DIPARTIMENTO
DI INFORMATICA N[

b/ UNIVERSITA DI ROMA
Via Salaria 113 - 00198, Roma

%4 SAPIENZA

Chapter 4
Network Layer

Reti di Elaboratori
Corso di Laurea in Informatica
Universita degli Studi di Roma "La Sapienza”
Canale A-L
Prof.ssa Chiara Petrioli

Parte di queste slide sono state prese dal materiale associato al libro

Computer Networking: A Top Down Approach , Sth edition.
All material copyright 1996-2009

J.F Kurose and K.W. Ross, All Rights Reserved

Thanks also to Antonio Capone, Politecnico di Milano, Giuseppe Bianchi and
Francesco LoPresti, Un. di Roma Tor Vergata

Chapter 4: Network Layer

r 4.1 Introduction r 4.5 Routing algorithms
r 4.2 Virtual circuit and m Link state
datagram networks m Distance Vector
- 4.3 What's inside a m Hierarchical routing
router r 4.6 Routing in the
r 4.4 IP: Internet Internet
Protocol m RIP
m Datagram format m OSPF
m IPv4 addressing m BGP
m TCMP r 4.7 Broadcast and
m IPvé multicast routing

Network Layer 4-2

Interplay between routing, forwarding

routing algorithm

local forwarding table
header value |output link

0100 | 3
0101 | 2
0111 | 2
1001 | 1

value in arriving %
packet’s header;

% | | Network Layer 4-3

Graph abstraction

Graph: G = (N,E)
N =setof routers={u,v,w, x,y,2z}

E = set of links ={ (u,v), (u,x), (v,x), (v,w), (X,w), (X,y), (W,y), (W,z), (Y,2) }

Remark: Graph abstraction is useful in other network contexts

Example: P2P, where N is set of peers and E is set of TCP connections

Network Layer 4-4

Graph abstraction: costs

* ¢(x,x") = cost of link (x,x')
-eqg.,cw,z)=5

- cost could always be 1, or

or inversely related to
congestion

Cost of path (x, Xp, X3,..., Xp) = €(X1,Xp) + €(Xp,X3) + ... + €(X,1,X,)

Question: What's the least-cost path between uand z ?

Routing algorithm: algorithm that finds least-cost path

Network Layer

inversely related to bandwidth,

4-5

Routing Algorithm classification

Global or decentralized S+tatic or dynamic?
information? Static:
Global:

rall routers have complete " routes change slowly

topology, link cost info over time
¢ "link state"” algorithms Dynamic:
Decentralized: r routes change more
r router knows physically- quickly

connected neighbors, link odi dat
costs to neighbors m periodic Upaate

r iterative process of m in response to link

computation, exchange of cost changes
info with neighbors

r “distance vector” algorithms

Network Layer 4-6

Chapter 4: Network Layer

r 4.1 Introduction r 4.5 Routing algorithms
r 4.2 Virtual circuit and m Link state
datagram networks m Distance Vector
- 4.3 What's inside a m Hierarchical routing
router r 4.6 Routing in the
r 4.4 IP: Internet Internet
Protocol m RIP
m Datagram format m OSPF
m IPv4 addressing m BGP
m TCMP r 4.7 Broadcast and
m IPvé multicast routing

Network Layer 4-7

A Link-State Routing Algorithm

Dijkstra's algorithm Notation:

rnet fopology, link costs r c(X,Y): link cost from node
known to all nodes X toy. = o if not direct
m accomplished via "link neighbors

state broadcast . r D(v): current value of cost
m all nodes have same info of path from source to

r computes least cost paths dest. v
from one node (‘source"”) to
all other nodes

m gives forwarding table ,
for that node r N': set of nodes whose
least cost path definitively
known

r P(V): predecessor node
along path from source to v

r iterative: after k
iterations, know least cost
path to k dest.'s

Network Layer 4-8

Dijsktra’'s Algorithm

1 Initialization:

2 N'={u}

3 forall nodes v

4 if vadjacentto u
then D(v) = c(u,v)

else D(v) = =

(\‘8 Loop

find w not in N' such that D(w) is a minimum
10 add wto N'
11 update D(v) for all v adjacent to w and not in N' :
12 D(v) = min(D(v), D(w) + ¢(w,V))
13 /" new cost to v is either old cost to v or known
u4 shortest path cost to w plus cost from w to v */

1

5 until all nodes in N’

Network Layer 4-9

Dijkstra's algorithm: example

Step N'__D(v),p(v) D(w),p(w) D(x),p(x) D(y).p(y) D(z),p(2)

|~ |WOIN|—=
C
>
e
<
w
<

Network Layer 4-10

Dijkstra's algorithm: example (2)

Resulting shortest-path tree from u:

Sw2

-

Resulting forwarding table in u:

destination

link

N & <X X <

(uv)
(u.x)
(u.x)
(u,x)
(u,x)

Network Layer 4-11

Dijkstra’s algorithm, discussion

Algorithm complexity: n nodes

r each iteration: need to check all nodes, w, not in N
r n(n+1)/2 comparisons: O(n?)

r more efficient implementations possible: O(nlogn)
Oscillations possible:

r e.g., link cost = amount of carried traffic

\1+e 2+e +e .
ED% Ov{re‘/ ’ Eﬁ%{ ’ Tov{re e T

recompu‘re r'ecompu’re r'ecompu’re

mmally routing

Network Layer 4-12

Chapter 4: Network Layer

r 4.1 Introduction r 4.5 Routing algorithms
r 4.2 Virtual circuit and m Link state
datagram networks m Distance Vector
- 4.3 What's inside a m Hierarchical routing
router r 4.6 Routing in the
r 4.4 IP: Internet Internet
Protocol m RIP
m Datagram format m OSPF
m IPv4 addressing m BGP
m TCMP r 4.7 Broadcast and
m IPvé multicast routing

Network Layer 4-13

Bellman-Ford

Given a graph 6=(N,A) and a node s finds the shortest path
from s to every node in N.

A shortest walk from sto i subject to the constraint that the walk
contains at most h arcs and goes through node s only once, is denoted
shortest(<=h) walk and its length is D"..

Bellman-Ford rule:

Initiatilization D"=0, for all h; w;, = infinity if (i,k) NOT in A; w, =0:
DO,=infinity for all il=s.

Iteration:

D"L=miny [w;) + DA\]
Assumption: non negative cycles (this is the case in a networkl!)
The Bellman-Ford algorithm first finds the one-arc
shortest walk lengths, then the two-arc shortest walk
length, then the three-arc..etc. >distributed version
used for routing Network Layer 4-14

Bellman-Ford

DLi=miny [w;) + D"]

Can be computed locally.
What do I need?

For each neighbor k, I need to know

-the cost of the link to it (known info)

-The cost of the best route from the neighbor k to the destination
(< this is an info that each of my neighbor has to send to me via
messages)

In the real world: I need to know the best routes among each
pair of nodes - we apply distributed Bellman Ford to get the best
route for each of the possible destinations Network Layer 4-15

Distance Vector Routing Algorithm

-Distributed Bellman Ford

iIterative:
r continues until no
nodes exchange info.

r self-terminating. no
“signal” to stop

asynchronous:

r nodes need not
exchange info/iterate
in lock stepl!

Distributed, based on
local info:

r each node
communicates only with

directly-attached
heighbors

Distance Table data structure
each node has its own
row for each possible destination

column for each directly-
attached neighbor to node

example: in node X, for dest. Y
via neighbor Z:

r

r

Cost associated to the (X,Z) link

D (Y,2)

distance from X to
—\ 'Y, via Z as next hop

_ o(X,2) + minW{DZ(Y,w)}

re
Info maintained at Z. Min must
be communicatadetwork Layer 4-16

Distance Table: example

Distance table in node E after the
algorithm has converged

E

cost to destination via

D')A B D
AD s
sB|7 8 (5
D (C,D) = c(E\D) + minW{DD(C,W)} E
. = 242 =4 é Cl 6 9 @
D (A,D) = c(E,D in {D (A
(A.D) _ 2(3 _);mmw{loop! Bestwath D | 4 @
E - et from%goes thro
D (A,B) = c(E.B) + min {D™(Aw)] _—
= 8+6 =14 loop! example

Path B-C-D-E-A*

Network Layer 4-17

Distance table gives routing table

E cost to destination via

Outgoing link

D () A B D to use, cost
Al(1) 14 5 Al A
s B|7 8 < B| D5

©

gCle 9 (4 g C| D4
D4 11 (2 D| D2

Distance table » Routing table

Network Layer 4-18

Distance Vector Routing: overview

Iterative, asynchronous: Each node:

each local iteration caused

by: l
rlocal link cost change walt for (change in local link
r message from neighbor: its cost of msg from neighbor)

least cost path change
from neighbor

Distributed:
r each node notifies

neighbors only when its
least cost path to any

recompute distance table

destination changes if least cost 6ath to any dest
m neighbors then notify has changed, notify
their neighbor's if neighbors |
necessary

Network Layer 4-19

Distance Vector Algorithm:

At all nodes, X:

1 Initialization:
2 for all adjacent nodes v:
3 DX(v) = infinity /* the * operator means "for all rows" */

4 (V,v) = ¢(X,v)
5 for/all destlnat)?ns y
6 end min D (y,w) to each neighbor /* w over all X's neighbors */

From the node to whatever destination going through v

Network Layer 4-20

Distance Vector Algorithm (cont.):

— 8 loop
9 wait (until | see a link cost change to neighbor V
10 or until | receive update from neighbor V)
11

12 if (c(X,V) changes by d)

13 /* change cost to all dest's via neighbor v by d */

14 /* note: d could be positive or negative */

15 for all destinations y: DX(y,V) = DX(y,V) +d

16

17 else if (update received from V wrt destination Y)

18 /* shortest path from V to some Y has changed */

19 /" V has sent a new value for its min, DV(Y,w) */

20 /* call this received new value is "newval" */

21 for the single destination y: DX(Y,V) = ¢(X,V) + newval
22

23 if we have a new min,, DX(Y,w)for any destination Y
24 send new value of min, D”(Y,w) to all neighbors

25

26 forever Network Layer 4-21

S

Distance Vector Algorithm: example

cost via
[;(Y Z
Y
Z

cost via
] x v

cost via
[;(| Y Z

DY| (;?stviza
e X @ s
tz| 9 @

£ N
Sx| 7 ©)
evl 9 @

cost via
[;(| Y Z

cost via
DZ| X Y

Cost updates from the neighbors are used for sake of recomputing

The best routes and may lead to new cost updates..

Network Layer 4-22

Distance Vector Algorithm: example

~0noa ~ooQ

=~ un o Qo

cost via
Z

5’
Y
Z

@co
w (D

cost via
Z

N X U_<

@co
w (D

cost via

@
= @

~0n o Qo

8(cifst viZa
Y @ 8
z|1 (@) 7

Line 21 of the algorithm description
DX(Y.2) = c(X,2) + min {D*

= 7+41 =8

Y,w)}

DX(ZY) = c(X.Y) + min (D' (Z,w)
= 2+1=3

Network Layer 4-23

