dest has changed, notify neighbors

Distance Vector Algorithm:

At all nodes, X :

1 Initialization:
2 for all adjacent nodes v:
$\left.3 D_{\left({ }^{X}(*)\right.}{ }^{*}, v\right)=$ infinity $\quad / *$ the * operator means "for all rows" */
$4 \quad D^{X}(v, v)=c(X, v)$
5 for all destinations, y
6 send $\min _{w} D^{X}(y, w)$ to each neighbor $/ * w$ over all X 's neighbors */

From the node to whatever destination going through v

Distance Vector Algorithm (cont.):

$\rightarrow 8$ loop

9 wait (until I see a link cost change to neighbor V
10 or until I receive update from neighbor V)
11
if ($c(X, V)$ changes by d)
13 /* change cost to all dest's via neighbor v by d */
14 /* note: d could be positive or negative */
15 for all destinations y : $\mathrm{D}^{\mathrm{X}}(\mathrm{y}, \mathrm{V})=\mathrm{D}^{\mathrm{X}}(\mathrm{y}, \mathrm{V})+\mathrm{d}$
16
17 else if (update received from V wrt destination Y)
18 /* shortest path from V to some Y has changed */
19 /* V has sent a new value for its $\min _{\mathrm{w}} \mathrm{DV}(\mathrm{Y}, \mathrm{w})$ */
$20 \quad / *$ call this received new value is "newval" */
21 for the single destination $y: D^{X}(Y, V)=c(X, V)+$ newval
22
23
24 send new value of $\min _{w} D^{X}(Y, w)$ to all neighbors
25
26 forever

Distance Vector Algorithm: example

Cost updates from the neighbors are used for sake of recomputing The best routes and may lead to new cost updates... Network Layer 4-22

Distance Vector Algorithm: example

Network Layer 4-23

