
Network Layer 4-1

Reti di Elaboratori

Corso di Laurea in Informatica

Università degli Studi di Roma “La Sapienza”

Canale A-L

Prof.ssa Chiara Petrioli

Parte di queste slide sono state prese dal materiale associato al libro

Computer Networking: A Top Down Approach , 5th edition.

All material copyright 1996-2009

J.F Kurose and K.W. Ross, All Rights Reserved
Thanks also to Antonio Capone, Politecnico di Milano, Giuseppe Bianchi and

Francesco LoPresti, Un. di Roma Tor Vergata

Chapter 4
Network Layer

Network Layer 4-2

Chapter 4: Network Layer

r 4. 1 Introduction

r 4.2 Virtual circuit and
datagram networks

r 4.3 What’s inside a
router

r 4.4 IP: Internet
Protocol

m Datagram format

m IPv4 addressing

m ICMP

m IPv6

r 4.5 Routing algorithms
m Link state

m Distance Vector

m Hierarchical routing

r 4.6 Routing in the
Internet

m RIP

m OSPF

m BGP

r 4.7 Broadcast and
multicast routing

Network Layer 4-3

1

23

0111

value in arriving

packet’s header

routing algorithm

local forwarding table

header value output link

0100

0101
0111

1001

3

2
2

1

Interplay between routing, forwarding

Network Layer 4-4

u

yx

wv

z
2

2

1
3

1

1

2

5
3

5

Graph: G = (N,E)

N = set of routers = { u, v, w, x, y, z }

E = set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

Graph abstraction

Remark: Graph abstraction is useful in other network contexts

Example: P2P, where N is set of peers and E is set of TCP connections

Network Layer 4-5

Graph abstraction: costs

u

yx

wv

z
2

2

1
3

1

1

2

5
3

5 • c(x,x’) = cost of link (x,x’)

- e.g., c(w,z) = 5

• cost could always be 1, or
inversely related to bandwidth,
or inversely related to
congestion

Cost of path (x1, x2, x3,…, xp) = c(x1,x2) + c(x2,x3) + … + c(xp-1,xp)

Question: What’s the least-cost path between u and z ?

Routing algorithm: algorithm that finds least-cost path

Network Layer 4-6

Routing Algorithm classification

Global or decentralized
information?

Global:

r all routers have complete
topology, link cost info

r “link state” algorithms

Decentralized:

r router knows physically-
connected neighbors, link
costs to neighbors

r iterative process of
computation, exchange of
info with neighbors

r “distance vector” algorithms

Static or dynamic?
Static:

r routes change slowly
over time

Dynamic:

r routes change more
quickly

m periodic update

m in response to link
cost changes

Network Layer 4-7

Chapter 4: Network Layer

r 4. 1 Introduction

r 4.2 Virtual circuit and
datagram networks

r 4.3 What’s inside a
router

r 4.4 IP: Internet
Protocol

m Datagram format

m IPv4 addressing

m ICMP

m IPv6

r 4.5 Routing algorithms
m Link state

m Distance Vector

m Hierarchical routing

r 4.6 Routing in the
Internet

m RIP

m OSPF

m BGP

r 4.7 Broadcast and
multicast routing

Network Layer 4-8

A Link-State Routing Algorithm

Dijkstra’s algorithm
r net topology, link costs

known to all nodes

m accomplished via “link
state broadcast”

m all nodes have same info

r computes least cost paths
from one node (‘source”) to
all other nodes

m gives forwarding table
for that node

r iterative: after k
iterations, know least cost
path to k dest.’s

Notation:

r c(x,y): link cost from node
x to y; = ∞ if not direct
neighbors

r D(v): current value of cost
of path from source to
dest. v

r p(v): predecessor node
along path from source to v

r N': set of nodes whose
least cost path definitively
known

Network Layer 4-9

Dijsktra’s Algorithm

1 Initialization:

2 N' = {u}
3 for all nodes v
4 if v adjacent to u
5 then D(v) = c(u,v)
6 else D(v) = ∞
7
8 Loop

9 find w not in N' such that D(w) is a minimum
10 add w to N'
11 update D(v) for all v adjacent to w and not in N' :
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
14 shortest path cost to w plus cost from w to v */
15 until all nodes in N'

Network Layer 4-10

Dijkstra’s algorithm: example

Step
0
1
2
3
4
5

N'
u

ux
uxy

uxyv
uxyvw

uxyvwz

D(v),p(v)
2,u
2,u
2,u

D(w),p(w)
5,u
4,x
3,y
3,y

D(x),p(x)
1,u

D(y),p(y)
∞

2,x

D(z),p(z)
∞
∞

4,y
4,y
4,y

u

yx

wv

z
2

2

1
3

1

1

2

5
3

5

Network Layer 4-11

Dijkstra’s algorithm: example (2)

u

yx

wv

z

Resulting shortest-path tree from u:

v
x

y

w

z

(u,v)

(u,x)

(u,x)

(u,x)

(u,x)

destination link

Resulting forwarding table in u:

Network Layer 4-12

Dijkstra’s algorithm, discussion

Algorithm complexity: n nodes
r each iteration: need to check all nodes, w, not in N
r n(n+1)/2 comparisons: O(n2)
r more efficient implementations possible: O(nlogn)

Oscillations possible:
r e.g., link cost = amount of carried traffic

A

D

C

B
1 1+e

e0

e

1 1

0 0

A

D

C

B
2+e 0

00
1+e 1

A

D

C

B
0 2+e

1+e1
0 0

A

D

C

B
2+e 0

e0
1+e 1

initially
… recompute

routing
… recompute … recompute

Network Layer 4-13

Chapter 4: Network Layer

r 4. 1 Introduction

r 4.2 Virtual circuit and
datagram networks

r 4.3 What’s inside a
router

r 4.4 IP: Internet
Protocol

m Datagram format

m IPv4 addressing

m ICMP

m IPv6

r 4.5 Routing algorithms
m Link state

m Distance Vector

m Hierarchical routing

r 4.6 Routing in the
Internet

m RIP

m OSPF

m BGP

r 4.7 Broadcast and
multicast routing

Network Layer 4-14

Bellman-Ford
Given a graph G=(N,A) and a node s finds the shortest path

from s to every node in N.
A shortest walk from s to i subject to the constraint that the walk

contains at most h arcs and goes through node s only once, is denoted
shortest(<=h) walk and its length is Dh

i.

Bellman-Ford rule:

Initiatilization Dh
s=0, for all h; wi,k = infinity if (i,k) NOT in A; wk,k =0;

D0
i=infinity for all i!=s.

Iteration:

Dh+1
i=mink [wi,k + Dh

k]

Assumption: non negative cycles (this is the case in a network!!)

The Bellman-Ford algorithm first finds the one-arc
shortest walk lengths, then the two-arc shortest walk
length, then the three-arc…etc. �distributed version
used for routing

Network Layer 4-15

Bellman-Ford

Dh+1
i=mink [wi,k + Dh

k]

Can be computed locally.

What do I need?

For each neighbor k, I need to know

-the cost of the link to it (known info)

-The cost of the best route from the neighbor k to the destination

(this is an info that each of my neighbor has to send to me via

messages)

In the real world: I need to know the best routes among each

pair of nodes ���� we apply distributed Bellman Ford to get the best

route for each of the possible destinations

Network Layer 4-16

Distance Vector Routing Algorithm
-Distributed Bellman Ford

iterative:
r continues until no

nodes exchange info.
r self-terminating: no

“signal” to stop

asynchronous:
r nodes need not

exchange info/iterate
in lock step!

Distributed, based on
local info:

r each node
communicates only with
directly-attached
neighbors

Distance Table data structure
each node has its own

r row for each possible destination

r column for each directly-
attached neighbor to node

r example: in node X, for dest. Y
via neighbor Z:

D (Y,Z)
X

distance from X to
Y, via Z as next hop

c(X,Z) + min {D (Y,w)}
Z

w

=

=

Cost associated to the (X,Z) link

Info maintained at Z. Min must
be communicated

Network Layer 4-17

Distance Table: example

A

E D

CB
7

8

1

2

1

2

D ()

A

B

C

D

A

1

7

6

4

B

14

8

9

11

D

5

5

4

2

E
cost to destination via

d
e
s
ti
n
a
t i
o
n

D (C,D)
E

c(E,D) + min {D (C,w)}
D

w
=

= 2+2 = 4

D (A,D)
E

c(E,D) + min {D (A,w)}
D

w
=

= 2+3 = 5

D (A,B)
E

c(E,B) + min {D (A,w)}
B

w
=

= 8+6 = 14

loop! Best path
from D goes through E

loop!

Distance table in node E after the
algorithm has converged

destination

First
example

Path B-C-D-E-A

Network Layer 4-18

Distance table gives routing table

D ()

A

B

C

D

A

1

7

6

4

B

14

8

9

11

D

5

5

4

2

E
cost to destination via

d
e
s
ti
n
a
t i
o
n

A

B

C

D

A,1

D,5

D,4

D,2

Outgoing link

to use, cost

d
e
s
ti
n
a
t i
o
n

Distance table Routing table

Network Layer 4-19

Distance Vector Routing: overview

Iterative, asynchronous:
each local iteration caused
by:

r local link cost change
r message from neighbor: its

least cost path change
from neighbor

Distributed:
r each node notifies

neighbors only when its
least cost path to any
destination changes

m neighbors then notify
their neighbors if
necessary

wait for (change in local link

cost of msg from neighbor)

recompute distance table

if least cost path to any dest

has changed, notify
neighbors

Each node:

Network Layer 4-20

Distance Vector Algorithm:

1 Initialization:
2 for all adjacent nodes v:
3 D (*,v) = infinity /* the * operator means "for all rows" */
4 D (v,v) = c(X,v)
5 for all destinations, y
6 send min D (y,w) to each neighbor /* w over all X's neighbors */

X
X

X
w

At all nodes, X:

From the node to whatever destination going through v

Network Layer 4-21

Distance Vector Algorithm (cont.):
8 loop

9 wait (until I see a link cost change to neighbor V
10 or until I receive update from neighbor V)
11
12 if (c(X,V) changes by d)
13 /* change cost to all dest's via neighbor v by d */
14 /* note: d could be positive or negative */
15 for all destinations y: D (y,V) = D (y,V) + d
16
17 else if (update received from V wrt destination Y)
18 /* shortest path from V to some Y has changed */
19 /* V has sent a new value for its min DV(Y,w) */
20 /* call this received new value is "newval" */
21 for the single destination y: D (Y,V) = c(X,V) + newval
22
23 if we have a new min D (Y,w)for any destination Y
24 send new value of min D (Y,w) to all neighbors
25
26 forever

w

XX

X

X

X

w

w

Network Layer 4-22

Distance Vector Algorithm: example

X Z

12

7

Y

Cost updates from the neighbors are used for sake of recomputing

The best routes and may lead to new cost updates…

Network Layer 4-23

Distance Vector Algorithm: example

X Z

12

7

Y

D (Y,Z)
X

c(X,Z) + min {D (Y,w)}
w=

= 7+1 = 8

Z

D (Z,Y)
X

c(X,Y) + min {D (Z,w)}
w=

= 2+1 = 3

Y

Line 21 of the algorithm description

